Fixed-Point Designer ${ }^{\text {TM }}$
Reference
®

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
www. mathworks .com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us

Phone:
508-647-7000

The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098

Fixed-Point Designer ${ }^{\mathrm{TM}}$ Reference
© COPYRIGHT 2013-2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014 Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023

New for Version 4.0 (R2013a)
Revised for Version 4.1 (R2013b)
Revised for Version 4.2 (R2014a)
Revised for Version 4.3 (R2014b)
Revised for Version 5.0 (R2015a)
Revised for Version 5.1 (R2015b)
Rereleased for Version 5.0.1 (Release 2015aSP1)
Revised for Version 5.2 (R2016a)
Revised for Version 5.3 (R2016b)
Revised for Version 5.4 (R2017a)
Revised for Version 6.0 (R2017b)
Revised for Version 6.1 (R2018a)
Revised for Version 6.2 (R2018b)
Revised for Version 6.3 (R2019a)
Revised for Version 6.4 (R2019b)
Revised for Version 7.0 (R2020a)
Revised for Version 7.1 (R2020b)
Revised for Version 7.2 (R2021a)
Revised for Version 7.3 (R2021b)
Revised for Version 7.4 (R2022a)
Revised for Version 7.5 (R2022b)
Revised for Version 7.6 (R2023a)
Apps
1

Blocks

2

Properties
3

Functions
4

Classes
5

Methods
6

Model Metrics Objects and Object Functions
7

Selected Bibliography
A

Apps

Fixed-Point Converter

Convert MATLAB code to fixed point

Description

The Fixed-Point Converter app converts floating-point MATLAB ${ }^{\circledR}$ code to fixed-point MATLAB code.
Using the app, you can:

- Propose data types based on simulation range data, static range data, or both.
- Propose fraction lengths based on default word lengths or propose word lengths based on default fraction lengths.
- Optimize whole numbers.
- Specify safety margins for simulation min/max data.
- View a histogram of bits used by each variable.
- Specify replacement functions or generate approximate functions for functions in the original MATLAB algorithm that do not support fixed point.
- Test the numerical behavior of the fixed-point code. You can then compare its behavior against the floating-point version of your algorithm using either the Simulation Data Inspector or your own custom plotting functions.

If your end goal is to generate fixed-point C code, use the MATLAB Coder ${ }^{T M}$ app instead. See "Convert MATLAB Code to Fixed-Point C Code" (MATLAB Coder).

If your end goal is to generate HDL code, use the HDL Coder ${ }^{\text {TM }}$ workflow advisor instead. See "Floating-Point to Fixed-Point Conversion" (HDL Coder).

Open the Fixed-Point Converter App

- MATLAB Toolstrip: On the Apps tab, under Code Generation, click the app icon.
- MATLAB command prompt: Enter fixedPointConverter.
- To open an existing Fixed-Point Converter app project, either double-click the . prj file or open the app and browse to the project file.

Creating a project or opening an existing project causes any other Fixed-Point Converter or MATLAB Coder projects to close.

- A MATLAB Coder project opens in the MATLAB Coder app. To convert the project to a Fixed-Point Converter app project, in the MATLAB Coder app:

1
Click and select Reopen project as.
2 Select Fixed-Point Converter.

Examples

- "Propose Data Types Based on Simulation Ranges"
- "Propose Data Types Based on Simulation Ranges"
- "Propose Data Types Based on Derived Ranges"

Programmatic Use

fixedPointConverter opens the Fixed-Point Converter app.
fixedPointConverter -tocode projectname converts the existing project named projectname.prj to the equivalent script of MATLAB commands. It writes the script to the Command Window.
fixedPointConverter -tocode projectname -script scriptname converts the existing project named projectname.prj to the equivalent script of MATLAB commands. The script is named scriptname.m.

- If scriptname already exists, fixedPointConverter overwrites it.
- The script contains the MATLAB commands to:
- Create a floating-point to fixed-point conversion configuration object that has the same fixedpoint conversion settings as the project.
- Run the fiaccel command to convert the floating-point MATLAB function to a fixed-point MATLAB function.

Before converting the project to a script, you must complete the Test step of the fixed-point conversion process.

Version History
 Introduced in R2014b

See Also

Functions

fiaccel

Topics

"Propose Data Types Based on Simulation Ranges"
"Propose Data Types Based on Simulation Ranges"
"Propose Data Types Based on Derived Ranges"
"Fixed-Point Conversion Workflows"
"Automated Fixed-Point Conversion"
"Generated Fixed-Point Code"
"Automated Fixed-Point Conversion in MATLAB"

Fixed-Point Tool

Convert a floating-point model to a fixed-point model

Description

The Fixed-Point Tool enables you to automatically convert a floating-point model to use fixed-point data types, optimize existing data types on a model, and analyze ranges and data types on your model using rich statistics and visualizations.

The Fixed-Point Tool provides three workflows depending on your needs:

- Optimized Fixed-Point Conversion - Automatically convert your model to use optimized fixedpoint data types.
- Iterative Fixed-Point Conversion - Automatically propose fixed-point data types and manually select which data types to apply to your model.
- Range Collection - Explore the numerical behavior of your model before or after data type conversion.

The table below provides a summary of the differences between these three workflows. These options are explained in more detail below.

Workflow	Changes Model Data Types	Ease of Use	Amount of Control Over Data Types Applied to Model	Requires Knowledge of System Behavior Tolerances	Command- Line Workflow
Optimized Fixed-Point Conversion	Yes	One step	Low	Yes	fxpopt
Iterative Fixed-Point Conversion	Yes	Multiple iterations	High	Recommended	DataTypeWork flow.Convert er
Range Collection	No	One step	N/A	Recommended	DataTypeWork flow.Convert er

Optimized Fixed-Point Conversion Workflow

The Optimized Fixed-Point Conversion workflow in the Fixed-Point Tool provides a fullyautomated means of converting a Simulink ${ }^{\circledR}$ model to fixed point. If you know the desired behavior of your system and can specify acceptable tolerances on this behavior, you can use this workflow to find the optimal data types for your system. You can achieve better results if you additionally specify any known ranges or supply additional simulation inputs.

The tool allows you to specify allowable wordlengths and will also take into account limitations of target hardware you specify. You can also specify a safety margin to increase the bounds of the ranges collected by a specified amount. Optimized data types stay within specified behavioral tolerances and minimize the cost of the design. If more than one feasible solution is found, you can
apply and explore different solutions to your model to find one that fits your needs. You can explore the ranges and statistics collected in your baseline model using rich visualization to quickly spot sources of overflow and other numerical issues. You can compare the results of different fixed-point implementations in the Simulation Data Inspector.

After optimizing data types in the Fixed-Point Tool, you can export the workflow to a MATLAB script. This allows you to continue data type optimization using fxpopt at the command line, which has additional advanced options available for further customizing the optimization process.

This workflow will automatically change the data types on your model at completion of the optimization process. If you complete the preparation step before starting optimization, you can automatically restore your model to its original state.

Iterative Fixed-Point Conversion Workflow

The Iterative Fixed-Point Conversion workflow in the Fixed-Point Tool is an interactive automatic means of specifying fixed-point data types in a Simulink model. The tool collects ranges for model objects, then proposes fixed-point data types that maximize precision and cover the range. You can then review the data type proposals and apply them selectively to objects in your model.

The tool allows you to propose word lengths or fraction lengths, giving you the option to have a fixedprecision design, and will also take into account limitations of target hardware you specify. You can also specify a safety margin to increase the bounds of the ranges collected by a specified amount. Rich visualizations allow you to explore the ranges of objects in your model and quickly spot sources of overflow and other numerical issues, both before and after converting your model to fixed point. If the proposed data types do not meet your needs, you can continue iterating through this process. You can compare the results of different fixed-point implementations in the Simulation Data Inspector.

This workflow gives you full control over which proposed data types are applied to your model, if any. If you complete the preparation step of conversion, you can automatically restore your model to its original state.

This workflow does not require you to specify the desired behavior of your system, however it is recommended that you specify any known ranges, simulation inputs, and signal tolerances in order to achieve more accurate data type proposals and be able to evaluate whether proposed data types meet the specified requirements of the design.

Range Collection Workflow

The Range Collection workflow in the Fixed-Point Tool is an analysis and troubleshooting tool, and does not change your model. This workflow provides independent access to the range collection step found in the data type conversion workflows.

You can choose to specify additional simulation inputs and tolerances on logged signals in your model. The tool will individually collect ranges for all simulation inputs specified, and also merge the results for a combined view. If you want to explore the ideal floating-point behavior of your system, you can choose to collect ranges with data type override enabled.

Rich visualizations allow you to explore the ranges of objects in your model and quickly spot sources of overflow, underflow, and other numerical issues, before or after conversion to fixed point. Signals that do not meet the specified tolerances are highlighted in the results. You can compare the results of simulation runs using the Simulation Data Inspector.

Open the Fixed-Point Tool

- Simulink Toolstrip: On the Apps tab, under Code Generation, click the app icon.
- MATLAB command prompt: Enter fxptdlg('system_name'), where 'system_name' is the name of the model or system you want to convert, specified as a string.

Examples

Optimized Fixed-Point Conversion in the Fixed-Point Tool

This example shows how to use the Optimized Fixed-Point Conversion workflow in the FixedPoint Tool. The model used in this example is a simple FIR filter modeled using floating-point data types. In this example, you specify known behavioral constraints for the output of the filter and optimize the fixed-point data types in the Embedded Efficient Filter subsystem.

Open the mSimpleFIR model.
open_system('mSimpleFIR');

Copyright 2021 The MathWorks, Inc.

Inspect the Embedded Efficient Filter subsystem.
open_system('mSimpleFIR/Embedded Efficient Filter');

Known design minimum and maximum values are specified explicitly on blocks in the model, including on the inputs and outputs of the Embedded Efficient Filter subsystem.

Open the Fixed-Point Tool. On the Simulink® Apps tab, under Code Generation, click the app icon.
To start the optimized fixed-point conversion workflow, select Optimized Fixed-Point Conversion.
Select the subsystem that you want to analyze. Under System Under Design (SUD), select the Embedded Efficient Filter subsystem.

Choose the range collection method to use. Under Range Collection Mode, select Simulation with derived ranges. During the range analysis step of optimization, the tool will combine ranges from simulation minimum and maximum values, design minimum and maximum values specified explicitly on blocks in the model, and derived minimum and maximum values that are computed through a static analysis that derived ranges for objects in the model.

Specify Simulation Inputs. For this example, use the default model inputs for simulation.
Specify signal tolerances for logged signals. Set the Absolute Tolerance and Relative Tolerance of the output_signal:1 to 0.01.

To prepare the model for fixed-point conversion, click Prepare. The Fixed-Point Tool creates a backup version of the model and checks the model for comaptibility with the conversion process. For more about preparation checks, see "Use the Fixed-Point Tool to Prepare a System for Conversion".

Next, expand the Settings button arrow to configure the settings to use for data type optimization. For this example, use the default settings.

To optimize data types in the model, click Optimize Data Types.
During the optimization process, the software analyzes ranges of objects in your system under design. Optimization will take into account all specified behavioral constraints, including design minimum and maximum values and signal tolerances, to apply heterogeneous data types to your system while minimizing the objective function. For this example, the objective function is set to the default Bit Width Sum, which instructs the optimization to minimize the sum of word lengths in the system under design.

During the optimization process, the software makes changes to several settings and model configuration parameters. These purpose of these changes include suppressing diagnostics, enabling logging with the Simulation Data Inspector, reducing the memory consumed by the result, ensuring validity of the model, accelerating the optimization process, and turning off data type override. For more information, see "Model Configuration Changes Made During Data Type Optimization". You can restore these diagnostics after the optimization is complete.

Details about the optimization process are printed to the Optimization Details pane in the FixedPoint Tool. You can pause or stop the optimization solver before the optimization search is complete by clicking Stop.

When the optimization is complete, the Fixed-Point Tool displays a table that contains all of the solutions found during the optimization process. Solution 1 in the table corresponds to the best solution found.

Solutions are ordered in the table based on the Cost, which is defined by the objective function specified in the Settings menu. Feasible solutions that meet the defined behavioral constraints are marked with a pass status in the solutions table. Solutions that do not meet the behavioral constraints are marked with a fail status. This example uses tolerances on the output of the filter subsystem to define the desired behavior of the system. For more information about defining other types of behavioral constraints, see "Specify Behavioral Constraints".

During the optimization process, the tool collects ranges and statistics for objects in your model. To explore these ranges, in the Workflow Browser pane, select BaselineRun.

The Results spreadsheet displays a summary of the statistics collected during the range collection phase of optimization, including simulation minimum and simulation maximum values. You can click on any result to view additional details in the Result Details pane. The Visualization of Simulation Data pane displays a summary of histograms of the bits used by each object in your model.

You can customize the information displayed in the Results spreadsheet, or use the Explore tab to sort and filter these results based on additional criteria. For more information, see "Control Views in the Fixed-Point Tool".

The best solution found during optimization, Solution 1, is automatically applied to the model. To compare this optimized solution to the baseline run, click Compare. In the Embedded Efficient Filter subsystem, you can see the applied optimized fixed-point data types. When you click Compare for a model that has logged signals, the tool opens the Simulation Data Inspector. In the Simulation Data Inspector, select output_signal as the signal to compare. The plot of the plant output signal for Solution 1 is within the specified tolerance band.

You can continue exploring other solutions by selecting a solution from the solutions table and clicking Apply and Compare.

After optimizing data types in the Fixed-Point Tool, you can choose to export the optimization workflow steps to a MATLAB® script. This allows you to save the current optimization workflow steps and continue data type optimization using fxpopt at the command line.

Click Export Script to export a script named fxpOptimizationOptions to the current working directory.

```
model = 'mSimpleFIR';
sud = 'mSimpleFIR/Embedded Efficient Filter';
options = fxpOptimizationOptions();
options.AdvancedOptions.UseDerivedRangeAnalysis = true; % Run range analysis as part of range collection.
addTolerance(options, 'mSimpleFIR/outut_signal', l, 'AbsTol', 0.01);
addTolerance(options, 'mSimpleFIR/outut_signal', l, 'RelTol', 0.01);
result = fxpopt(model, sud, options);
solution = explore(result);
```

After the conversion process, if you want to restore your model to its state at the start of the conversion process, click Restore Original Model. Any changes made to your model after the preparation stage of conversion are removed.

Iterative Fixed-Point Conversion in the Fixed-Point Tool

This example shows how to use the Iterative Fixed-Point Conversion workflow in the Fixed-Point Tool. The model used in this example is a simple FIR filter modeled using initial guesses for fixedpoint data types. In this example, you specify known behavioral constraints for the output of the filter and improve the fixed-point data types in the Embedded Efficient Filter subsystem.

Open the mSimpleFIR_fxp model.
open_system('mSimpleFIR_fxp');

Copyright 2021 The MathWorks, Inc.

Inspect the Embedded Efficient Filter subsystem.
open_system('mSimpleFIR_fxp/Embedded Efficient Filter');

Known design minimum and maximum values are specified explicitly on blocks in the model, including on the inputs and outputs of the Embedded Efficient Filter subsystem.

Open the Fixed-Point Tool. On the Simulink® Apps tab, under Code Generation, click the app icon.
To start the iterative fixed-point conversion workflow, select Iterative Fixed-Point Conversion.
Select the subsystem that you want to analyze. Under System Under Design (SUD), select the Embedded Efficient Filter subsystem.

Choose the range collection method to use. Under Range Collection Mode, select Simulation with derived ranges. During the range analysis step of optimization, the tool will combine ranges from simulation minimum and maximum values, design minimum and maximum values specified explicitly on blocks in the model, and derived minimum and maximum values that are computed through a static analysis that derived ranges for objects in the model.

Specify Simulation Inputs. For this example, use the default model inputs for simulation.
Specify signal tolerances for logged signals. Set the Absolute Tolerance and Relative Tolerance of the output_signal:1 to 0.01.

To prepare the model for fixed-point conversion, click Prepare. The Fixed-Point Tool creates a backup version of the model and checks the model for comaptibility with the conversion process. For more about preparation checks, see "Use the Fixed-Point Tool to Prepare a System for Conversion".

Next, collect ranges. Expand the Collect Ranges button arrow and select Double precision. Click Collect Ranges to start the range collection run.

Collect Ranges

${ }_{6.1}^{[1+}$ ($)$ Collect $\mathrm{min} / \mathrm{max}$ values based on design ranges using the data type override settings selected below for data type proposal

Collect ranges using:

Use current settings
Use current data type override set on the model

Double precision
Override data types with doubles

Single precision

Override data types with singles

Scaled double precision
Override data types with scaled doubles

When you select Double precision as the range collection mode, the tool simulates the system under design with data type override enabled. Data type override performs a global override of the fixedpoint data types in the model, thereby avoiding quantization effects. This enables you to establish an ideal floating-point baseline for the behavior of your model.

The results of range collection are stored in BaselineRun. The Results spreadsheet displays a summary of the statistics collected during the range collection simulation, including the currently specified data types on the model (SpecifiedDT), simulation minimum, and simulation maximum values. The compiled data type (CompiledDT) column displays double for all objects in the Embedded Efficient Filter subsystem, indicating that data type override was applied during the range collection simulation.

You can click on any result to view additional details in the Result Details pane. The Visualization of Simulation Data pane displays a summary of histograms of the bits used by each object in your model. The simulation data shows that several objects in the model have potential underflows.

You can customize the information displayed in the Results spreadsheet, or use the Explore tab to sort and filter these results based on additional criteria. For more information, see "Control Views in the Fixed-Point Tool".

Next, expand the Settings button arrow to configure the settings to use for data type proposals. Set Propose to Word Length.

To propose data types based on the ranges collected and the data type proposal settings specified, click Propose Data Types. The tool uses all available range data to calculate data type proposals which can include design minimum or maximum values, simulation minimum or maximum values, and derived minimum or maximum values. Data types are proposed for all objects in the system under design whose Lock output data type setting against changes by the fixed-point tools parameter is cleared.

To write the proposed data types to the model, click Apply Data Types. The tool updates the SpecifiedDT column to show that the data types have been applied to the model.

Simulate the model using the applied fixed-point data types. Expand the Simulate with Embedded Types button arrow and select Specified data types. Then click Simulate with Embedded Types.

The Fixed-Point Tool simulates the model using the new fixed-point data types and logs minimum and maximum values and overflow data for all objects in the system under design. This information is stored in a new run named EmbeddedRun. The icon next to EmbeddedRun displays a pass status, indicating that all signals in the system under design meet the specified tolerances. The Visualization of Simulation Data pane updates to display the new EmbeddedRun data.

To compare the ideal results stored in BaselineRun with the newly applied fixed-point data types, select EmbeddedRun from the Run to compare in SDI drop down menu. Then click Compare Results to open the Simulation Data Inspector.

In the Simulation Data Inspector, select output_signal as the signal to compare.

The plot of the filter output signal for EmbeddedRun is within the specified tolerance band.
If the behavior of the converted system does not meet your requirements or if you wish to explore the effect of additional data type selections, you can propose new data types after applying new proposal settings. Continue iterating until you find settings for which the fixed-point behavior of the system is acceptable.

After the conversion process, if you want to restore your model to its state at the start of the conversion process, click Restore Original Model. Any changes made to your model after the preparation stage of conversion are removed.

Range Collection in the Fixed-Point Tool

This example shows how to use the Range Collection workflow in the Fixed-Point Tool. The model used in this example is a simple FIR filter modeled using fixed-point data types. In this example, you analyze the numerical behavior of the model to determine the source of overflow in the Embedded Efficient Filter subsystem.

Open the mSimpleFIR_fxp_ovf model.
open_system('mSimpleFIR_fxp_ovf');

Copyright 2021 The MathWorks, Inc.

Inspect the Embedded Efficient Filter subsystem.
open_system('mSimpleFIR_fxp_ovf/Embedded Efficient Filter');

Known design minimum and maximum values are specified explicitly on blocks in the model, including on the inputs and outputs of the Embedded Efficient Filter subsystem.

Open the Fixed-Point Tool. On the Simulink® Apps tab, under Code Generation, click the app icon.
To start the range collection workflow, select Range Collection.
Select the subsystem that you want to analyze. Under System Under Design (SUD), select the Embedded Efficient Filter subsystem.

Choose the range collection method to use. Under Range Collection Mode, select Simulation with derived ranges. During range collection, the tool will combine ranges from simulation minimum and maximum values, design minimum and maximum values specified explicitly on blocks in the model, and derived minimum and maximum values that are computed through a static analysis that derived ranges for objects in the model.

Specify Simulation Inputs. For this example, use the default model inputs for simulation.
Specify signal tolerances for logged signals. Set the Absolute Tolerance and Relative Tolerance of the output_signal:1 to 0.01.

Next, expand the Collect Ranges button arrow to configure the settings to use for range collection. Select Double precision to temporarily override data types in the model with doubles during the baseline range collection run. Click Collect Ranges.

Collect Ranges
${ }^{\text {M. }}+$ (+ Collect $\mathrm{min} /$ max values based on design ranges using the data type override settings selected below for data type proposal

Collect ranges using:
Use current settings
Use current data type override set on the model
Double precision
Override data types with doubles

Single precision
Override data types with singles
Scaled double precision
Override data types with scaled doubles

The results of the range collection run are stored in BaselineRun. The Results spreadsheet displays a summary of the statistics collected during the range collection, including the currently specified data types on the model (SpecifiedDT), simulation minimum, and simulation maximum values. The compiled data type (CompiledDT) column displays double for all objects in the Embedded Efficient Filter subsystem, indicating that data type override was applied during the range collection simulation.

You can click on any result to view additional details in the Result Details pane. The Visualization of Simulation Data pane displays a summary of histograms of the bits used by each object in your model.

You can customize the information displayed in the Results spreadsheet, or use the Explore tab to sort and filter these results based on additional criteria. For more information, see "Control Views in the Fixed-Point Tool".

Next, simulate the model using the fixed-point data types currently specified on the model. Expand the Settings button arrow and select Specified data types, then click Simulate with Embedded Types.

The Fixed-Point Tool stores the results of the simulation in EmbeddedRun.

The icon next to EmbeddedRun displays a fail status, indicating that one or more signals do not meet the specified tolerances. The results for the Product block indicate that there is an issue with this result. The Result Details pane shows that the block overflowed 1670 times, indicating a poor choice of word length.

To compare the ideal results stored in BaselineRun with the fixed-point results, select EmbeddedRun from the Run to compare in SDI drop down menu. Then click Compare Results to open the Simulation Data Inspector. In the Simulation Data Inspector, select output_signal as the signal to compare.

- "Convert Floating-Point Model to Fixed Point"
- "Optimize the Fixed-Point Data Types of a System Using the Fixed-Point Tool"
- "Perform Data Type Optimization with Custom Behavioral Constraints"
- "Use the Fixed-Point Tool to Explore Numerical Behavior"

Parameters

System Under Design (SUD) - System or subsystem to analyze or convert
current system (default)
System or subsystem to analyze or convert to fixed-point. You can select individual subsystems in your model one at a time to facilitate debugging by isolating the source of numerical issues, or you can choose the top-level model.

For more information on converting systems containing particular modeling constructs, see:

- "Convert a Referenced Model to Fixed Point"
- "Bus Objects in the Fixed-Point Workflow"
- "Autoscaling Data Objects Using the Fixed-Point Tool"
- "Convert MATLAB Function Block to Fixed Point"

Range Collection Mode - How the tool collects ranges for objects in your system
Simulation ranges (default) | Derived ranges | Simulation with derived ranges
How the tool collects ranges for objects in your system, specified as one of the following:

- Simulation ranges - Collect ranges through simulation. To collect and merge the ranges of multiple simulation runs, specify "Simulation Inputs" on page 1-0 . Data type proposals are as good as the test bench provided.
- Derived ranges - Collect ranges through a static analysis that derives the ranges, also known as range analysis or derived range analysis. Ranges collected using this option are based only on design ranges specified on the model. This option typically delivers more conservative data type proposals. For more information, see "How Range Analysis Works".
- Simulation with derived ranges - Collect ranges through simulation and derived range analysis and combine the results. Proposed data types are based on the union of simulation and derived ranges. This option provides the most comprehensive range information.

For more information, see "Choosing a Range Collection Method".
Simulation Inputs - Inputs for simulations
Use default model inputs (default)|Simulink. SimulationInput object
Inputs for simulations, specified as a Simulink. SimulationInput object.
If you choose the "Range Collection Mode" on page 1-0 to be Simulation ranges or Simulation with derived ranges, you can choose to specify additional simulation inputs to improve the accuracy of the collected ranges and data type proposals. During the range collection simulation, the FixedPoint Tool captures the minimum and maximum values from each specified simulation scenario. If the Simulink. SimulationInput object that you select contains more than one simulation scenario, the Fixed-Point Tool proposes data types based on the merged ranges from all simulation scenarios.

A comprehensive set of input signals that exercise the full range of your design will result in more accurate data type proposals for your system. For an example, see "Propose Data Types For Merged Simulation Ranges".

Signal Tolerances - Tolerances for signals in your model that have signal logging enabled absolute tolerance | relative tolerance | time tolerance

To determine if the numerical behavior of a new fixed-point implementation is acceptable, you can define tolerances for individual signals in your model that have logging enabled. You can specify any of the following types of tolerances:

- Absolute Tolerance - Absolute value of the maximum acceptable difference between the original signal and the signal in the converted design.
- Relative Tolerance - Maximum relative difference, specified as a percentage, between the original output and the output of the new design. For example, a value of $1 \mathrm{e}-2$ indicates a maximum difference of one percent between the original values and the signal values of the converted design.
- Time Tolerance (seconds) - Time interval in which the maximum and minimum values define the upper and lower values to compare against.

In the Optimized Fixed-Point Conversion workflow, you must specify at least one behavioral constraint in order to optimize data types. Signal tolerances are one type of behavioral constraint that you can specify.

In the Iterative Fixed-Point Conversion workflow, signal tolerances are not required to propose data types, but are required for the tool to determine whether the embedded run is within tolerance.

In the Range Collection workflow, signal tolerances are not required to collect ranges, but are required for the tool to determine whether the ranges collected are within tolerance.

You can enter signal tolerances using any valid MATLAB expression that returns a finite, non-negative value.

For more information, see "Specify Behavioral Constraints" and "Tolerance Computation".
Collect Ranges - Collect ranges
Use current settings (default)|Double precision|Single precision|Scaled double precision

Collect ranges for objects in your model using:

- Use current settings - Use the current data type override set on the model.
- Double precision - Override data types in the model with doubles.
- Single precision - Override data types in the model with singles.
- Scaled double precision - Override data types in the model with scaled doubles.

Ranges collected depend on the "Range Collection Mode" on page 1-0 and any "Simulation Inputs" on page 1-0 specified.

For more information, see "Fixed-Point Instrumentation and Data Type Override" and "Use Custom Data Type Override Settings for Range Collection".

Settings - Data typing options
Allowable Wordlengths|Max Iterations|Propose|Propose signedness|Verify using |..

Data typing options available in the Settings menu depend on the workflow chosen.

Optimized Fixed-Point Conversion Workflow Options

Option	Description
Allowable Wordlengths	$[2: 128]$ (default)
Word lengths that can be used in your optimized	
system under design. The final result of the	
optimization uses word lengths in the intersection	
of the Allowable Wordlengths and word	
lengths compatible with hardware constraints	
specified in the Hardware Implementation	
pane of your model.	

Option	Description
Max Iterations	50 (default) Maximum number of iterations to perform, specified as a scalar integer. The optimization process iterates through different solutions until it finds an ideal solution, reaches the maximum number of iterations, or reaches another stopping criteria.
Max Time (sec)	600 (default) Maximum amount of time for the optimization to run, specified in seconds as a scalar number. The optimization runs until it reaches the time specified, an ideal solution, or another stopping criteria.
Patience (iterations)	10 (default) Maximum number of iterations where no new
best solution is found, specified as a scalar	
integer. The optimization continues as long as the	
algorithm continues to find new best solutions.	

Option	Description
Objective Function	Objective function to use during the optimization search. The optimization algorithm seeks to minimize an objective function while meeting the specified behavioral constraints. - Bit Width Sum (default) - Minimize total bit width sum. - Operator Count - Minimize estimated count of operators in generated C code. This option may result in a lower program memory size for C code generated from Simulink models. The 'OperatorCount ' objective function is not suitable for FPGA or ASIC targets. Note To use Operator Count as the objective function during optimization, the model must be ready for code generation. For more information about determining code generation readiness, see "Check Model and Configuration for Code Generation" (Embedded Coder).
Perform Neighborhood Search	on (default) Whether to perform a neighborhood search for the optimized solution. Disabling this option can increase the speed of the optimization process, but also increases the chances of finding a less ideal solution.
Use Parallel	off (default) Whether to run iterations of the optimization in parallel. Running the iterations in parallel requires a Parallel Computing Toolbox ${ }^{\mathrm{TM}}$ license. If you do not have a Parallel Computing Toolbox license, or if you do no enable this option, the iterations run in serial.

Iterative Fixed-Point Conversion Workflow Options

Option	Description
Propose	Whether to propose fraction lengths or word lengths for objects in the system under design. - Fraction Length (default) - The FixedPoint Tool uses range information and the specified Default word length value to propose best-precision fraction lengths for the objects in your model. - Word Length - The Fixed-Point Tool uses range information and the specified Default fraction length value to propose word lengths for the objects in your model.
Propose signedness	Yes (default) Whether to use the collected range information to propose signedness.
Safety margin for simulation min/max (\%)	2 (default) Specify a safety margin to apply to collected simulation ranges. The Fixed-Point Tool will add the specified amount to the collected ranges and base proposals on this larger range.
Convert double/single/half types	Yes (default) Whether to generate data type proposals for objects that currently specify a double, single, or half-precision data type.
Convert inherited types	Yes (default) Whether to generate data type proposals for results that currently specify an inherited data type.
Default word length	16 (default) Default word length to use for data type proposals, specified as a scalar integer. This setting is enabled only when the Propose setting is set to Fraction Length.
Default fraction length	4 (default) Default fraction length to use for data type proposals, specified as a scalar integer. This setting is enabled only when the Propose setting is set to Word Length.

Range Collection Workflow Options

Option	Description
Verify using	Data type override settings to use for embedded simulation.
	- Specified data types - Use data types specified on the model Scaled double precision - Override data types with scaled doubles.

Limitations

- Some blocks do not support fixed-point data types and can result in an error during fixed-point conversion. See "Blocks That Do Not Support Fixed-Point Data Types".
- Some modeling constructs may cause data type propagation issues. See "Models That Might Cause Data Type Propagation Errors".
- If your model contains a MATLAB Function block, use only supported modeling constructs for successful conversion. See "MATLAB Language Features Supported for Automated Fixed-Point Conversion".

Tips

- For best practices and recommendations, see "Best Practices for Fixed-Point Conversion Workflow".
- To customize views in the Fixed-Point Tool, see "Control Views in the Fixed-Point Tool".
- For help troubleshooting the optimization workflow, see "Data Type Optimization Not Successful".

Version History

Introduced before R2006a

See Also

fxptdlg | DataTypeWorkflow. Converter | fxpopt | "Optimize Fixed-Point Data Types for a System" | "The Command-Line Interface for the Fixed-Point Tool"

Topics

"Convert Floating-Point Model to Fixed Point"
"Optimize the Fixed-Point Data Types of a System Using the Fixed-Point Tool"
"Perform Data Type Optimization with Custom Behavioral Constraints"
"Use the Fixed-Point Tool to Explore Numerical Behavior"

Lookup Table Optimizer

Optimize existing lookup table or approximate function with lookup table

Description

Use the Lookup Table Optimizer app to obtain an optimized (memory-efficient) lookup table.
Using this app, you can:

- Approximate an existing Simulink block, including Subsystem blocks and math function blocks
- Approximate a MATLAB handle
- Approximate a curve fit object

You can choose to return the optimized lookup table as a Simulink block or as a MATLAB function.
The optimizer supports any combination of floating-point and fixed-point data types. The original input and output data types can be kept or changed as desired. To minimize memory used, the optimizer selects the data types of breakpoints and table data as well as the number and spacing of breakpoints.

Open the Lookup Table Optimizer App

- Simulink toolstrip: On the Apps tab, under Code Generation, click the app icon.
- In a Simulink model with a Lookup Table block, select the Lookup Table block. In the Lookup Table tab, select Lookup Table Optimizer.

Examples

- "Optimize Lookup Tables for Memory-Efficiency"
- "Generate an Optimized Lookup Table as a MATLAB Function"
- "Convert Floating-Point Model to Fixed Point"

Parameters

Source - Source for memory-efficient LUT
Simulink block or subsystem (default) | MATLAB function handle | curve fit object
Select the source for memory-efficient LUT:

- Simulink block or subsystem - Simulink block or subsystem to approximate, or lookup table block to optimize, for example, 1-D Lookup Table or n-D Lookup Table. If you specify one of the lookup table blocks, the app generates an optimized lookup table.
- MATLAB function handle - MATLAB function handle to approximate with a lookup table. Function handles must be on the MATLAB search path, or approximation fails.
- Fitted curve - Curve fit cfit object from the base workspace to approximate. For a list of library models to approximate, see "List of Library Models for Curve and Surface Fitting" (Curve Fitting Toolbox).

Tip The process of generating a lookup table approximation is faster for a function handle than for a subsystem. If a subsystem can be represented by a function handle, approximating the function handle is faster.

Output Error Tolerance - Tolerance of difference between original and approximation non-negative scalar

Specify the maximum tolerance of the Absolute and Relative difference between the original output value and the output value of the approximation.

Allowed Word Lengths - Word lengths permitted in lookup table approximation
[8 16 32] (default)|vector of integers
Specify the word lengths, in bits, that can be used in the lookup table approximation based on your intended hardware. For example, if you intend to target an embedded processor, you can restrict the data types in your lookup table to native types. The word lengths must be between 1 and 128.

LUT Specification - Options for optimized lookup table
Interpolation|Breakpoint specification | Saturate to output type|AUTOSAR Compliant|Explore Half|HDL Optimized|Solution Type

Specify options to use for the optimized lookup table.

Option	Description
Interpolation	When an input falls between breakpoint values, the lookup table interpolates the output value using neighboring breakpoints. - Linear - Fits a line between the adjacent breakpoints and returns the point on that line that corresponds to the input. - Flat - Returns the output value that corresponds to the breakpoint value that is immediately less than the input value. If no breakpoint value exists below the input value, this option returns the breakpoint value nearest to the input value. - Nearest - Returns the value that corresponds to the breakpoint that is closest to the input. If the input is equidistant from two adjacent breakpoints, this option selects the breakpoint with the higher index. - None - Generates a Direct Lookup Table (nD) block, which performs table lookups without any interpolation or extrapolation. Note When generating a Direct Lookup Table block, the maximum number of inputs is two.
Breakpoint specification	Spacing of breakpoint data. - ExplicitValues - Lookup table breakpoints are specified explicitly. Breakpoints can be closer together for some input ranges and farther apart in others. - EvenSpacing - Lookup table breakpoints are evenly spaced throughout. - EvanPow2Spacing - Lookup table breakpoints use power-of-two spacing. This breakpoint specification boasts the fastest execution speed because a bit shift can replace the position search. For more information on how breakpoint specification can affect performance, see "Effects of Spacing on Speed, Error, and Memory Usage".
Saturate to output type	Whether to automatically saturate the range of the output of the function to approximate to the range of the output data type.

Option	Description
AUTOSAR Compliant	Whether the generated lookup table is AUTOSAR compliant. When this option is set to True, -The generated lookup table is a Curve or Map block from the AUTOSAR Blockset. -The data type of the table data must equal the output data type of the block. An AUTOSAR Blockset license is checked out. Explore Half This option is not supported when the Solution Type option is set to MATLAB.
Whether to allow the optimizer to explore half- precision data types for table data and breakpoints.	
Whether to generate an HDL-optimized approximation. When this option is set to True, the generated approximation is a subsystem consisting of a prelookup step followed by interpolation that functions as a lookup table with explicit pipelining to generate efficient HDL code.	
To generate an HDL-optimized approximation, the function to approximate must be one- dimensional and Breakpoint specification must be set to EvenSpacing or EvenPow2Spacing. This property is not supported when the Solution Type option is set to MATLAB.	

Option	Description		
Solution Type	How the app outputs the optimized lookup table. - Simlink - Generate a Simulink subsystem containing the optimized lookup table. - MATLAB - Output the optimized lookup table as a MATLAB function. Generating an optimized lookup table as a MATLAB function is not supported when: - The AUTOSARCompliant property is set to true. - The UseParallel property is set to true. - The HDLOptimized property is set to true. - The InterpolationMethod property is set to 'None'.		
	Note The Simulink block and MATLAB function lookup table approximations generated by the Lookup Table Optimizer may not be exactly numerically equivalent. However, both solution forms are guaranteed to meet all constraints specified in the optimization problem.		
Settings - Optimization options Max time\|Max memory usage (bytes)	On curve table values	Use parallel	
Specify additional optimization options.			
Option	Description		
Max time	Maximum amount of time for the approximation to run, specified in seconds as a scalar number. The approximation runs until it reaches the time specified, finds an ideal solution, or reaches another stopping criterion. Default: Inf		
Max memory usage (bytes)	The maximum amount of memory the generated lookup table can use, in bytes, specified as a scalar integer. Default: 10000000		

Option	Description
On curve table values	Whether to constrain table values to the quantized output of the function being approximated. When you set this option to False and allow off-curve table values, you may be able to reduce the memory of the lookup table while maintaining the same error tolerances or maintain the same memory while reducing the error tolerances. Default: False
Use parallel	Whether to run iterations of the optimization in parallel. Running iterations in parallel requires a Parallel Computing Toolbox license. If you do not have a Parallel Computing Toolbox, or if you specify False, the iterations run in serial.
This option is not supported when the Solution Type option is set to MATLAB.	
Default: False	

Limitations

- Lookup table objects and breakpoint objects are not supported in a model mask workspace.
- Functions and function handles that you approximate must meet these criteria:
- The function must be time-invariant.
- The function must operate element-wise, meaning for each input there is one output.
- The function must not contain states.

For more information, see "Vectorization".

Algorithms

Infinite Upper and Lower Input Bounds

When object to approximate specifies infinite input ranges and the input type is non-floating-point, the software infers upper and lower ranges during the approximation based on the range of the input data type. The resulting lookup table solution specifies the bounds that the algorithm used during the approximation, not the originally specified infinite bounds.

Upper and Lower Input Bounds and Input Data Type Range

If the Minimum or Maximum specified for an input fall outside the range of the specified Desired Data Type, the algorithm uses the range of the data type specified by Desired Data Type for the approximation.

In cases where the Breakpoint specification option is set to EvenSpacing but the specified Minimum or Maximum values of the input is equal to the range of the Desired Data Type, the algorithm does not attempt to find a solution using EvenPow2Spacing.

Version History

Introduced in R2018a

R2022b: Support for curve fitting objects

The Lookup Table Optimizer app now supports curve fitting cfit objects as valid inputs for approximation.

R2022a: Improved memory reduction for 1-D and flat interpolation

The Lookup Table Optimizer has an improved algorithm for lookup table value and breakpoint optimization for one-dimensional functions with flat interpolation. This enhancement can enable improved memory reduction of the optimized lookup table and faster completion of the lookup table optimization process.

This improvement applies when the function to approximate is one-dimensional and all of these options are specified:

- Interpolation is set to Flat.
- Breakpoint specification is set to ExplicitValues.
- On curve table values is set to False.

R2021b: Generate an optimized lookup table approximation as a MATLAB function

Use the Lookup Table Optimizer app to generate an optimized lookup table approximation as a MATLAB function. The generated MATLAB function is editable and supports $\mathrm{C} / \mathrm{C}++$ code generation using MATLAB Coder.

R2021a: Generate optimized one-dimensional lookup tables for HDL applications

Use the Lookup Table Optimizer app to generate a subsystem consisting of a prelookup step followed by interpolation that functions as a lookup table with explicit pipelining to generate efficient HDL code.

R2021a: Lookup table optimization support for functions with scalar inputs

Previously, the Lookup Table Optimizer required that functions and function handles to approximate were vectorized, meaning that for each input, there is exactly one output. Starting in R2021a, lookup table optimization fully supports approximation of Simulink blocks and subsystems that only allow scalar inputs.

R2021a: Improved lookup table value optimization

The Lookup Table Optimizer has an improved algorithm for lookup table value optimization for the Flat and Nearest interpolation methods when off-curve table values are allowed. This enhancement can enable faster completion of the lookup table optimization process and improved memory reduction of the optimized lookup table.

R2021a: Stop optimization in Lookup Table Optimizer app

You can now stop the optimization solver in the Lookup Table Optimizer before the optimization search is complete. The app will choose the best solution found at the time the Stop button is clicked and display the solution in the app.

R2020b: Explore half precision in optimized lookup tables

Specify whether the optimization process explores half-precision data types for table data and breakpoint values.

R2020a: Iteratively redesign lookup tables in your model

The Lookup Table Optimizer now replaces blocks being approximated by a lookup table with a variant subsystem containing the function approximation. The variant subsystem enables you to return to the original function and perform the optimization again using different optimization settings and constraints.

R2020a: Parallelized lookup table optimization

Specify whether to run iterations of the optimization in parallel. Running iterations in parallel requires a Parallel Computing Toolbox license. If you do not have a Parallel Computing Toolbox license, or if you specify False, the iterations run in serial.

R2019b: Allow off-curve table values in optimized lookup tables

You can now generate an optimized lookup table with off-curve table values.
In previous releases, the optimization required table values to match the quantized output values of the original function being approximated. By allowing off-curve table values, you may be able to reduce the memory of the lookup table while maintaining the same error tolerances, or maintain the same memory while reducing the error tolerances.

R2019b: Generate optimized AUTOSAR-compliant lookup table

Generate an AUTOSAR-compliant optimized lookup table using a Curve or Map block.
Setting this option to True checks out an AUTOSAR Blockset license.

See Also

Classes

FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator|LUTCompressionResult

Functions

solve | approximate | compare | totalmemoryusage | solutionfromID |
displayfeasiblesolutions|displayallsolutions

Topics

"Optimize Lookup Tables for Memory-Efficiency"
"Generate an Optimized Lookup Table as a MATLAB Function"
"Convert Floating-Point Model to Fixed Point"

Single Precision Converter

Convert double-precision system to single precision

Description

The Single Precision Converter automatically converts a double-precision system to single precision.

During the conversion process, the converter replaces all user-specified double-precision data types, as well as output data types that compile to double precision, with single-precision data types. The converter does not change built-in integer, Boolean, or fixed-point data types.

Open the Single Precision Converter

- From the Simulink Apps tab, select Single Precision Converter.

Examples

- "Convert a System to Single Precision"

Programmatic Use

report = DataTypeWorkflow.Single.convertToSingle(systemToConvert) converts the system specified by systemToConvert to single-precision and returns a report. The systemToConvert must be open before you begin the conversion.

Version History
 Introduced in R2016b

See Also

Functions

convertToSingle

Topics

"Convert a System to Single Precision"
"Getting Started with Single Precision Converter"

Parameter Quantization Advisor

Inspect numerical issues related to parameter quantization

Description

The Parameter Quantization Advisor app provides details on numerical issues related to parameter quantization. Using this app, you can:

- Filter quantization issues resulting from parameter overflow, underflow, and precision loss.
- Sort quantization issues based on bits of error, absolute error, or relative error.
- Explore in detail the effects of parameter quantization on your model.
- Explore all parameters associated with a model.

Open the Parameter Quantization Advisor App

- Diagnostic Viewer: From a numeric diagnostic warning or error, under Suggested Actions, click Open.

Examples

Explore Parameter Precision Loss

Use the Parameter Quantization Advisor to explore parameter precision loss in a feedback controller model.

Open the fxpdemo_feedback model.
fxpdemo_feedback
Check that parameter diagnostics are enabled. In the Configuration Parameters dialog, under Diagnostics > Data Validity, set the Detect precision loss parameter diagnostic to warning.

Simulate the model.
The Diagnostic Viewer displays a warning for parameter precision loss.

```
Parameter precision loss occurred 4 times for 'Coefficients' of 'fxpdemo feedback/controller/Denominator Terms'. First occurrence: The original value of the
parameter, -1.968253968253968, cannot be represented exactly using the run-time data type sfixl6_Enl4. The value is quantized to -1.96826171875. Quantization
error occurred with an absolute difference of 7.750496032077336e-6 and a relative difference of \overline{0.000393775201629736%.}
Ungroup 2 similar
```


-Suggested Actions

```
- To disable this warning or error for all parameters in the model, set the 'Detect precision loss' option to 'none'.
- Inspect details in the Parameter Quantization Advisor.
Component: Simulink | Category: Block warning

To inspect details of this diagnostic in the Parameter Quantization Advisor, from Suggested Actions, click Open.


The app displays details of the parameter precision loss that occurred in fxpdemo_feedback/ Denominator Terms. In this example, the model has only precision loss issues, as indicated by a blue square in the Quantization Issue column of the table. You can also use the app to explore overflow and underflow issues.

Four coefficients in the Discrete FIR Filter block named Denominator Terms experienced precision loss. The table shows the dialog value entered for each parameter and the corresponding quantized value of each parameter. You can sort the table by bits of error, absolute error, or relative error.

The Parameter Details pane contains additional details for the parameter experiencing numeric issues, including the location in the model and the name, dimension, and complexity of the parameter. The table displays the data type of the parameter in the dialog and the data type of the parameter at run time along with the minimum, maximum, and precision representable by these data types.

\section*{Tips}
- Update the diagram or simulate the model to view messages in the Diagnostic Viewer.
- The model must successfully compile in order to launch the Parameter Quantization Advisor app. If a diagnostic errors, the model will not compile and the app cannot be launched.
- The Parameter Quantization Advisor app reports information for these quantization issues:
- "Detect underflow"
- "Detect overflow"
- "Detect precision loss"

Diagnostics set to none are also reported in the app.
- The Parameter Quantization Advisor reports details on quantization issues for tunable and nontunable parameters that experience quantization loss.
- You can inspect all parameters associated with a model in the Parameter Quantization Advisor. A hierarchical tree of all parameters in the model is displayed in the Parameter Explorer. Select the parameter you would like to inspect to view additional details.

\section*{Version History}

Introduced in R2022b

\section*{R2023a: View Multiple Parameters}

The Parameter Quantization Advisor now allows you to explore all parameters associated with a model.

Additionally, the Parameter Quantization Advisor has expanded support for the MATLAB Function block, Stateflow \({ }^{\circledR}\) chart parameters, the FIR Decimation block, and the FIR Interpolation block.

\section*{See Also}
"Detect underflow" | "Detect overflow" | "Detect precision loss"

\section*{Simulation Data Inspector}

Inspect and compare data and simulation results to validate and iterate model designs

\section*{Description}

The Simulation Data Inspector visualizes and compares multiple kinds of data.

Using the Simulation Data Inspector, you can inspect and compare time series data at multiple stages of your workflow. This example workflow shows how the Simulation Data Inspector supports all stages of the design cycle:

1 "View Data in the Simulation Data Inspector"
Run a simulation in a model configured to log data to the Simulation Data Inspector, or import data from the workspace or a MAT-file. You can view and verify model input data or inspect logged simulation data while iteratively modifying your model diagram, parameter values, or model configuration.
2 "Inspect Simulation Data"
Plot signals on multiple subplots, zoom in and out on specified plot axes, and use data cursors to understand and evaluate the data. "Create Plots Using the Simulation Data Inspector" to tell your story.

3 "Compare Simulation Data"
Compare individual signals or simulation runs and analyze your comparison results with relative, absolute, and time tolerances. The compare tools in the Simulation Data Inspector facilitate iterative design and allow you to highlight signals that do not meet your tolerance requirements. For more information about the comparison operation, see "How the Simulation Data Inspector Compares Data".

4 "Save and Share Simulation Data Inspector Data and Views"
Share your findings with others by saving Simulation Data Inspector data and views.
You can also harness the capabilities of the Simulation Data Inspector from the command line. For more information, see "Inspect and Compare Data Programmatically".


\section*{Open the Simulation Data Inspector}
- Simulink Toolstrip: On the Simulation tab, under Review Results, click Data Inspector.
- Click the streaming badge on a signal to open the Simulation Data Inspector and plot the signal.
- MATLAB command prompt: Enter Simulink.sdi.view.

\section*{Examples}

\section*{Apply a Tolerance to a Signal in Multiple Runs}

You can use the Simulation Data Inspector programmatic interface to modify a parameter for the same signal in multiple runs. This example adds an absolute tolerance of 0.1 to a signal in all four runs of data.

First, clear the workspace and load the Simulation Data Inspector session with the data. The session includes logged data from four simulations of a Simulink \({ }^{\circledR}\) model of a longitudinal controller for an aircraft.

Simulink.sdi.clear
Simulink.sdi.load('AircraftExample.mldatx');
Use the Simulink.sdi.getRunCount function to get the number of runs in the Simulation Data Inspector. You can use this number as the index for a for loop that operates on each run.
count \(=\) Simulink.sdi.getRunCount;
Then, use a for loop to assign the absolute tolerance of 0.1 to the first signal in each run.
```

for a = 1:count
runID = Simulink.sdi.getRunIDByIndex(a);
aircraftRun = Simulink.sdi.getRun(runID);
sig = getSignalByIndex(aircraftRun,1);
sig.AbsTol = 0.1;
end

```
- "View Data in the Simulation Data Inspector"
- "Inspect Simulation Data"
- "Compare Simulation Data"
- "Iterate Model Design Using the Simulation Data Inspector"

\section*{Programmatic Use}

Simulink.sdi.view opens the Simulation Data Inspector from the MATLAB command line.

\section*{Version History \\ Introduced in R2010b}

\section*{See Also}

\section*{Functions}

Simulink.sdi.clear|Simulink.sdi.clearPreferences|Simulink.sdi.snapshot

\section*{Topics}
"View Data in the Simulation Data Inspector"
"Inspect Simulation Data"
"Compare Simulation Data"
"Iterate Model Design Using the Simulation Data Inspector"

\section*{Blocks}

\section*{Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition}

Compute the value of \(X\) in the equation \(A^{\prime} A X=B\) for complex-valued matrices using asynchronous Qless QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition block solves the system of linear equations \(A^{\prime} A X=B\) using asynchronous Q -less QR decomposition, where \(A\) and \(B\) are complex-valued matrices.

When "Regularization parameter" on page 2-0 is nonzero, the Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition block solves the matrix equation
\[
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
\]
where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, and \(I_{n}=\operatorname{eye}(n)\).
This block operates asynchronously. The forward- and backward-substitution and Q-less QR decomposition run independently using the latest \(R\) and \(B\) matrices.

\section*{Ports}

\section*{Input}
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of complex matrix \(A\)
vector
Rows of complex matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}

B - Rows of complex matrix \(B\)
vector
Rows of complex matrix \(B\), specified as a vector. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validInA - Whether A(i, : ) input is valid
Boolean scalar
Whether \(\mathrm{A}(\mathrm{i},:\) ) input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the readyA value is 1 (true), the block captures the values at the \(A(i,:)\) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
validInB - Whether \(B\) input is valid
Boolean scalar
Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(B\) input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the block captures the values at the B input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}
\(\mathbf{X}\) - Rows of matrix \(X\)
scalar | vector
Rows of the matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(X\) is valid. When this value is 1 (true), the block has successfully computed the matrix \(X\). When this value is 0 (false), the output data is not valid.

Data Types: Boolean
```

readyA - Whether block is ready for input A(i, :)
Boolean scalar

```

Whether block is ready for input \(\mathrm{A}(\mathrm{i},:\) ), returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInA is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
ready \(B\) - Whether block is ready for input \(B\)
Boolean scalar
Whether block is ready for input B, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInB is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until ready \(B\) is set to false before sending another true validInB signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of rows in matrix \(A\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix A and rows in matrix B - Number of columns in matrix \(A\) and rows in matrix \(B\)
4 (default) | positive integer-valued scalar
Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

```
Number of columns in matrix B - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar

Number of columns in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt \((1,18,14)\) (default) | double | single |fixdt \((1,16,0) \mid<\) data type expression>
Data type of the output matrix \(X\), specified as fixdt \((1,18,14)\), double, single, fixdt \((1,16,0)\), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink.NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,14)'

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Asynchronous Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-byrow and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to validOut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to valid0ut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to validOut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition and Burst Matrix Solve Using Q-less QR Decomposition blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & validOut to validOut (cycles) & Last Row validIn to validOut (cycles) \\
\hline \begin{tabular}{l}
Real Burst \\
Asynchronous \\
Matrix Solve Using \\
Q-less QR \\
Decomposition
\end{tabular} & Asynchronous & \[
\begin{aligned}
& (w l+5)^{*} n+2+(n \\
& +1)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l) \\
& +(w l+5) * n+n
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Complex Burst \\
Asynchronous \\
Matrix Solve Using \\
Q-less QR \\
Decomposition
\end{tabular} & Asynchronous & \[
\begin{aligned}
& \left(w l^{*} 2+11\right) * n+2 \\
& +(n+1)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2 * n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n * \text { nextpow } 2(w l) \\
& +(w l * 2+11) * n+ \\
& n
\end{aligned}
\] \\
\hline Real PartialSystolic Matrix Solve Using Q-less QR Decomposition & Asynchronous & \(w l+7\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2 * n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l) \\
& +(w l+6)^{*} n+2
\end{aligned}
\] \\
\hline Complex PartialSystolic Matrix Solve Using Q-less QR Decomposition & Asynchronous & \(w l+9\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2 * n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+7.5) * 2 * n+ \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx \({ }^{\circledR}\) Zynq \(^{\circledR}\) UltraScale \(^{\mathrm{TM}}+\) RFSoC ZCU111 evaluation board. The synthesis tool was Vivado \({ }^{\circledR}\) v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16 -by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 36070 & 425280 & 8.48 \\
\hline CLB Registers & 45878 & 850560 & 5.39 \\
\hline DSPs & 12 & 4272 & 0.28 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.781 ns \\
\hline Slack & 0.199 ns \\
\hline Clock Frequency & 263.09 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2022b

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\text {rM }}\).

\section*{See Also}

\section*{Blocks}

Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition | Complex Burst Matrix Solve Using QR Decomposition | Complex Burst Matrix Solve Using Q-less QR Decomposition

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Burst Matrix Solve Using Q-less QR Decomposition}

Compute the value of \(X\) in the equation \(A^{\prime} A X=B\) for complex-valued matrices using Q -less QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Complex Burst Matrix Solve Using Q-less QR Decomposition block solves the system of linear equations, \(A^{\prime} A X=B\), using Q -less QR decomposition, where \(A\) and \(B\) are complex-valued matrices.

When "Regularization parameter" on page 2-0 is nonzero, the Complex Burst Matrix Solve Using Q-less QR Decomposition block solves the matrix equation
\[
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
\]
where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, and \(I_{n}=\operatorname{eye}(n)\).

\section*{Ports}

Input
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of matrix \(A\)
vector
Rows of matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
\(\mathbf{B}(\mathbf{i}\), : \()\) - Rows of matrix \(B\)
vector
Rows of matrix \(B\), specified as a vector. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixedpoint data types.

Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) and \(B(i,:)\) input ports are valid. When this value is 1 (true) and the ready value is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:)\) and \(\mathrm{B}(\mathrm{i},:)\) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}
\(\mathbf{X ( i , : )}\) - Rows of matrix \(X\)
scalar | vector
Rows of the matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port \(\mathrm{X}(\mathrm{i},:\) ) is valid. When this value is 1 (true), the block has successfully computed a row of \(X\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in matrix \(A\)
4 (default) | positive integer-valued scalar

Number of rows in matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

```

Number of columns in matrix \(\mathbf{A}\) and rows in matrix \(\mathbf{B}-\) Number of columns in matrix \(A\) and rows in matrix \(B\)
4 (default) | positive integer-valued scalar
Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix B - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar
Number of columns in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt(1,18,14) (default)| double|single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt ( \(1,18,14\) ), double, single, fixdt ( \(1,16,0\) ), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink. NumericType.

\footnotetext{
Programmatic Use
Block Parameter: OutputType
Type: character vector
}

Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,14)'

\section*{Tips}

Use fixed.getQlessQRMatrixSolveModel \((A, B)\) to generate a template model containing a Complex Burst Matrix Solve Using Q-less QR Decomposition block for complex-valued input matrices \(A\) and \(B\).

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Matrix Solve Using QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(X\) matrix row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, X 1 r 3 is the third row of the first \(X\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row within one matrix.
- Last row validIn to valid0ut - From the last row input to the block starting to output the solution.
- Last row validIn to new matrix ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The Burst Matrix Solve Using Q-less QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(X\) matrix row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, X 1 r 3 is the third row of the first \(X\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row within one matrix.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- Last row validIn to new matrix ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition and Burst Matrix Solve Using Q-less QR Decomposition blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & Last Row validIn to validOut (cycles) & Last row validIn to new matrix ready (cycles) \\
\hline Real Burst Matrix Solve Using QR Decomposition & Synchronous & \((w l+5)^{*} n+2\) & \((w l+5)^{*} n+3.5^{*} n^{2}\) \(+n^{*}(\) nextPow2(wl) \(+w l+8.5)+3\) & \[
\begin{aligned}
& (w l+5)^{*} n+3.5 *(n \\
& -1)^{2}+(n-1) \\
& (\text { nextPow2(wl) }+ \\
& w l+8.5)+3
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using QR Decomposition & Synchronous & \(\left(w{ }^{*} 2+11\right) * n+2\) & \[
\begin{aligned}
& \left(w l^{*} 2+11\right)^{*} n+ \\
& 3.5^{*} n^{2}+ \\
& n^{*}(\text { nextPow2 } 2(w l)+ \\
& w l+8.5)+3
\end{aligned}
\] & \[
\begin{aligned}
& (w l * 2+11)^{*} n+ \\
& 3.5^{*}(n-1)^{2}+(n-1) \\
& (\text { nextPow2(wl) }+ \\
& w l+8.5)+3
\end{aligned}
\] \\
\hline Real Burst Matrix Solve Using Q-less QR Decomposition & Synchronous & \((w l+5) * n+2\) & \[
\begin{aligned}
& 77^{*} n^{2}+27^{*} n+6+ \\
& 3 * n^{*} w l+ \\
& 2 * n^{*} \text { nextPow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 77^{*} n^{2}+27 * n+6+ \\
& 3 * n^{*} w l+ \\
& 2 * n^{*} \operatorname{nextPow} 2(w l) \\
& +\min (m, n)
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using Q-less QR Decomposition & Synchronous & \(\left(w l^{*} 2+11\right) * n+2\) & \[
\begin{aligned}
& 7 * 2^{2}+33^{*} n+6+ \\
& 4{ }^{*} n^{*} \text { wl }+ \\
& 2 *_{n}{ }^{*} \text { nextPow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 77^{2} n^{2}+33^{*} n+6+ \\
& 4{ }^{*} n^{*} w l+ \\
& 2 * n^{*} \text { nextPow2 }(w l) \\
& +\min (m, n)
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53.
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: 16 -by-16
- Matrix \(B\) dimension: 16 -by- 1
- Input data type: sfix16_En14
- Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 30915 & 425280 & 7.27 \\
\hline CLB Registers & 34833 & 850560 & 4.10 \\
\hline DSPs & 12 & 4272 & 0.28 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.686 ns \\
\hline Slack & 0.296 ns \\
\hline Clock Frequency & 269.98 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2020a}

\section*{R2022a: Support for Tikhonov regularization parameter}

The Complex Burst Matrix Solve Using Q-less QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0 .

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Burst Matrix Solve Using Q-less QR Decomposition | Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Complex Burst Matrix Solve Using QR Decomposition

\section*{Functions}
fixed.qlessQRMatrixSolve

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor}

Compute the value of \(X\) in the equation \(A^{\prime} A X=B\) for complex-valued matrices with infinite number of rows using asynchronous Q -less QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block solves the system of linear equations \(A^{\prime} A X=B\) using asynchronous Q -less QR decomposition, where \(A\) and \(B\) are complex-valued matrices. \(A\) is an infinitely tall matrix representing streaming data.

When "Regularization parameter" on page 2-0 is nonzero, the Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block solves the matrix equation
\[
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
\]
where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, and \(I_{n}=\operatorname{eye}(n)\).
This block operates asynchronously. The forward- and backward-substitution and Q-less QR decomposition run independently using the latest \(R\) and \(B\) matrices.

\section*{Ports}

\section*{Input}
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of complex matrix \(A\)
vector
Rows of complex matrix \(A\), specified as a vector. \(A\) is an infinitely tall matrix of streaming data. If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double | fixed point
B - Rows of complex matrix \(B\)
vector
Rows of complex matrix \(B\), specified as a vector. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validInA - Whether \(\mathrm{A}(\mathrm{i},:\) ) input is valid
Boolean scalar
Whether A(i,: ) input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the readyA value is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
validInB - Whether B input is valid
Boolean scalar
Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(B\) input port is valid. When this value is 1 (true) and the ready \(B\) value is 1 (true), the block captures the values at the B input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}
\(\mathbf{X}\) - Rows of matrix \(X\)
scalar | vector
Rows of the matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port X is valid. When this value is 1 ( true ), the block has successfully computed the matrix \(X\). When this value is 0 ( false ), the output data is not valid.

Data Types: Boolean
```

readyA - Whether block is ready for input A(i, :)
Boolean scalar

```

Whether block is ready for input \(\mathrm{A}(\mathrm{i},:\) ), returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInA is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
ready \(B\) - Whether block is ready for input \(B\)
Boolean scalar
Whether block is ready for input B , returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInB is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean

\section*{Parameters}

Number of columns in matrix A and rows in matrix B - Number of columns in matrix \(A\) and rows in matrix \(B\)
```

4 (default) | positive integer-valued scalar

```

Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

```

Number of columns in matrix B - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar
Number of columns in matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

```
Forgetting factor - Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar. The output is updated as each row of \(A\) is input indefinitely.

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: real positive scalar
Default: 0
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt (1,18,14) (default) | double|single|fixdt (1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt \((1,18,14)\), double, single, fixdt \((1,16,0)\), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,14)'

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix A row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- \(n^{\text {th }}\) row validIn to validOut - From the \(n^{\text {th }}\) row input to the block starting to output the first solution.
- This block is always ready to accept \(B\) matrices, so ready \(B\) is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix \(A\) row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to valid0ut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to valid0ut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using \(Q\)-less \(Q R\) Decomposition with Forgetting Factor and Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & validOut to validOut (cycles) & \(\boldsymbol{n}^{\text {th }}\) Row validIn to validOut (cycles) \\
\hline Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \((w l+5) * n+2+n\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2^{*} n^{*} w l+ \\
& 2^{*} n^{*} \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+5) * n+n
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \[
\begin{aligned}
& (w l * 2+11) * n+2 \\
& +n
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l \\
& 2{ }^{*} n^{*} \text { nextpow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow } 2(w l) \\
& +\left(w l^{*} 2+11\right) * n+ \\
& n
\end{aligned}
\] \\
\hline Real PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \(w l+7\) & \[
\begin{aligned}
& 4{ }^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2{ }^{*} n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 * n^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+6)^{*} n+2
\end{aligned}
\] \\
\hline Complex PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \(w l+9\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l) \\
& +(w l+7.5) * 2 * n+ \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: inf-by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 36045 & 425280 & 8.48 \\
\hline CLB Registers & 45870 & 850560 & 5.39 \\
\hline DSPs & 44 & 4272 & 1.03 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.794 ns \\
\hline Slack & 0.187 ns \\
\hline Clock Frequency & 262.26 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2022b

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\text {rM }}\).

\section*{See Also}

\section*{Blocks}

Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Complex PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Complex Burst Matrix Solve Using Q-less QR Decomposition

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Burst Matrix Solve Using QR Decomposition}

Compute the value of \(x\) in the equation \(A x=B\) for complex-valued matrices using QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Complex Burst Matrix Solve Using QR Decomposition block solves the system of linear equations \(A x=B\) using QR decomposition, where \(A\) and \(B\) are complex-valued matrices. To compute \(x=A^{-1}\), set \(B\) to be the identity matrix.

When "Regularization parameter" on page 2-0 is nonzero, the Complex Burst Matrix Solve Using QR Decomposition block computes the matrix solution of complex-valued \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right] X=\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, \(p\) is the number of columns in \(B, I_{n}=\operatorname{eye}(n)\), and \(0_{n, p}=\operatorname{zeros}(n, p)\).

\section*{Ports}

Input
\(\mathbf{A}(\mathbf{i}\), : ) - Rows of matrix \(A\)
vector
Rows of matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
\(\mathbf{B}(\mathbf{i}\), : ) - Rows of matrix \(B\) vector

Rows of matrix \(B\), specified as a vector. \(B\) is an \(m\)-by- \(p\) matrix where \(m \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixedpoint data types.

Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(\mathrm{A}(\mathrm{i},:\) ) and \(\mathrm{B}(\mathrm{i},:\) ) input ports are valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values at the \(A(i,:)\) and \(B(i,:)\) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}
\(\mathbf{X ( i , : )}\) - Rows of matrix \(X\)
scalar | vector
Rows of the matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port \(\mathrm{X}(\mathrm{i},:\) ) is valid. When this value is 1 (true), the block has successfully computed a row of matrix \(X\). When this value is 0 ( \(f a l s e\) ), the output data is not valid.

Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrices \(\mathbf{A}\) and \(\mathbf{B}\) - Number of rows in matrices \(A\) and \(B\)
4 (default) | positive integer-valued scalar

Number of rows in input matrices \(A\) and \(B\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix A - Number of columns in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.

\section*{Programmatic Use \\ Block Parameter: n \\ Type: character vector \\ Values: positive integer-valued scalar \\ Default: 4 \\ Number of columns in matrix B - Number of columns in matrix \(B\) \\ 1 (default) | positive integer-valued scalar}

Number of columns in input matrix \(B\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: positive integer-valued scalar
Default: 0
Output datatype - Data type of the output matrix \(X\)
fixdt(1,18,14) (default)|double|single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt ( \(1,18,14\) ), double, single, fixdt ( \(1,16,0\) ), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink. NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'

Default: 'fixdt(1,18,14)'

\section*{Tips}

Use fixed.getMatrixSolveModel (A, B) to generate a template model containing a Complex Burst Matrix Solve Using QR Decomposition block for complex-valued input matrices A and B.

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Matrix Solve Using QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(X\) matrix row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, X 1 r 3 is the third row of the first \(X\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row within one matrix.
- Last row validIn to valid0ut - From the last row input to the block starting to output the solution.
- Last row validIn to new matrix ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The Burst Matrix Solve Using Q-less QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(X\) matrix row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, X 1 r 3 is the third row of the first \(X\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row within one matrix.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- Last row validIn to new matrix ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition and Burst Matrix Solve Using Q-less QR Decomposition blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & Last Row validIn to validOut (cycles) & Last row validIn to new matrix ready (cycles) \\
\hline Real Burst Matrix Solve Using QR Decomposition & Synchronous & \((w l+5)^{*} n+2\) & \((w l+5)^{*} n+3.5^{*} n^{2}\) \(+n^{*}(\) nextPow2(wl) \(+w l+8.5)+3\) & \[
\begin{aligned}
& (w l+5)^{*} n+3.5 *(n \\
& -1)^{2}+(n-1) \\
& (\text { nextPow2(wl) }+ \\
& w l+8.5)+3
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using QR Decomposition & Synchronous & \(\left(w{ }^{*} 2+11\right) * n+2\) & \[
\begin{aligned}
& \left(w l^{*} 2+11\right)^{*} n+ \\
& 3.5^{*} n^{2}+ \\
& n^{*}(\text { nextPow2 } 2(w l)+ \\
& w l+8.5)+3
\end{aligned}
\] & \[
\begin{aligned}
& (w l * 2+11)^{*} n+ \\
& 3.5^{*}(n-1)^{2}+(n-1) \\
& (\text { nextPow2(wl) }+ \\
& w l+8.5)+3
\end{aligned}
\] \\
\hline Real Burst Matrix Solve Using Q-less QR Decomposition & Synchronous & \((w l+5) * n+2\) & \[
\begin{aligned}
& 77^{*} n^{2}+27^{*} n+6+ \\
& 3 * n^{*} w l+ \\
& 2 * n^{*} \text { nextPow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 77^{*} n^{2}+27 * n+6+ \\
& 3 * n^{*} w l+ \\
& 2 * n^{*} \operatorname{nextPow} 2(w l) \\
& +\min (m, n)
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using Q-less QR Decomposition & Synchronous & \(\left(w l^{*} 2+11\right) * n+2\) & \[
\begin{aligned}
& 7 * 2^{2}+33^{*} n+6+ \\
& 4{ }^{*} n^{*} \text { wl }+ \\
& 2 *_{n}{ }^{*} \text { nextPow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 77^{2} n^{2}+33^{*} n+6+ \\
& 4{ }^{*} n^{*} w l+ \\
& 2 * n^{*} \text { nextPow2 }(w l) \\
& +\min (m, n)
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53.
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16 -by-16
- Matrix \(B\) dimension: 16 -by- 1
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 23719 & 425280 & 5.58 \\
\hline CLB Registers & 24062 & 850560 & 2.83 \\
\hline DSPs & 6 & 4272 & 0.14 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.242 ns \\
\hline Slack & 0.072 ns \\
\hline Clock Frequency & 306.62 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2019b}

\section*{R2022a: Support for Tikhonov regularization parameter}

The Complex Burst Matrix Solve Using QR Decomposition block now supports the Tikhonov
"Regularization parameter" on page 2-0 .

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Burst Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using Q-less QR Decomposition | Complex Partial-Systolic Matrix Solve Using QR Decomposition

\section*{Functions}
fixed.qrMatrixSolve

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Burst Q-less QR Decomposition}

Q-less QR decomposition for complex-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Complex Burst Q-less QR Decomposition block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the \(Q R\) decomposition \(A=Q R\), where \(A\) is a complex-valued matrix, without computing \(Q\). The solution to \(A^{\prime} A x=B\) is \(x=R \backslash R^{\prime} \mid b\).

When "Regularization parameter" on page 2-0 is nonzero, the Complex Burst Q-less QR Decomposition block computes the upper-triangular factor \(R\) of the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) where \(\lambda\) is the regularization parameter.

\section*{Ports}

\section*{Input}

A(i,:) - Rows of complex matrix \(A\)
vector
Rows of complex matrix \(A\), specified as a vector. \(A\) is a \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(A\) is a fixed-point data type, \(A\) must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validIn - Whether inputs are valid Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values at the \(A(i,:)\) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}
\(\mathbf{R}(\mathbf{i},:\) : - Rows of upper-triangular matrix \(R\)
scalar | vector
Rows of the economy size QR decomposition matrix \(R\), returned as a scalar or vector. \(R\) is an uppertriangular matrix. The size of the matrix \(R\) is \(\min (m, n)\)-by- \(n\). The output at \(R(i,:)\) has the same data type as the input at \(\mathrm{A}(\mathrm{i},:)\).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(R(i,:)\) is valid. When this value is 1 (true), the block has successfully computed the matrix \(R\). When this value is 0 ( false ), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in matrix A
4 (default) | positive integer-valued scalar
Number of rows in input matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

```

Number of columns in matrix A - Number of columns in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.

\author{
Programmatic Use \\ Block Parameter: n \\ Type: character vector \\ Values: positive integer-valued scalar \\ Default: 4
}

Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

\section*{Tips}

Use fixed.getQlessQRDecompositionModel(A) to generate a template model containing a Complex Burst Q-less QR Decomposition block for complex-valued input matrix A.

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst \(Q R\) Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(R\) and \(C\) matrices row by row continuously. The matrices are output from the last row to the first row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1r3 is the third row of the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The Burst Q-less QR Decomposition blocks accept and process the matrix A row by row. After accepting \(m\) rows, the block outputs the matrix \(R\) row by row continuously. The matrix is output from the last row to the first row.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1r3 is the third row of the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst QR Decomposition blocks.
\begin{tabular}{|l|l|l|l|}
\hline Block & \begin{tabular}{l} 
validIn to ready \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
Last Row validIn to \\
validOut (cycles)
\end{tabular} & \begin{tabular}{l} 
validOut to ready \\
(cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Burst QR \\
Decomposition
\end{tabular} & \((w l+5) * \min (m, n)+2\) & \((w l+5) * \min (m, n)+2\) & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Complex Burst QR \\
Decomposition
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Real Burst Q-less QR \\
Decomposition
\end{tabular} & \((w l+5) * \min (m, n)+2\) & \((w l+5) * \min (m, n)+2\) & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Complex Burst Q-less \\
QR Decomposition
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \(\min (m, n)+1\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix
\(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v. 2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- Matrix A dimension: 16 -by- 16
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 21137 & 425280 & 4.97 \\
\hline CLB Registers & 21157 & 850560 & 2.49 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.18 ns \\
\hline Slack & 0.134 ns \\
\hline Clock Frequency & 312.57 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2020a}

\section*{R2022a: Support for Tikhonov regularization parameter}

The Complex Burst Q-less QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0 .

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{Tm}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Burst Q-less QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition | Complex Burst QR Decomposition

\section*{Functions}
fixed.qlessQR

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Burst Q-less QR Decomposition Whole R Output}

Q-less QR decomposition for complex-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Complex Burst Q-less QR Decomposition Whole R Output block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the \(Q R\) decomposition \(A=Q R\), where \(A\) is a complex-valued matrix, without computing \(Q\). The solution to \(A^{\prime} A x=B\) is \(x=R \backslash R^{\prime} \backslash b\).

When "Regularization parameter" on page 2-0 is nonzero, the Complex Burst Q-less QR Decomposition Whole R Output block computes the upper-triangular factor \(R\) of the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) where \(\lambda\) is the regularization parameter.

\section*{Ports}

Input
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of complex matrix \(A\)
vector
Rows of complex matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(A\) is a fixed-point data type, \(A\) must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar
Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
```

restart - Whether to clear internal states
Boolean scalar

```

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}
\(\mathbf{R}\) - Economy size QR decomposition matrix \(R\)
vector
Economy size QR decomposition matrix \(R\), returned as a vector. \(R\) is an upper triangular matrix. The size of matrix \(R\) is \(\min (\mathrm{m}, \mathrm{n})\)-by- n . \(R\) has the same data type as \(A\).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(R(i,:)\) is valid. When this value is 1 (true), the block has successfully computed the matrix \(R\). When this value is 0 (false), the output data is not valid.

Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of rows in input matrix \(A\), specified as a positive integer-valued scalar.

\footnotetext{
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix \(\mathbf{A}\) - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
}

Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: }
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar

```

Regularization parameter, specified as a real nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & \(C\) & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Q-less QR Decomposition Whole R Output blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(R\) matrix as a single vector.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst \(Q\)-less \(Q R\) Decomposition Whole \(R\) Output blocks.
\begin{tabular}{|l|l|l|l|}
\hline Block & \begin{tabular}{l} 
validIn to ready \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
Last Row validIn to \\
validOut (cycles)
\end{tabular} & \begin{tabular}{l} 
validOut to ready \\
(cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Burst Q-less QR \\
Decomposition Whole R \\
Output
\end{tabular} & \((w l+5)^{*} \min (m, n)+2\) & \begin{tabular}{l}
\((w l+5) * \min (m, n)+2+\) \\
\(\min (m, n)-1\)
\end{tabular} & 2 \\
\hline \begin{tabular}{l} 
Complex Burst Q-less \\
QR Decomposition \\
Whole R Output
\end{tabular} & \(2(w l * 2+11) * \min (m, n)+\) & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
\(2+\min (m, n)-1\)
\end{tabular} & 2 \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- Matrix A dimension: 16 -by-16
- Input data type: sfix16 En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 21177 & 425280 & 4.98 \\
\hline CLB Registers & 21153 & 850560 & 2.49 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.172 ns \\
\hline Slack & 0.142 ns \\
\hline Clock Frequency & 313.35 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2022b}

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \(\circledR_{\circledR}\) Coder \({ }^{\text {TM }}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\text {TM }}\).

\section*{See Also}

Real Burst Q-less QR Decomposition Whole R Output | Complex Burst Q-less QR Decomposition | Complex Burst QR Decomposition

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output}

Q-less QR decomposition for complex-valued matrices with infinite number of rows


\author{
Libraries: \\ Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations
}

\section*{Description}

The Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the QR decomposition, \(A=\) \(Q R\), without computing \(Q . A\) is an infinitely tall complex-valued matrix representing streaming data.

When the regularization parameter is nonzero, the Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output block initializes the first upper-triangular factor \(R\) to \(\lambda I_{n}\) before factoring in the rows of \(A\), where \(\lambda\) is the regularization parameter and \(I_{n}=\operatorname{eye}(n)\)

\section*{Ports}

Input
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of complex matrix \(A\)
vector
Rows of complex matrix \(A\), specified as a vector. \(A\) is an infinitely tall matrix of streaming data. If \(A\) uses a fixed-point data type, \(A\) must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar
Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}

R - Economy size QR decomposition matrix \(R\)
vector
Economy size QR decomposition matrix \(R\), returned as a vector. \(R\) is an upper triangular matrix. The size of matrix \(R\) is \(n\)-by-n. \(R\) has the same data type as \(A\).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(R(i,:)\) is valid. When this value is 1 (true), the block has successfully computed the matrix \(R\). When this value is 0 (false), the output data is not valid.

Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of columns in matrix A - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Forgetting factor - Forgetting factor applied after each row of the matrix is factored 0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar. The output is updated as each row of \(A\) is input indefinitely.

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: real positive scalar
Default: 0
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a real nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & \(C\) & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & \(C\) & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Q-less QR Decomposition with Forgetting Factor Whole \(R\) Output blocks accept and process the matrix \(A\) row by row. After accepting the first \(m\) rows, the block starts to output the \(R\) matrix as a vector. Then, for each row input, the block calculates an \(R\) matrix.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- validIn to validOut - From a successful row input to the block starting to output the corresponding solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Q-less QR Decomposition with Forgetting Factor Whole R Output blocks.
\begin{tabular}{|l|l|l|l|}
\hline Block & \begin{tabular}{l} 
validIn to ready \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
validIn to valid0ut \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
validOut to ready \\
(cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Burst Q-less QR \\
Decomposition with \\
Forgetting Factor Whole \\
R Output
\end{tabular} & \((w l+5)^{*} n+2+n\) & \((w l+5)^{*} n+2+n-1\) & 1 \\
\hline \begin{tabular}{l} 
Complex Burst Q-less \\
QR Decomposition with \\
Forgetting Factor Whole \\
R Output
\end{tabular} & \((w l * 2+11)^{*} n+2+n\) & \begin{tabular}{l}
\((w l * 2+11)^{*} n+2+n-\) \\
1
\end{tabular} & 1 \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=16\)
- Matrix A dimension: inf-by-16
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 21142 & 425280 & 4.97 \\
\hline CLB Registers & 21158 & 850560 & 2.49 \\
\hline DSPs & 32 & 4272 & 0.75 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.051 ns \\
\hline Slack & 0.264 ns \\
\hline Clock Frequency & 325.80 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2022b

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \(®\) Coder \(^{\mathrm{rm}}\).

Slope-bias representation is not supported for fixed-point data types.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\mathrm{TM}}\).

\section*{See Also}

Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output | Complex Burst Q-less QR Decomposition Whole R Output

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Burst QR Decomposition}

QR decomposition for complex-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Complex Burst QR Decomposition block uses QR decomposition to compute \(R\) and \(C=Q^{\prime} B\), where \(Q R=A\), and \(A\) and \(B\) are complex-valued matrices. The least-squares solution to \(A x=B\) is \(x=\) \(R \backslash C . R\) is an upper triangular matrix and \(Q\) is an orthogonal matrix. To compute \(C=Q^{\prime}\), set \(B\) to be the identity matrix.

When "Regularization parameter" on page 2-0 is nonzero, the Complex Burst QR Decomposition block transforms \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) in-place to \(R=Q^{\prime}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) and \(\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) in-place to \(C=Q^{\prime}\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) where \(\lambda\) is the regularization parameter, QR is the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right], A\) is an \(m\)-by- \(n\) matrix, \(p\) is the number of columns in \(B, I_{n}=\operatorname{eye}(n)\), and \(0_{n, p}=\operatorname{zeros}(n, p)\).

\section*{Ports}

\section*{Input}
\(\mathbf{A ( i , : )}\) - Rows of matrix \(A\)
vector
Rows of matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
\(\mathbf{B}(\mathbf{i}\), : ) - Rows of matrix \(B\)
vector
Rows of matrix \(B\), specified as a vector. \(B\) is an \(m\)-by- \(p\) matrix where \(m \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixedpoint data types.

Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) and \(B(i,:)\) input ports are valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values on the \(\mathrm{A}(\mathrm{i},:\) ) and \(\mathrm{B}(\mathrm{i},:)\) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false), and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}
\(\mathbf{R}(\mathbf{i}, \mathbf{:})\) - Rows of matrix \(R\)
scalar | vector
Rows of the economy size QR decomposition matrix \(R\), returned as a scalar or vector. \(R\) is an upper triangular matrix. The size of the matrix \(R\) is \(\min (m, n)\)-by- \(n\). \(R\) has the same data type as \(A\).
Data Types: single|double|fixed point
\(\mathbf{C ( i , : )}\) - Rows of matrix \(C=Q^{\prime} B\)
scalar | vector
Rows of the economy size \(Q R\) decomposition matrix \(C=Q^{\prime} B\), returned as a scalar or vector. \(C\) has the same number of rows as \(R\). \(C\) has the same data type as \(B\).

Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at output ports \(R(i,:)\) and \(C(i,:)\) is valid. When this value is 1 (true), the block has successfully computed the \(R\) and \(C\) matrices. When this value is 0 (false), the output data is not valid.

Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrices \(\mathbf{A}\) and \(\mathbf{B}\) - Number of rows in matrices \(A\) and \(B\)
4 (default) | positive integer-valued scalar
The number of rows in matrices \(A\) and \(B\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix A - Number of columns in matrix A
4 (default) | positive integer-valued scalar
The number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix B - Number of columns in matrix B
1 (default) | positive integer-valued scalar
The number of columns in input matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Tips}

Use fixed.getQRDecompositionModel (A, B) to generate a template model containing a Complex Burst QR Decomposition block for complex-valued input matrices A and B.

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(R\) and \(C\) matrices row by row continuously. The matrices are output from the last row to the first row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1r3 is the third row of the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The Burst Q-less QR Decomposition blocks accept and process the matrix \(A\) row by row. After accepting \(m\) rows, the block outputs the matrix \(R\) row by row continuously. The matrix is output from the last row to the first row.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1r3 is the third row of the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- valid0ut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst QR Decomposition blocks.
\begin{tabular}{|l|l|l|l|}
\hline Block & \begin{tabular}{l} 
validIn to ready \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
Last Row validIn to \\
validOut (cycles)
\end{tabular} & \begin{tabular}{l} 
validOut to ready \\
(cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Burst QR \\
Decomposition
\end{tabular} & \((w l+5) * \min (m, n)+2\) & \((w l+5) * \min (m, n)+2\) & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Complex Burst QR \\
Decomposition
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Real Burst Q-less QR \\
Decomposition
\end{tabular} & \((w l+5) * \min (m, n)+2\) & \((w l+5) * \min (m, n)+2\) & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Complex Burst Q-less \\
QR Decomposition
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \(\min (m, n)+1\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53.
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(m=16\)
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16-by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 22713 & 425280 & 5.34 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB Registers & 22469 & 850560 & 2.64 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.149 ns \\
\hline Slack & 0.166 ns \\
\hline Clock Frequency & 315.72 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2019b

\section*{R2022a: Support for Tikhonov regularization parameter}

The Complex Burst QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \(\circledR^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Burst QR Decomposition | Complex Burst Q-less QR Decomposition | Complex Partial-Systolic QR Decomposition

\section*{Functions}
fixed.qrAB

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Divide HDL Optimized}

Divide one input by another and generate optimized HDL code


Libraries:
Fixed-Point Designer HDL Support / Math Operations

\section*{Description}

The Complex Divide HDL Optimized block outputs the result of dividing the scalar num by the scalar den, such that \(\mathbf{y}=\) num/den.

\section*{Limitations}

Data type override is not supported for the Complex Divide HDL Optimized block.

\section*{Ports}

Input
num - Numerator
scalar
Numerator, specified as a scalar.
Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
Complex Number Support: Yes
den - Denominator
scalar
Denominator, specified as a scalar.
Slope-bias representation is not supported for fixed-point data types.
```

Data Types: single|double|fixed point
Complex Number Support: Yes

```
validIn - Whether input is valid
Boolean scalar
Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from the num and den input ports are valid. When this value is 1 (true), the block captures the values at the input ports num and den. When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

\section*{Output}
\(\mathbf{y}\) - Output computed by dividing inputs
complex scalar
Output computed by dividing num by den, such that \(\mathbf{y}=\) num/den, returned as a complex scalar with data type specified by Output datatype.

\section*{Data Types: single|double|fixed point}
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is 1 (true), the block has successfully computed the output at port \(\mathbf{y}\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean

\section*{Parameters}

Output datatype - Data type of output
fixdt(1,18,10) (default)| single|fixdt(1,16,0)|<data type expression>
Data type of output \(\mathbf{y}\), specified as fixdt \((1,18,10)\), single, fixdt \((1,16,0)\), or as a userspecified data type expression. The type can be specified directly or expressed as a data type object, such as Simulink. NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,10)'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,10)'

\section*{Tips}

The blocks Divide by Constant HDL Optimized, Real Divide HDL Optimized, and Complex Divide HDL Optimized all perform the division operation and generate optimized HDL code.
- Real Divide HDL Optimized and Complex Divide HDL Optimized are based on a CORIDC algorithm. These blocks accept a wide variety of inputs, but will result in greater latency.
- Divide by Constant HDL Optimized accepts only real inputs and a constant divisor. Use of this block consumes DSP slices, but will complete the division operation in fewer cycles and at a higher clock rate.

\section*{Algorithms}

\section*{CORDIC}

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers.

\section*{Fully Pipelined Fixed-Point Computations}

The Complex Divide HDL Optimized block supports HDL code generation for fixed-point data with binary-point scaling. It is designed with this application in mind, and employs hardware specific semantics and optimizations. One of these optimizations is pipelining its entire internal circuitry to maintain a very high throughput.

When deploying intricate algorithms to FPGA or ASIC devices, there is often a trade-off between resource usage and total throughput for a given computation. Resource-sharing often reduces the resources consumed by a design, but also reduces the throughput in the process. Simple arithmetic and trigonometric computations, which typically form parts of bigger computations, require high throughput to drive circuits further in the design. Thus, fully pipelined implementations consume more on-chip resources but are beneficial in large designs.

All of the key computational units in the Complex Divide HDL Optimized block are fully pipelined internally. This includes not only the CORDIC circuitry used to perform the Givens rotations, but also the adders and shifters used elsewhere in the design, thus ensuring maximum throughput.

\section*{How to Interface with the Complex Divide HDL Optimized Block}

Because of its fully pipelined nature, the Complex Divide HDL Optimized block is able to accept input data on any cycle, including consecutive cycles. To send input data to the block, the validIn signal must be set to true. When the block has finished the computation and is ready to send the output, it will set validOut to true for one clock cycle. For inputs sent on consecutive cycles, validOut will also be set to true on consecutive cycles. Both the numerator and the denominator must be sent together on the same cycle.


\section*{Division by Zero Behavior}

For fixed-point inputs num and den, the Complex Divide HDL Optimized block saturates on overflow for division by zero. The behavior for fixed-point division by zero is summarized in the table below.
\begin{tabular}{|l|l|}
\hline Wrap Overflow & Saturate Overflow \\
\hline \(0 / 0=0\) & \(0 / 0=0\) \\
\hline \(1 / 0=0\) & \(1 / 0=\) upper bound \\
\hline\(-1 / 0=0\) & \(-1 / 0=\) lower bound \\
\hline
\end{tabular}

For floating-point inputs, the Complex Divide HDL Optimized block follows IEEE® \({ }^{\circledR}\) Standard 754.

\section*{Version History}

Introduced in R2021a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \(\circledR^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

\section*{Restrictions}

Supports binary-point scaled fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Divide HDL Optimized | Real Reciprocal HDL Optimized | Normalized Reciprocal HDL Optimized

\section*{Functions}
fixed.cordicReciprocal|fixed.cordicDivide

\section*{Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition}

Compute the value of \(X\) in the equation \(A^{\prime} A X=B\) for complex-valued matrices using Q -less QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the system of linear equations, \(A^{\prime} A X=B\), using \(Q\)-less \(Q R\) decomposition, where \(A\) and \(B\) are complex-valued matrices.

When "Regularization parameter" on page 2-0 is nonzero, the Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the matrix equation
\[
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
\]
where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, and \(I_{n}=\operatorname{eye}(n)\).

\section*{Ports}

Input
\(\mathbf{A ( i , : )}\) - Rows of matrix \(A\)
vector
Rows of matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
Complex Number Support: Yes
B - Matrix B
vector
Matrix \(B\), specified as a vector. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point

\section*{Complex Number Support: Yes}
validInA - Whether input \(A\) is valid
Boolean scalar
Whether input A is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value at readyA is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
validInB - Whether input \(B\) is valid
Boolean scalar
Whether input B is valid, specified as a Boolean scalar. This control signal indicates when the data from the B input port is valid. When this value is 1 (true) and the value at ready \(B\) is 1 (true), the block captures the values at the \(B\) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}

X - Matrix X
matrix | vector
Matrix \(X\), returned as a vector or matrix.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port X is valid. When this value is 1 (true), the block has successfully computed a row of matrix \(X\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean
ready \(A\) - Whether block is ready for input \(A\)
Boolean scalar
Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInA value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
ready B - Whether block is ready for input B
Boolean scalar
Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInB value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of rows in matrix \(A\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix \(\mathbf{A}\) and rows in matrix \(\mathbf{B}\) - Number of columns in matrix \(A\) and rows in matrix \(B\)
4 (default) | positive integer-valued scalar
Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

```
Number of columns in matrix B - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar

Number of columns in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt \((1,18,14)\) (default) | double | single |fixdt \((1,16,0) \mid<\) data type expression>
Data type of the output matrix \(X\), specified as fixdt \((1,18,14)\), double, single, fixdt \((1,16,0)\), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink.NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,14)'

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & \(C\) & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{Block Timing}

The Burst Asynchronous Matrix Solve Using Q-less QR Decomposition blocks accept matrix \(A\) row-byrow and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to validOut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so ready \(B\) is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to validOut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition and Burst Matrix Solve Using Q-less QR Decomposition blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & validOut to validOut (cycles) & Last Row validIn to validOut (cycles) \\
\hline \begin{tabular}{l}
Real Burst \\
Asynchronous \\
Matrix Solve Using \\
Q-less QR \\
Decomposition
\end{tabular} & Asynchronous & \[
\begin{aligned}
& (w l+5) * n+2+(n \\
& +1)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 *^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2 * n^{*} \text { nextpow } 2(w l) \\
& +(w l+5) * n+n
\end{aligned}
\] \\
\hline Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition & Asynchronous & \[
\begin{aligned}
& \left(w l^{*} 2+11\right) * n+2 \\
& +(n+1)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} w w l+ \\
& 2{ }^{*} n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2^{*} n^{*} w l+ \\
& 2^{*} n^{*} \text { nextpow } 2(w l) \\
& +\left(w l^{*} 2+11\right)^{*} n+ \\
& n
\end{aligned}
\] \\
\hline Real PartialSystolic Matrix Solve Using Q-less QR Decomposition & Asynchronous & \(w l+7\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l) \\
& +(w l+6)^{*} n+2
\end{aligned}
\] \\
\hline Complex PartialSystolic Matrix Solve Using Q-less QR Decomposition & Asynchronous & \(w l+9\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2 * n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+7.5) * 2 * n+ \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The following tables show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v. 2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16 -by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 250 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 300675 & 425280 & 70.70 \\
\hline CLB Registers & 260811 & 850560 & 30.66 \\
\hline DSPs & 12 & 4272 & 0.28 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.954 ns \\
\hline Slack & 0.029 ns \\
\hline Clock Frequency & 251.83 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b

\section*{R2023a: Smart unrolling for improved resource utilization}

This block depends on a partial-systolic QR decomposition block. Since 23a, when you update the diagram, the loop which composes the partial-systolic pipeline in the QR decomposition block is unrolled. This updated internal architecture removes dead operations in simulation and generated code, thus requiring fewer hardware resources. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.

\section*{R2022a: Support for Tikhonov regularization parameter}

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink® Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Complex Burst Matrix Solve Using Qless QR Decomposition

\section*{Functions}
fixed.qlessQRMatrixSolve

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor}

Compute the value of \(X\) in the equation \(A^{\prime} A X=B\) for complex-valued matrices with infinite number of rows using Q-less QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block solves the system of linear equations, \(A^{\prime} A X=B\), using Q -less QR decomposition, where \(A\) and \(B\) are complex-valued matrices. \(A\) is an infinitely tall matrix representing streaming data.

When the regularization parameter is nonzero, the Complex Partial-Systolic Matrix Solve Using Qless QR Decomposition with Forgetting Factor initializes the first upper-triangular factor \(R\) to \(\lambda I_{n}\) before factoring in the rows of \(A\), where \(\lambda\) is the regularization parameter and \(I_{n}=\operatorname{eye}(n)\).

\section*{Ports}

\section*{Input}
\(\mathbf{A ( i , : )}\) - Rows of matrix \(A\)
vector
Rows of matrix \(A\), specified as a vector. \(A\) is an infinitely tall matrix of streaming data. If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.

Data Types: single|double|fixed point
Complex Number Support: Yes
B - Matrix B
matrix | vector
Matrix \(B\), specified as a vector or a matrix. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixedpoint data types.
Data Types: single|double|fixed point
validInA - Whether A input is valid
Boolean scalar
Whether A (i, ; ) input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(\mathrm{A}(\mathrm{i},:\) ) input port is valid. When this value is 1 (true) and the readyA value is 1
(true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.

Data Types: Boolean
validInB - Whether input \(B\) is valid
Boolean scalar
Whether input \(B\) is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(B\) input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the block captures the values at the B input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validInA and validInB values are 1 (true), the block begins a new subframe.

Data Types: Boolean

\section*{Output}

X - Matrix X
matrix | vector
Matrix \(X\), returned as a matrix or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port \(X\) is valid. When this value is 1 (true), the block has successfully computed a row of \(X\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean
readyA - Whether block is ready for input A
Boolean scalar
Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInA value is 1 ( true ), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.

\section*{Data Types: Boolean}
ready \(B\) - Whether block is ready for input \(B\)
Boolean scalar
Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 ( true ) and validInB value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean

\section*{Parameters}

Number of columns in matrix A and rows in matrix B - Number of columns in matrix \(A\) and rows in matrix \(B\)
4 (default) | positive integer-valued scalar
Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix B - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar
Number of columns in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Forgetting factor - Forgetting factor applied after each row of the matrix is factored 0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar. The output is updated as each row of \(A\) is input indefinitely.

Programmatic Use
Block Parameter: forgettingFactor
Type: character vector
Values: positive integer-valued scalar

Default: 0.99
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt (1,18,14) (default)| double|single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as \(\operatorname{fixdt}(1,18,14)\), double, single, fixdt \((1,16,0)\), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink.NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,14)'

\section*{Tips}
- Use fixed. forgettingFactor to compute the forgetting factor, \(\alpha\), for an infinite number of rows with the equivalent gain of a matrix with \(m\) rows.
- Use fixed.forgettingFactorInverse to compute the number of rows, \(m\), of a matrix with equivalent gain corresponding to forgetting factor \(\alpha\)

\section*{Algorithms}

\section*{Q-less QR Decomposition with Forgetting Factor}

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block implements the following recursion to compute the upper-triangular factor \(R\) of continuously streaming \(n\)-by- 1 row vectors \(A(k,:)\) using forgetting factor \(\alpha\). It's as if matrix \(A\) is infinitely tall. The forgetting factor in the range \(0<\alpha<1\) prevents it from integrating without bound.
\[
\begin{gathered}
R_{0}=\operatorname{zeros}(n, n) \\
{\left[\sim, R_{1}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right], 0\right)} \\
R_{1}=\alpha R_{1} \\
{\left[\sim, R_{2}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{1} \\
A(2,:)
\end{array}\right], 0\right)} \\
R_{2}=\alpha R_{2} \\
\vdots \\
{\left[\sim, R_{k}\right]=\operatorname{qr}\left(\left[\left[\begin{array}{l}
R_{k}-1 \\
A(k,:)
\end{array}\right], 0\right)\right.} \\
R_{k}=\alpha R_{k} \\
\vdots
\end{gathered}
\]

\section*{Q-less QR Decomposition with Forgetting Factor and Tikhonov Regularization}

The output \(X_{k}\) after processing the \(k^{\text {th }}\) input \(A(k,:)\) is computed using the following iteration.
\[
\begin{gathered}
R_{0}=\lambda I_{n} \\
{\left[\sim, R_{1}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right], 0\right)} \\
R_{1}=\alpha R_{1} \\
X_{1}=R_{1} \backslash\left(R_{1}^{\prime} \backslash B\right) \\
{\left[\sim, R_{2}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{1} \\
A(2,:)
\end{array}\right], 0\right)} \\
R_{2}=\alpha R_{2} \\
X_{2}=R_{2} \backslash\left(R_{2}^{\prime} \backslash B\right) \\
\vdots \\
{\left[\sim, R_{k}\right]=\mathrm{qr}\left(\left[\begin{array}{l}
R_{k}-1 \\
A(k,:)
\end{array}\right], 0\right)} \\
R_{k}=\alpha R_{k} \\
X_{k}=R_{k} \backslash\left(R_{k}^{\prime} \backslash B\right)
\end{gathered}
\]

This is mathematically equivalent to computing \(A^{\prime}{ }_{k} A_{k} X=B\), where \(A_{k}\) is defined as follows, though the block never actually creates \(A_{k}\).
\[
A_{k}=\left[\right]
\]

\section*{Forward and Backward Substitution}

When an upper triangular factor is ready, then forward and backward substitution are computed with the current input \(B\) to produce output \(X\).
\[
X=R_{k} \backslash\left(R_{k}^{\prime} \backslash B\right)
\]

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix A row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- \(n^{\text {th }}\) row validIn to validOut - From the \(n^{\text {th }}\) row input to the block starting to output the first solution.
- This block is always ready to accept \(B\) matrices, so ready \(B\) is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix \(A\) row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to valid0ut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to valid0ut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using \(Q\)-less \(Q R\) Decomposition with Forgetting Factor and Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & validOut to validOut (cycles) & \(\boldsymbol{n}^{\text {th }}\) Row validIn to validOut (cycles) \\
\hline Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \((w l+5) * n+2+n\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2^{*} n^{*} w l+ \\
& 2^{*} n^{*} \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+5) * n+n
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \[
\begin{aligned}
& (w l * 2+11) * n+2 \\
& +n
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l \\
& 2{ }^{*} n^{*} \text { nextpow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow } 2(w l) \\
& +\left(w l^{*} 2+11\right) * n+ \\
& n
\end{aligned}
\] \\
\hline Real PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \(w l+7\) & \[
\begin{aligned}
& 4{ }^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2{ }^{*} n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 * n^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+6)^{*} n+2
\end{aligned}
\] \\
\hline Complex PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \(w l+9\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l) \\
& +(w l+7.5) * 2 * n+ \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The following tables show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v. 2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=16\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: inf-by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16 En14
- Target frequency: 250 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 334280 & 425280 & 78.60 \\
\hline CLB Registers & 261319 & 850560 & 30.72 \\
\hline DSPs & 12 & 4272 & 0.28 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.892 ns \\
\hline Slack & 0.088 ns \\
\hline Clock Frequency & 255.62 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b

\section*{R2023a: Smart unrolling for improved resource utilization}

This block depends on a partial-systolic QR decomposition block. Since 23a, when you update the diagram, the loop which composes the partial-systolic pipeline in the QR decomposition block is unrolled. This updated internal architecture removes dead operations in simulation and generated code, thus requiring fewer hardware resources. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.

\section*{R2022a: Support for Tikhonov regularization parameter}

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block now supports the Tikhonov "Regularization parameter" on page 2-0 .

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

HDL Architecture
This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Partial-Systolic Q-less QR Decomposition | Complex Burst Q-less QR Decomposition

\section*{Functions}
fixed.qlessQRMatrixSolve
Topics
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Partial-Systolic Matrix Solve Using QR Decomposition}

Compute value of \(x\) in the equation \(A x=B\) for complex-valued matrices using \(Q R\) decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Complex Partial-Systolic Matrix Solve Using QR Decomposition block solves the system of linear equations \(A x=B\) using \(Q R\) decomposition, where \(A\) and \(B\) are complex-valued matrices. To compute \(x\) \(=A^{-1}\), set \(B\) to be the identity matrix.

When "Regularization parameter" on page 2-0 is nonzero, the Complex Partial-Systolic Matrix Solve Using QR Decomposition block computes the matrix solution of complex-valued \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right] X=\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, \(p\) is the number of columns in \(B, I_{n}=\) \(\operatorname{eye}(n)\), and \(0_{n, p}=\operatorname{zeros}(n, p)\).

\section*{Ports}

Input
\(\mathbf{A}(\mathbf{i}\), : \()\) - Rows of matrix \(A\)
vector
Rows of matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
Complex Number Support: Yes
\(\mathbf{B ( i , : )}\) - Rows of matrix \(B\)
vector
Rows of matrix \(B\), specified as a vector. \(B\) is an \(m\)-by- \(p\) matrix where \(m \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixedpoint data types.
Data Types: single|double|fixed point

\section*{validIn - Whether inputs are valid \\ Boolean scalar}

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) and \(B(i,:)\) input ports are valid. When this value is 1 (true) and the ready value is 1 (true), the block captures the values at the \(A(i,:)\) and \(B(i,:)\) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}
\(\mathbf{X ( i , ~ : ) ~ - ~ R o w s ~ o f ~ m a t r i x ~} X\)
scalar | vector
Rows of matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port \(\mathrm{X}(\mathrm{i},:\) ) is valid. When this value is 1 (true), the block has successfully computed a row of matrix \(X\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrices \(\mathbf{A}\) and \(\mathbf{B}\) - Number of rows in input matrices \(A\) and \(B\)
4 (default) | positive integer-valued scalar
Number of rows in input matrices \(A\) and \(B\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix \(\mathbf{A}\) - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.

\section*{Programmatic Use Block Parameter: n \\ Type: character vector \\ Values: positive integer-valued scalar \\ Default: 4 \\ Number of columns in matrix B - Number of columns in input matrix \(B\) \\ 1 (default) | positive integer-valued scalar}

Number of columns in input matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: positive integer-valued scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt(1,18,14) (default)|double|single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt \((1,18,14)\), double, single, fixdt \((1,16,0)\), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink.NumericType.
```

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'| 'double'|'single'|'fixdt(1,16,0)'|'<data type
expression>'
Default: 'fixdt(1, 18,14)'

```

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Partial-Systolic Matrix Solve Using \(Q R\) Decomposition blocks accept and process \(A\) and \(B\) matrices row by row. After accepting \(m\) rows, the block outputs the matrix \(X\) as a single vector. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix and \(X 1\) is the matrix \(X\), output as a vector.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.

The following table provides details of the timing for the Partial-Systolic Matrix Solve Using \(Q R\) Decomposition blocks.
\begin{tabular}{|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & Last Row validIn to validOut (cycles) \\
\hline Real Partial-Systolic Matrix Solve Using QR Decomposition & Synchronous & \[
\begin{aligned}
& \max \left((w l+7), \operatorname{ceil}\left(\left(3.5^{*} n^{2}\right.\right.\right. \\
& +n^{*}(\text { nextpow2 }(w l)+w l \\
& +9.5)+1) / n))
\end{aligned}
\] & \[
\begin{aligned}
& (w l+6)^{*} n+3.5^{*} n^{2}+ \\
& n^{*}(\text { nextpow2 }(w l)+w l+ \\
& 9.5)+9-n
\end{aligned}
\] \\
\hline Complex Partial-Systolic Matrix Solve Using QR Decomposition & Synchronous & \[
\begin{aligned}
& \max ((w l+9), \\
& \operatorname{ceil}\left(\left(3.5^{*} n^{2}+\right.\right. \\
& n^{*}(n e x t p o w 2(w l)+w l+ \\
& 9.5)+1) / n))
\end{aligned}
\] & \[
\begin{aligned}
& (w l+7.5) * 2 * n+3.5 * n^{2} \\
& +n^{*}(\text { nextpow2 } w l)+w l \\
& +9.5)+9-n
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The following tables show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: 16-by-16
- Matrix \(B\) dimension: 16 -by- 1
- Input data type: sfix16_En14
- Target frequency: 250 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 319045 & 425280 & 75.02 \\
\hline CLB Registers & 261210 & 850560 & 30.71 \\
\hline DSPs & 6 & 4272 & 0.14 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.897 ns \\
\hline Slack & 0.085 ns \\
\hline Clock Frequency & 255.43 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b
R2023a: Smart unrolling for improved resource utilization

This block depends on a partial-systolic QR decomposition block. Since 23a, when you update the diagram, the loop which composes the partial-systolic pipeline in the QR decomposition block is unrolled. This updated internal architecture removes dead operations in simulation and generated code, thus requiring fewer hardware resources. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \(\circledR^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

Real Partial-Systolic Matrix Solve Using QR Decomposition | Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Complex Burst Matrix Solve Using QR Decomposition

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Partial-Systolic Q-less QR Decomposition}

Q-less QR decomposition for complex-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Complex Partial-Systolic Q-less QR Decomposition block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the \(Q R\) decomposition \(A=Q R\), where \(A\) is a complex-valued matrix, without computing \(Q\). The solution to \(A^{\prime} A x=B\) is \(x=R \backslash R^{\prime} \backslash b\).

When "Regularization parameter" on page 2-0 is nonzero, the Complex Partial-Systolic Q-less QR Decomposition block computes the upper-triangular factor \(R\) of the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) where \(\lambda\) is the regularization parameter.

\section*{Ports}

Input
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of matrix \(A\)
vector
Rows of matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
```

Data Types: single|double|fixed point
Complex Number Support: Yes

```
validIn - Whether inputs are valid
Boolean scalar
Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values at the \(A(i,:)\) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean
```

restart - Whether to clear internal states
Boolean scalar

```

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}

R - Matrix \(R\)
scalar | vector
Economy size QR decomposition matrix \(R\), returned as a scalar or vector. \(R\) is an upper triangular matrix. The size of matrix \(R\) is \(n\)-by- \(n\). \(R\) has the same data type as \(A\).

Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(R\) is valid. When this value is 1 ( \(t\) rue), the block has successfully computed the matrix \(R\). When this value is 0 ( false ), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of rows in input matrix \(A\), specified as a positive integer-valued scalar.

\footnotetext{
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix \(\mathbf{A}\) - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
}

Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & \(C\) & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Partial-Systolic \(Q R\) Decomposition blocks accept and process \(A\) and \(B\) matrices row by row. After accepting \(m\) rows, the block outputs the \(R\) and \(C\) matrices as vectors. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.

The Partial-Systolic Q-less QR Decomposition blocks accept and process the matrix A row by row. After accepting \(m\) rows, the block outputs the \(R\) matrices as single vectors. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to valid0ut - From the last row input to the block starting to output the solution.

The following table provides details of the timing for the Partial-Systolic \(Q R\) Decomposition blocks.
\begin{tabular}{|l|l|l|}
\hline Block & validIn to ready (cycles) & \begin{tabular}{l} 
Last Row validIn to \\
validOut (cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Partial-Systolic QR \\
Decomposition
\end{tabular} & \(w l+7\) & \((w l+6)^{*} n+6\) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic QR \\
Decomposition
\end{tabular} & \(w l+9\) & \((w l+7.5)^{* 2 *} n+6\) \\
\hline \begin{tabular}{l} 
Real Partial-Systolic Q-less QR \\
Decomposition
\end{tabular} & \(w l+7\) & \((w l+6)^{*} n+3\) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic Q-less \\
QR Decomposition
\end{tabular} & \(w l+9\) & \((w l+7.5)^{* 2 *} n+3\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The table below shows a summary of the resource utilization results.
This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board ( -2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- m = 10
- \(\mathrm{n}=10\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: \(10-\) by- 10
- Matrix \(B\) dimension: 10 -by- 1
- Input data type: sfix18_En12
\begin{tabular}{|l|l|}
\hline Resource & Usage \\
\hline LUT & 91208 \\
\hline LUTRAM & 4160 \\
\hline Flip Flop & 57765 \\
\hline
\end{tabular}

The tables below show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: 16-by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 300 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 295989 & 425280 & 69.60 \\
\hline CLB Registers & 236040 & 850560 & 27.75 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.302 ns \\
\hline Slack & 0.012 ns \\
\hline Clock Frequency & 301.08 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b
R2023a: Smart unrolling for improved resource utilization

When you update the diagram, the loop which composes the partial-systolic pipeline is unrolled. This updated internal architecture removes dead operations in simulation and generated code, resulting in
a significant decrease in the number of hardware resources required. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.
\begin{tabular}{|l|l|l|}
\hline Resource & Usage in R2022b & Usage in R2023a \\
\hline LUT & 160696 & 91208 \\
\hline LUTRAM & 5780 & 4160 \\
\hline Flip Flop & 103465 & 57765 \\
\hline
\end{tabular}

This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board ( -2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- m = 10
- \(\mathrm{n}=10\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: \(10-\) by- 10
- Matrix \(B\) dimension: \(10-\mathrm{by}-1\)
- Input data type: sfix18_En12

\section*{R2022a: Support for Tikhonov regularization parameter}

The Complex Partial-Systolic Q-less QR Decomposition block now supports the Tikhonov
"Regularization parameter" on page 2-0 .

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Partial-Systolic Q-less QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Burst Q-less QR Decomposition

\section*{Functions}
fixed.qlessQR

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor}

Q-less QR decomposition for complex-valued matrices with infinite number of rows


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the QR decomposition \(A=\) \(Q R\), without computing \(Q . A\) is an infinitely tall complex-valued matrix representing streaming data.

When the regularization parameter is nonzero, the Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block initializes the first upper-triangular factor \(R\) to \(\lambda I_{n}\) before factoring in the rows of \(A\), where \(\lambda\) is the regularization parameter and \(I_{n}=\operatorname{eye}(n)\).

\section*{Ports}

\section*{Input}
\(\mathbf{A}(\mathbf{i}\), : ) - Rows of matrix \(A\)
vector
Rows of matrix \(A\), specified as a vector. \(A\) is an infinitely tall matrix of streaming data. If \(A\) is a fixedpoint data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point \\ Complex Number Support: Yes}
validIn - Whether inputs are valid
Boolean scalar
Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values at the \(A(i,:)\) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
```

restart - Whether to clear internal states
Boolean scalar

```

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}

R - Matrix \(R\)
scalar | vector
Economy size QR decomposition matrix \(R\), returned as a scalar or vector. \(R\) is an upper triangular matrix. The size of matrix \(R\) is \(n\)-by- \(n\). \(R\) has the same data type as \(A\).

Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(R\) is valid. When this value is 1 ( \(t\) rue), the block has successfully computed the matrix \(R\). When this value is 0 ( false ), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of columns in matrix A - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.

\section*{Programmatic Use \\ Block Parameter: n \\ Type: character vector \\ Values: positive integer-valued scalar \\ Default: 4}

Forgetting factor - Forgetting factor applied after each row of matrix is factored 0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar. The output is updated as each row of \(A\) is input indefinitely.

Programmatic Use
Block Parameter: forgettingFactor
Type: character vector
Values: positive integer-valued scalar
Default: 0.99
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Algorithms}

\section*{Q-less QR Decomposition with Forgetting Factor}

The Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block implements the following recursion to compute the upper-triangular factor \(R\) of continuously streaming \(n\)-by- 1 row vectors \(A(k,:)\) using forgetting factor \(\alpha\). It's as if matrix \(A\) is infinitely tall. The forgetting factor in the range \(0<\alpha<1\) prevents it from integrating without bound.
\[
\begin{gathered}
R_{0}=\operatorname{zeros}(n, n) \\
{\left[\sim, R_{1}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right], 0\right)} \\
R_{1}=\alpha R_{1} \\
{\left[\sim, R_{2}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{1} \\
A(2,:)
\end{array}\right], 0\right)} \\
R_{2}=\alpha R_{2} \\
\vdots \\
{\left[\sim, R_{k}\right]=\operatorname{qr}\left(\left[\left[\begin{array}{c}
R_{k}-1 \\
A(k,:)
\end{array}\right], 0\right)\right.} \\
R_{k}=\alpha R_{k} \\
\vdots
\end{gathered}
\]

\section*{Q-less QR Decomposition with Forgetting Factor and Tikhonov Regularization}

The upper-triangular factor \(R_{k}\) after processing the \(k^{\text {th }}\) input \(A(k,:)\) is computed using the following iteration.
\[
\begin{gathered}
R_{0}=\lambda I_{n} \\
{\left[\sim, R_{1}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right], 0\right)} \\
R_{1}=\alpha R_{1} \\
{\left[\sim, R_{2}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{1} \\
A(2,:)
\end{array}\right], 0\right)} \\
R_{2}=\alpha R_{2} \\
\vdots \\
{\left[\sim, R_{k}\right]=\operatorname{qr}\left(\left[\begin{array}{l}
R_{k}-1 \\
A(k,:)
\end{array}\right], 0\right)} \\
R_{k}=\alpha R_{k} \\
\vdots
\end{gathered}
\]

This is mathematically equivalent to computing the upper-triangular factor \(R_{k}\) of matrix \(A_{k}\), defined as follows, though the block never actually creates \(A_{k}\).
\[
A_{k}=\left[\right]
\]

\section*{Forward and Backward Substitution}

When an upper triangular factor is ready, then forward and backward substitution are computed with the current input \(B\) to produce output \(X\).
\[
X=R_{k} \backslash\left(R_{k}^{\prime} \backslash B\right)
\]

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & \(C\) & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Partial-Systolic QR Decomposition with Forgetting Factor blocks accept and process the matrix \(A\) row by row. After accepting the first \(m\) rows, the block starts to output the \(R\) matrix as a single vector. From this point, for each row input, the block calculates a \(R\) matrix. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input matrix \(A\) is 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the Q-less QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- validIn to validOut - From a successful row input to the block starting to output the corresponding solution.

The following table provides details of the timing for the Partial-Systolic Q-less QR Decomposition with Forgetting Factor blocks.
\begin{tabular}{|l|l|l|}
\hline Block & validIn to ready (cycles) & validIn to validOut (cycles) \\
\hline \begin{tabular}{l} 
Real Partial-Systolic Q-less QR \\
Decomposition with Forgetting \\
Factor
\end{tabular} & \(w l+7\) & \((w l+6)^{*} n+3\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Block & validIn to ready (cycles) & validIn to validOut (cycles) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic Q-less \\
QR Decomposition with \\
Forgetting Factor
\end{tabular} & \(w l+9\) & \((w l+7.5)^{*} 2^{*} n+3\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The table below shows a summary of the resource utilization results.
This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board ( -2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- \(m=10\)
- \(\mathrm{n}=10\)
- \(\mathrm{p}=1\)
- Matrix A dimension: 10 -by-10
- Matrix \(B\) dimension: \(10-\mathrm{by}-1\)
- Input data type: sfix18_En12
\begin{tabular}{|l|l|}
\hline Resource & Usage \\
\hline LUT & 91496 \\
\hline LUTRAM & 2000 \\
\hline Flip Flop & 54609 \\
\hline BRAM & 31 \\
\hline
\end{tabular}

The following tables show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=16\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: inf-by-16
- Matrix \(B\) dimension: 16 -by-1
- Input data type: sfix16_En14
- Target frequency: 300 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 327009 & 425280 & 76.89 \\
\hline CLB Registers & 236476 & 850560 & 27.80 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.299 ns \\
\hline Slack & 0.016 ns \\
\hline Clock Frequency & 301.45 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b
R2023a: Smart unrolling for improved resource utilization

When you update the diagram, the loop which composes the partial-systolic pipeline is unrolled. This updated internal architecture removes dead operations in simulation and generated code, resulting in a significant decrease in the number of hardware resources required. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.
\begin{tabular}{|l|l|l|}
\hline Resource & R2022b & R2023a \\
\hline LUT & 162888 & 91496 \\
\hline LUTRAM & 3620 & 2000 \\
\hline Flip Flop & 100309 & 54609 \\
\hline BRAM & 45 & 31 \\
\hline
\end{tabular}

This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board ( -2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- \(m=10\)
- \(\mathrm{n}=10\)
- \(p=1\)
- Matrix \(A\) dimension: 10-by-10
- Matrix \(B\) dimension: 10-by-1
- Input data type: sfix18_En12

\section*{R2022a: Support for Tikhonov regularization parameter}

The Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block supports the Tikhonov "Regularization parameter" on page 2-0

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

HDL Architecture
This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Complex Partial-Systolic QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition | Complex Burst Q-less QR Decomposition

\section*{Functions}
fixed.qlessQR

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Complex Partial-Systolic QR Decomposition}

QR decomposition for complex-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Complex Partial-Systolic QR Decomposition block uses QR decomposition to compute \(R\) and \(C=\) \(Q^{\prime} B\), where \(Q R=A\), and \(A\) and \(B\) are complex-valued matrices. The least-squares solution to \(A x=B\) is \(x=R \backslash C . R\) is an upper triangular matrix and \(Q\) is an orthogonal matrix. To compute \(C=Q^{\prime}\), set \(B\) to be the identity matrix.

When "Regularization parameter" on page 2-0 is nonzero, the Complex Partial-Systolic QR Decomposition block transforms \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) in-place to \(R=Q^{\prime}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) and \(\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) in-place to \(C=Q^{\prime}\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) where \(\lambda\) is the regularization parameter, QR is the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right], A\) is an \(m\)-by- \(n\) matrix, \(p\) is the number of columns in \(B, I_{n}=\operatorname{eye}(n)\), and \(0_{n, p}=\operatorname{zeros}(n, p)\).

\section*{Ports}

Input
\(\mathbf{A ( i , : )}\) - Rows of matrix \(A\)
vector
Rows of matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
Complex Number Support: Yes
\(\mathbf{B}(\mathbf{i}, \mathbf{:})\) - Rows of matrix \(B\)
vector
Rows of matrix \(B\), specified as a vector. \(B\) is an \(m\)-by- \(p\) matrix where \(m \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixedpoint data types.

\section*{validIn - Whether inputs are valid \\ Boolean scalar}

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) and \(B(i,:)\) input ports are valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values on the \(A(i,:)\) and \(B(i,:)\) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false), and the validIn value is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}

R - Matrix R
matrix
Economy-size \(Q R\) decomposition matrix \(R\), returned as a matrix. \(R\) is an upper triangular matrix. The size of matrix \(R\) is \(n\)-by- \(n\). \(R\) has the same data type as \(A\).
Data Types: single|double|fixed point
C - Matrix \(C=Q^{\prime} B\)
matrix
Economy-size \(Q R\) decomposition matrix \(C=Q^{\prime} B\), returned as a matrix or vector. \(C\) has the same number of rows as \(R\). \(C\) has the same data type as \(B\).

Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at output ports R and C is valid. When this value is 1 (true), the block has successfully computed the \(R\) and \(C\) matrices. When this value is 0 (false), the output data is not valid.

\section*{Data Types: Boolean}
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in matrices \(\mathbf{A}\) and \(\mathbf{B}\) - Number of rows in input matrices \(A\) and \(B\)
```

4 (default) | positive integer-valued scalar

```

The number of rows in input matrices \(A\) and \(B\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix A - Number of columns in input matrix A
4 (default) | positive integer-valued scalar
The number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix B - Number of columns in input matrix B
1 (default) | positive integer-valued scalar

```

The number of columns in input matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: positive integer-valued scalar
Default: 0

```

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & \(C\) & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Partial-Systolic QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row. After accepting \(m\) rows, the block outputs the \(R\) and \(C\) matrices as vectors. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.

The Partial-Systolic Q-less QR Decomposition blocks accept and process the matrix A row by row. After accepting \(m\) rows, the block outputs the \(R\) matrices as single vectors. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.

The following table provides details of the timing for the Partial-Systolic \(Q R\) Decomposition blocks.
\begin{tabular}{|l|l|l|}
\hline Block & validIn to ready (cycles) & \begin{tabular}{l} 
Last Row validIn to \\
valid0ut (cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Partial-Systolic QR \\
Decomposition
\end{tabular} & \(w l+7\) & \((w l+6)^{* n}+6\) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic QR \\
Decomposition
\end{tabular} & \(w l+9\) & \((w l+7.5) * 2 * n+6\) \\
\hline \begin{tabular}{l} 
Real Partial-Systolic Q-less QR \\
Decomposition
\end{tabular} & \(w l+7\) & \((w l+6)^{* n}+3\) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic Q-less \\
QR Decomposition
\end{tabular} & \(w l+9\) & \((w l+7.5) * 2 * n+3\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The table below shows a summary of the resource utilization results.
This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board (-2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- \(m=10\)
- \(\mathrm{n}=10\)
- \(p=1\)
- Matrix \(A\) dimension: 10-by-10
- Matrix \(B\) dimension: 10-by-1
- Input data type: sfix18_En12
\begin{tabular}{|l|l|}
\hline Resource & Usage \\
\hline LUT & 108464 \\
\hline LUTRAM & 5000 \\
\hline Flip Flop & 68404 \\
\hline
\end{tabular}

The tables below show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(m=16\)
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16-by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 300 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 319908 & 425280 & 75.22 \\
\hline CLB Registers & 250839 & 850560 & 29.49 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.299 ns \\
\hline Slack & 0.016 ns \\
\hline Clock Frequency & 301.45 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b

\section*{R2023a: Smart unrolling for improved resource utilization}

When you update the diagram, the loop which composes the partial-systolic pipeline is unrolled. This updated internal architecture removes dead operations in simulation and generated code, resulting in a significant decrease in the number of hardware resources required. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.
\begin{tabular}{|l|l|l|}
\hline Resource & Usage in R2022b & Usage in R2023a \\
\hline LUT & 177813 & 108464 \\
\hline LUTRAM & 6620 & 5000 \\
\hline Flip Flop & 113857 & 68404 \\
\hline
\end{tabular}

This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board ( -2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- m = 10
- \(\mathrm{n}=10\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: \(10-\) by-10
- Matrix \(B\) dimension: 10 -by- 1
- Input data type: sfix18_En12

\section*{R2021a: Reduced HDL resource utilization}

This block now has an improved algorithm to reduce resource utilization on hardware-constrained target platforms.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

HDL Architecture
This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Partial-Systolic QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition | Complex Burst QR Decomposition

\section*{Functions}
fixed.qrAB
Topics
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Divide by Constant and Round}

Divide input by a constant and round to integer


\section*{Libraries:}

Fixed-Point Designer

\section*{Description}

The Divide by Constant and Round block outputs the result of dividing the input by a constant and rounds the result to an integer using the specified rounding method.

The Divide by Constant and Round block uses an algorithm that is functionally similar to the Granlund-Montgomery-Warren Method. The division operation is computed via a multiplication by inverse, which generally results in better performance on embedded systems.

\section*{Ports}

Input
\(\mathbf{X}\) - Dividend
scalar | vector | matrix | N-D array
Dividend, specified as a scalar, vector, matrix, or N-D array.
Divide by Constant and Round does not support data types with word length greater than 128. Slopebias representation is not supported for fixed-point data types.
Data Types: single | double | int8 | int16|int32|uint8|uint16|uint32| Boolean | fixed point

\section*{Output}
\(\mathbf{Y}\) - Result of division and round operation
scalar | vector | matrix | N-D array
Result of division and round operation, returned as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8|int16|int32|uint8|uint16|uint32|Boolean|fixed point

\section*{Parameters}

Denominator - Divisor
10 (default) | scalar
Divisor, specified as a positive, real-valued, finite scalar.
```

Programmatic Use
Block Parameter: Denominator

```

Type: character vector
Values: MATLAB expression that evaluates to a positive, real-valued, finite fixed point or numeric value
Data Types: single | double | int8 | int16 | int32 | int64 | uint8|uint16|uint32|uint64
| Boolean|fixed point
Default: ' 10 '
Rounding Method - Rounding method to use
Floor (default) | Ceiling | Nearest | Zero | Convergent
Rounding method to use, specified as one of these values:
- Floor - Round to nearest integer in the direction of negative infinity.
- Ceiling - Round to nearest integer in the direction of positive infinity.
- Nearest - Round to the nearest integer. Ties are rounded to the nearest integer in the direction of positive infinity.
- Zero - Round to the nearest integer in the direction of zero.
- Convergent - Round to the nearest integer. Ties are rounded to the nearest even integer.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Floor'|'Ceiling'|'Nearest'|'Zero'|'Convergent'
Default: 'Floor'

\section*{Version History}

Introduced in R2021a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{See Also}

Divide by Constant HDL Optimized | Divide

\section*{Topics}
"Choosing a Rounding Method"

\section*{Divide by Constant HDL Optimized}

Divide input by a constant and round to integer and generate optimized HDL code


\section*{Libraries:}

Fixed-Point Designer HDL Support / Math Operations

\section*{Description}

The Divide by Constant HDL Optimized block outputs the result of dividing the input by a constant and rounds the result to an integer using the specified rounding method using an HDL-optimized architecture with cycle-true latency.

The Divide by Constant HDL Optimized block uses an algorithm that is functionally similar to the Granlund-Montgomery-Warren Method. The division operation is computed via a multiplication by inverse, which generally results in better performance on embedded systems.

\section*{Ports}

\section*{Input}

X - Dividend
real scalar
Dividend, specified as a real scalar.
Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double | int8| int16|int32|uint8|uint16|uint32|Boolean|fixed point
validln - Whether input is valid
boolean scalar
Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(\mathbf{X}\) input port is valid. When this value is 1 (true), the block captures the value on the \(\mathbf{X}\) input port. When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

\section*{Output}
\(\mathbf{Y}\) - Result of division and round operation
scalar
Result of division and round operation, returned as a scalar.
Data Types: single|double| int8| int16|int32|uint8|uint16|uint32|Boolean|fixed point

\section*{validOut - Whether output data is valid}
boolean scalar
Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is 1 (true), the block has successfully computed the output \(\mathbf{Y}\). When this value is 0 (false), the output data is not valid.

Data Types: Boolean

\section*{Parameters}

\section*{Denominator for rational division - Divisor}

10 (default) | scalar
Divisor, specified as a positive, real-valued, finite scalar.

\section*{Programmatic Use}

Block Parameter: Denominator
Type: character vector
Values: MATLAB expression that evaluates to a positive, real-valued, finite fixed point or numeric value
Data Types: single | double | int8| int16 | int32 | int64 |uint8|uint16|uint32|uint64
|Boolean|fixed point
Default: ' 10 '
Rounding Method - Rounding method to use
Floor (default) | Ceiling | Nearest | Zero | Convergent
Rounding method to use, specified as one of these values:
- Floor - Round to nearest integer in the direction of negative infinity.
- Ceiling - Round to nearest integer in the direction of positive infinity.
- Nearest - Round to the nearest integer. Ties are rounded to the nearest integer in the direction of positive infinity.
- Zero - Round to the nearest integer in the direction of zero.
- Convergent - Round to the nearest integer. Ties are rounded to the nearest even integer.

\section*{Programmatic Use}

Block Parameter: RndMeth
Type: character vector
Values: 'Floor'|'Ceiling'|'Nearest'|'Zero'|'Convergent'
Default: 'Floor'

\section*{Tips}

The blocks Divide by Constant HDL Optimized, Real Divide HDL Optimized, and Complex Divide HDL Optimized all perform the division operation and generate optimized HDL code.
- Real Divide HDL Optimized and Complex Divide HDL Optimized are based on a CORIDC algorithm. These blocks accept a wide variety of inputs, but will result in greater latency.
- Divide by Constant HDL Optimized accepts only real inputs and a constant divisor. Use of this block consumes DSP slices, but will complete the division operation in fewer cycles and at a higher clock rate.

\section*{Algorithms}

The Divide by Constant HDL Optimized uses an HDL-optimized architecture with cycle-true latency.
The Divide by Constant HDL Optimized block uses an algorithm that is functionally similar to the Granlund-Montgomery-Warren Method. The division operation is computed via a multiplication by inverse, which generally results in better performance on embedded systems.

\section*{Version History}

Introduced in R2021a

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Slope-bias representation is not supported for fixed-point data types.

\section*{See Also}

Divide by Constant and Round | Divide

\section*{Topics}
"Choosing a Rounding Method"

\section*{Euler to NED Transformation HDL Optimized}

Computes Euler to North-East-Down transformation using pipelined or burst architecture and generates optimized HDL code


Libraries:
Fixed-Point Designer HDL Support / Coordinate Transformations

\section*{Description}

The Euler to NED Transformation HDL Optimized block provides two architectures that implement Euler to North-East-Down (NED) transformation using a CORDIC rotation kernel for FPGA and ASIC applications.

You can select an architecture that optimizes for either throughput or area.
- Pipelined - Use this architecture for high-throughput applications.
- Burst - Use this architecture for a minimum resource implementation.

The Euler to NED Transformation HDL Optimized block provides hardware-friendly control signals.

\section*{Ports}

\section*{Input}
\(\mathbf{U} \mathbf{~ I n}\) - Input array
3-by-1 vector
Input array, specified as a 3-by-1 vector.
Fixed-point inputs must use binary-point scaling.
Example: UIn = \(0 ; 0 ; 1]\)
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64|
fixed point
Complex Number Support: Yes
Angle In - Angles to rotate by
3-by-1 vector
Angles to rotate by, specified as a 3-by-1 real-valued vector containing the angles phi, theta, and psi in radians.
```

Example: AngleIn = [phi;theta;psi]
Data Types: single | double| int8| int16| int32| int64|uint8|uint16|uint32|uint64|
fixed point

```

\section*{Valid In - Whether input is valid}

Boolean scalar
Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(\mathbf{U}\) In and Angle In input ports are valid. When this value is 1 (true), the block captures the values at the input ports U In and Angle In. When this value is 0 (false), the block ignores the input samples.

\section*{Data Types: Boolean}

Restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the Valid In value is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}

U Out - Rotated array
3-by-1 vector
Rotated array, returned as a 3-by-1 vector.
Data Types: single | double | int8 | int16|int32|int64|uint8|uint16|uint32|uint64| fixed point

Valid Out - Whether output data is valid
boolean scalar
Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is 1 (true), the block has successfully computed the output \(\mathbf{U}\) Out. When this value is 0 (false), the output data is not valid.
Data Types: Boolean
Ready - Whether block is ready for input
Boolean scalar
Whether the block is ready for input, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and Valid In value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.
Data Types: Boolean

\section*{Parameters}

Architecture - Architecture type
Pipelined (default) |Burst
This parameter specifies the type of architecture.
- Pipelined - Select this value to specify low-latency architecture.
- Burst - Select this value to specify minimum resource architecture.

\section*{Programmatic Use}

Block Parameter: Architecture
Type: character vector
Values: 'Pipelined '|'Burst'
Default: 'Pipelined'

\section*{Algorithms}

\section*{Euler-NED Transformation}

The Euler to North-East-Down (NED) transformation is carried out by the successive application of these three rotation matrices.
\[
\begin{aligned}
& R_{\phi}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\phi) & -\sin (\phi) \\
0 & \sin (\phi) & \cos (\phi)
\end{array}\right] \\
& R_{\theta}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
& R_{\psi}=\left[\begin{array}{ccc}
\cos (\psi) & -\sin (\psi) & 0 \\
\sin (\psi) & \cos (\psi) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
\]

Multiplying these matrices together gives the total transformation.
\[
\begin{gathered}
A=R_{\psi} R_{\theta} R_{\phi} \\
=\left[\begin{array}{ccc}
\cos (\psi) \cos (\theta) & \cos (\psi) \sin (\phi) \sin (\theta)-\cos (\phi) \sin (\psi) & \sin (\phi) \sin (\psi)+\cos (\phi) \cos (\psi) \sin (\theta) \\
\cos (\theta) \sin (\psi) & \cos (\phi) \cos (\psi)+\sin (\phi) \sin (\psi) \sin (\theta) & \cos (\phi) \sin (\psi) \sin (\theta)-\cos (\psi) \sin (\phi) \\
-\sin (\theta) & \cos (\theta) \sin (\phi) & \cos (\phi) \cos (\theta)
\end{array}\right]
\end{gathered}
\]

You can transform between two frames related by the angles \(\phi, \theta\)
, and \(\psi\) by multiplying a vector in an initial frame by the matrix above.

\section*{CORDIC Algorithm}

CORDIC is an acronym for COordinate Rotation Digital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations. It is an iterative algorithm that approximates the solution by converging toward the ideal point. Using CORDIC, you can calculate various functions such as sine and cosine.

To use CORDIC to solve the Euler-NED transformation, CORDIC Givens rotations are applied sequentially in the appropriate subspaces of the initial space. First, rotate by \(\phi\) in the yz-plane, then rotate by \(-\theta\) in the xz-plane, then rotate by \(\psi\) in the xy-plane.

\section*{Performance}

This resource and performance data is the synthesis result from the generated HDL targeted to a Virtex \({ }^{\circledR}\) - 7 .

\section*{Resource Usage}
\begin{tabular}{|l|l|l|l|l|}
\hline Algorithm & Flip Flops & LUT & LUTRAM & DSPs \\
\hline \begin{tabular}{l} 
Pipelined CORDIC \\
(sfix14En10)
\end{tabular} & 3141 & 86 & 3973 & 0 \\
\hline \begin{tabular}{l} 
Resource Shared \\
CORDIC \\
(sfix14En10)
\end{tabular} & 337 & 659 & 0 & 0 \\
\hline
\end{tabular}

\section*{Static Timing Analysis}
\begin{tabular}{|l|l|l|l|}
\hline Algorithm & \begin{tabular}{l} 
Clock Frequency \\
(MHz)
\end{tabular} & Latency (Cycles) & Latency (ns) \\
\hline \begin{tabular}{l} 
Pipelined CORDIC \\
(sfix14En10)
\end{tabular} & 347 & 63 & 181 \\
\hline \begin{tabular}{l} 
Resource Shared \\
CORDIC (sfix14En10)
\end{tabular} & 347 & 57 & 164 \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2022b}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Supports fixed-point data types only. Fixed-point data types must use binary-point scaling.
Generated C/C++ code will have timing of the HDL block.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only. Fixed-point data types must use binary-point scaling.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\text {TM }}\).

\section*{See Also}

\section*{Topics}
"Hardware-Efficient Euler Rotations Using CORDIC"

\section*{Hyperbolic Tangent HDL Optimized}

Computes CORDIC-based hyperbolic tangent and generates optimized HDL code


Libraries:
Fixed-Point Designer HDL Support / Math Operations

\section*{Description}

The Hyperbolic Tangent HDL Optimized block returns the hyperbolic tangent of \(x\), computed using a CORDIC-based implementation optimized for HDL code generation.

\section*{Ports}

Input
\(\mathbf{x}\) - Angle in radians
real finite scalar
Angle in radians, specified as a real finite scalar. If \(\mathbf{x}\) is a fixed-point or scaled double data type, \(\mathbf{x}\) must use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
validIn - Whether input is valid
Boolean scalar
Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(\mathbf{x}\) input port is valid. When this value is 1 (true), the block captures the value on the \(\mathbf{x}\) input port. When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean
Output
\(y\) - Hyperbolic tangent of \(x\)
scalar
Hyperbolic tangent of the value at \(\mathbf{x}\), returned as a scalar. The value at \(\mathbf{y}\) is the CORDIC-based approximation of the hyperbolic tangent of \(\mathbf{x}\). When the input to the function is floating point, the output data type is the same as the input data type. When the input is a fixed-point data type, the output has the same word length as the input and a fraction length equal to 2 less than the word length.

\section*{Data Types: single|double|fixed point}
validOut - Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is 1 (true), the block has successfully computed the output \(\mathbf{y}\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.
Data Types: Boolean

\section*{More About}
[1] Volder, JE. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. Vol. EC-8, September 1959, pp. 330-334.
[2] Andraka, R. "A survey of CORDIC algorithm for FPGA based computers." Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24, 1998, pp. 191-200.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." Hewlett-Packard Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317-325.

\section*{Algorithms}

\section*{CORDIC}

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers.

The block automatically determines the number of iterations, niters, the CORDIC algorithm performs based on the data type of the input.
\begin{tabular}{|l|l|}
\hline Data type of input \(\mathbf{x}\) & niters \\
\hline single & 23 \\
\hline double & 52 \\
\hline fixed point & \begin{tabular}{l} 
One less than the word length of \(\mathbf{x}\). The minimum \\
number of CORDIC iterations is 7.
\end{tabular} \\
\hline
\end{tabular}

\section*{Hardware Efficient Fixed-Point Computations}

The Hyperbolic Tangent HDL Optimized block supports HDL code generation for fixed-point data with binary-point scaling. It is designed with this application in mind, and employs hardware specific semantics and optimizations. One of these optimizations is resource sharing.

When deploying intricate algorithms to FPGA or ASIC devices, there is often a trade-off between resource usage and total throughput for a given computation. Fully pipelined and parallelized algorithms have the greatest throughput, but they are often too resource intensive to deploy on real devices. By implementing scheduling logic around one or several core computational circuits, it is possible to reuse resources throughout a computation. The result is an implementation with a much smaller footprint, at the cost of a reduced total throughput. This is often an acceptable trade-off, as resource shared designs can still meet overall latency requirements.

All of the key computational units in the Hyperbolic Tangent HDL Optimized block are reused throughout the computation life cycle. This includes not only the CORDIC circuitry used to perform the Givens rotations, but also the adders and multipliers used for updating the angles. This saves both DSP and fabric resources when deploying to FPGA or ASIC devices.

\section*{How to Interface with the Hyperbolic Tangent HDL Optimized Block}

The Hyperbolic Tangent HDL Optimized block accepts data when the ready output is high, indicating that the block is ready to begin a new computation. To send input data to the block, the validIn signal must be asserted. If the block successfully registers the input value it will de-assert the ready signal, and the user must then wait until the signal is asserted again to send a new input. This protocol is summarized in the following wave diagram. Note how the first valid input to the block is discarded because the block was not ready to accept input data.


When the block has finished the computation and is ready to send the output, it will assert validOut for one clock cycle. Then ready will be asserted, indicating that the block is ready to accept a new input value.


\section*{Version History \\ Introduced in R2020a}

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Functions}
cordictanh

\section*{Modulo by Constant}

Perform modulo operation with a constant denominator


\section*{Libraries:}

Fixed-Point Designer

\section*{Description}

The Modulo by Constant block performs the modulo operation (remainder after division) with a constant denominator.

The Modulo by Constant block uses an algorithm that is functionally similar to a Barrett Reduction. The division operation is computed via a multiplication by inverse, which generally results in better performance on embedded systems.

\section*{Ports}

Input
\(\mathbf{X}\) - Dividend
real scalar
Dividend, specified as a real scalar.
If X is a fixed-point data type, it must use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single |double | int8|int16|int32|int64|uint8|uint16|uint32|fixed point

\section*{Output}
\(\mathbf{Y}\) - Result of modulus operation
scalar
Result of modulus operation, returned as a scalar.
Data Types: single |double | int8|int16|int32|int64|uint8|uint16|uint32|fixed point

\section*{Parameters}

Denominator for Modulo Problem - Divisor
10 (default) | scalar
Divisor to use for the modulus operation, specified as a positive, real-valued, finite scalar.

\section*{Programmatic Use \\ Block Parameter: Denominator}

Type: character vector
Values: MATLAB expression that evaluates to a positive, real-valued, finite fixed point or numeric value
Data Types: single | double | int8 | int16 | int32 | int64 | uint8|uint16|uint32|uint64 |Boolean|fixed point
Default: '10'

\section*{Version History}

Introduced in R2021a

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{See Also}

Modulo by Constant HDL Optimized

\section*{Modulo by Constant HDL Optimized}

Perform mod operation with a constant denominator and generate optimized HDL code


\section*{Libraries:}

Fixed-Point Designer HDL Support / Math Operations

\section*{Description}

The Modulo by Constant HDL Optimized block performs the modulo operation (remainder after division) with a constant denominator using an HDL-optimized architecture with cycle-true latency.

The Modulo by Constant block uses an algorithm that is functionally similar to a Barrett Reduction. The division operation is computed via a multiplication by inverse, which generally results in better performance on embedded systems.

\section*{Ports}

\section*{Input}
\(\mathbf{X}\) - Dividend
real scalar
Dividend, specified as a real scalar.
If \(\mathbf{X}\) is a fixed-point data type, it must use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
```

Data Types: single| double| int8| int16| int32|int64|uint8|uint16|uint32|fixed
point

```
validIn - Whether input is valid
boolean scalar
Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(\mathbf{X}\) input port is valid. When this value is 1 (true), the block captures the value on the \(\mathbf{X}\) input port. When this value is 0 (false), the block ignores the input samples.

\section*{Data Types: Boolean}

\section*{Output}

Y - Result of modulus operation
scalar
Result of modulus operation, returned as a scalar.
```

Data Types: single|double | int8| int16| int32 | int64|uint8|uint16|uint32| fixed
point
validOut - Whether output data is valid
boolean scalar

```

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is 1 (true), the block has successfully computed the output \(\mathbf{Y}\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean

\section*{Parameters}

Denominator - Divisor
10 (default) | real scalar
Divisor to use for the modulus operation, specified as a positive, real-valued, finite scalar.

\section*{Programmatic Use}

Block Parameter: Denominator
Type: character vector
Values: MATLAB expression that evaluates to a positive, real-valued, finite fixed point or numeric value
Data Types: single | double | int8 | int16 | int32 | int64 |uint8|uint16|uint32|uint64
|Boolean|fixed point
Default: ' 10 '

\section*{Algorithms}

The Modulo by Constant HDL Optimized block performs the modulo operation (remainder after division) with a constant denominator using an HDL-optimized architecture with cycle-true latency.

The modulo operation,
\[
Y=X \bmod D=X-\left\lfloor\frac{X}{D}\right\rfloor \times D
\]
is an important building block for many mathematical algorithms. However, this formula for \(X \bmod D\) is computationally inefficient for fixed-point and integer inputs. Many embedded processors lack instructions for integer division. Those that do have them require many clock cycles to compute the answer. Division is also inefficient in commercially-available FPGAs, whose arithmetic circuits are designed for efficient multiplication, addition, and subtraction. Finally, for fixed-point modulo operations, it is difficult to optimize the word length of internal data types used for the calculation because the division operation is unbounded, even for small-wordlength inputs.

The denominator in the modulo problem is a compile-time constant, so the block can compute the floored division by using a multiplication followed by a cast. Rewriting the division operation as
\[
\frac{X}{D}=X \times \frac{1}{D}
\]
shows this. The constant is calculated to the precision necessary to maintain both accuracy and computational efficiency. The cast that follows discards any fractional bits, which is an efficient operation on both microprocessors and FPGAs.

The Modulo by Constant block uses an algorithm that is functionally similar to a Barrett Reduction. The division operation is computed via a multiplication by inverse, which generally results in better performance on embedded systems.

\section*{Version History}

Introduced in R2021a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \(\circledR^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Slope-bias representation is not supported for fixed-point data types.

\section*{See Also}

Modulo by Constant

\section*{Normalized Reciprocal HDL Optimized}

Computes normalized reciprocal and generates optimized HDL code


\section*{Libraries:}

Fixed-Point Designer HDL Support / Math Operations

\section*{Description}

The Normalized Reciprocal HDL Optimized block computes the normalized reciprocal of \(u\), returned as \(y\) and \(t\) such that \(0.5<|y| \leq 1\) and \(2^{e} y=1 / u\).
- If \(u=0\) and \(u\) is a fixed-point or scaled-double data type, then \(y=2-\operatorname{eps}(y)\) and \(e=2^{\text {nextpow2(w) }}-w\) \(+f\), where \(w\) is the word length of \(u\) and \(f\) is the fraction length of \(u\).
- If \(u=0\) and \(u\) is a floating-point data type, then \(y=\operatorname{Inf}\) and \(t=1\).

\section*{Ports}

\section*{Input}
\(\mathbf{u}\) - Value to take normalized reciprocal of real scalar

Value to take the normalized reciprocal of, specified as a real scalar.
Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validIn - Whether input is valid
Boolean scalar
Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(\mathbf{u}\) input port is valid. When this value is 1 (true), the block captures the value at the \(\mathbf{u}\) input port. When this value is 0 (false), the block ignores the input samples.

\section*{Data Types: Boolean}

\section*{Output}
y - Normalized reciprocal
scalar
Normalized reciprocal that satisfies \(0.5<|y| \leq 1\) and \(2^{e} y=1 / u\), returned as a scalar.
- If the input at port \(\mathbf{u}\) is a signed fixed-point or scaled-double data type with word length \(w\), then \(\mathbf{y}\) is a signed fixed-point or scaled-double data type with word length \(w\) and fraction length \(w-2\).
- If the input at port \(\mathbf{u}\) is an unsigned fixed-point or scaled-double data type with word length \(w\), then \(\mathbf{y}\) is an unsigned fixed-point or scaled-double data type with word length \(w\) and fraction length \(w-1\).
- If the input at port \(\mathbf{u}\) is a double, then \(\mathbf{y}\) is a double.
- If the input at port \(\mathbf{u}\) is a single, the \(\mathbf{y}\) is a single.

Data Types: single|double|fixed point
e-Exponent
integer scalar
Exponent that satisfies \(0.5<|y| \leq 1\) and \(2^{e} y=1 / u\), returned as an integer scalar.
Data Types: int32
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is 1 (true), the block has successfully computed the outputs at ports \(\mathbf{y}\) and \(\mathbf{e}\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean

\section*{Algorithms}

The Normalized Reciprocal HDL Optimized block works by normalizing the input using a binary search, which has a latency of approximately \(\log 2\) of the word length of the input, followed by a CORDIC reciprocal kernel, which has a latency approximately the same as the word length of the input.

The Normalized Reciprocal HDL Optimized block is always ready to accept data. After the initial latency, valid samples are output every sample. The latency in samples for a fixed-point input \(\mathbf{u}\) is
\[
D=\operatorname{ceil(log2(u.WordLength))}+\text { u.WordLength + } 5
\]

\section*{Version History}

Introduced in R2020a

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Functions}
normalizedReciprocal

\section*{Blocks}

HDL Reciprocal

\section*{Real Burst Asynchronous Matrix Solve Using Qless QR Decomposition}

Compute the value of \(X\) in the equation \(A^{\prime} A X=B\) for real-valued matrices using asynchronous Q -less QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition block solves the system of linear equations \(A^{\prime} A X=B\) using asynchronous Q-less QR decomposition, where \(A\) and \(B\) are realvalued matrices.

When "Regularization parameter" on page 2-0 is nonzero, the Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition block solves the matrix equation
\[
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
\]
where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, and \(I_{n}=\operatorname{eye}(n)\).
This block operates asynchronously. The forward- and backward-substitution and Q-less QR decomposition run independently using the latest \(R\) and \(B\) matrices.

\section*{Ports}

Input
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}

B - Rows of real matrix \(B\)
vector
Rows of real matrix \(B\), specified as a vector. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validInA - Whether A(i, : ) input is valid
Boolean scalar
Whether \(\mathrm{A}(\mathrm{i},:\) ) input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the readyA value is 1 (true), the block captures the values at the \(A(i,:)\) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
validInB - Whether \(B\) input is valid
Boolean scalar
Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(B\) input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the block captures the values at the B input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}
\(\mathbf{X}\) - Rows of matrix \(X\)
scalar | vector
Rows of the matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(X\) is valid. When this value is 1 (true), the block has successfully computed the matrix \(X\). When this value is 0 (false), the output data is not valid.

Data Types: Boolean
```

readyA - Whether block is ready for input A(i, :)
Boolean scalar

```

Whether block is ready for input \(\mathrm{A}(\mathrm{i},:\) ), returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInA is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
ready \(B\) - Whether block is ready for input \(B\)
Boolean scalar
Whether block is ready for input B, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInB is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of rows in matrix \(A\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix A and rows in matrix B - Number of columns in matrix \(A\) and rows in matrix \(B\)
4 (default) | positive integer-valued scalar
Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix B - Number of columns in matrix B

```

1 (default) | positive integer-valued scalar

Number of columns in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt(1,18,14) (default)|double|single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt \((1,18,14)\), double, single, fixdt \((1,16,0)\), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink.NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,14)'

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Asynchronous Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-byrow and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to validOut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to valid0ut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to validOut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using \(Q R\) Decomposition and Burst Matrix Solve Using Q-less QR Decomposition blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & validOut to validOut (cycles) & Last Row validIn to validOut (cycles) \\
\hline \begin{tabular}{l}
Real Burst \\
Asynchronous \\
Matrix Solve Using \\
Q-less QR \\
Decomposition
\end{tabular} & Asynchronous & \[
\begin{aligned}
& (w l+5)^{*} n+2+(n \\
& +1)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l) \\
& +(w l+5) * n+n
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Complex Burst \\
Asynchronous \\
Matrix Solve Using \\
Q-less QR \\
Decomposition
\end{tabular} & Asynchronous & \[
\begin{aligned}
& \left(w l^{*} 2+11\right) * n+2 \\
& +(n+1)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2 * n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n * \text { nextpow } 2(w l) \\
& +(w l * 2+11) * n+ \\
& n
\end{aligned}
\] \\
\hline Real PartialSystolic Matrix Solve Using Q-less QR Decomposition & Asynchronous & \(w l+7\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2 * n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l) \\
& +(w l+6)^{*} n+2
\end{aligned}
\] \\
\hline Complex PartialSystolic Matrix Solve Using Q-less QR Decomposition & Asynchronous & \(w l+9\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2 * n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+7.5) * 2 * n+ \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v. 2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16 -by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 16131 & 425280 & 3.79 \\
\hline CLB Registers & 21469 & 850560 & 2.52 \\
\hline DSPs & 4 & 4272 & 0.09 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.544 ns \\
\hline Slack & 0.437 ns \\
\hline Clock Frequency & 280.66 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2022b

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\text {rM }}\).

\section*{See Also}

\section*{Blocks}

Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve Using QR Decomposition

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\title{
Real Burst Matrix Solve Using Q-less QR Decomposition
}

Compute the value of \(X\) in the equation \(A^{\prime} A X=B\) for real-valued matrices using Q -less QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Real Burst Matrix Solve Using Q-less QR Decomposition block solves the system of linear equations \(A^{\prime} A X=B\) using Q -less QR decomposition, where \(A\) and \(B\) are real-valued matrices.

When "Regularization parameter" on page 2-0 is nonzero, the Real Burst Matrix Solve Using Q-less QR Decomposition block solves the matrix equation
\[
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
\]
where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, and \(I_{n}=\operatorname{eye}(n)\).

\section*{Ports}

Input
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
\(\mathbf{B}(\mathbf{i}, \mathbf{:})\) - Rows of real matrix \(B\) vector

Rows of real matrix \(B\), specified as a vector. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.

Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(\mathrm{A}(\mathrm{i},:)\) and \(\mathrm{B}(\mathrm{i},:)\) input ports are valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values at the \(A(i,:)\) and \(B(i,:)\) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}
\(\mathbf{X ( i , : )}\) - Rows of matrix \(X\)
scalar | vector
Rows of the matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port \(\mathrm{X}(\mathrm{i},:\) ) is valid. When this value is 1 (true), the block has successfully computed a row of \(X\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in matrix \(A\)
4 (default) | positive integer-valued scalar

Number of rows in matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

```

Number of columns in matrix \(\mathbf{A}\) and rows in matrix \(\mathbf{B}-\) Number of columns in matrix \(A\) and rows in matrix \(B\)
4 (default) | positive integer-valued scalar
Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix B - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar
Number of columns in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt(1,18,14) (default)| double|single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt ( \(1,18,14\) ), double, single, fixdt ( \(1,16,0\) ), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink. NumericType.

\footnotetext{
Programmatic Use
Block Parameter: OutputType
Type: character vector
}

Values: 'fixdt(1,18,14)' |'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1, 18, 14)'

\section*{Tips}

Use fixed.getQlessQRMatrixSolveModel (A, B) to generate a template model containing a Real Burst Matrix Solve Using Q-less QR Decomposition block for real-valued input matrices A and B.

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Matrix Solve Using QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(X\) matrix row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, X 1 r 3 is the third row of the first \(X\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row within one matrix.
- Last row validIn to valid0ut - From the last row input to the block starting to output the solution.
- Last row validIn to new matrix ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The Burst Matrix Solve Using Q-less QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(X\) matrix row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, X 1 r 3 is the third row of the first \(X\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row within one matrix.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- Last row validIn to new matrix ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Matrix Solve Using \(Q R\) Decomposition and Burst Matrix Solve Using Q-less QR Decomposition blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & Last Row validIn to validOut (cycles) & Last row validIn to new matrix ready (cycles) \\
\hline Real Burst Matrix Solve Using QR Decomposition & Synchronous & \((w l+5) * n+2\) & \((w l+5)^{*} n+3.5^{*} n^{2}\) \(+n^{*}(\) nextPow2(wl) \(+w l+8.5)+3\) & \[
\begin{aligned}
& (w l+5)^{*} n+3.5 *(n \\
& -1)^{2}+(n-1) \\
& (\text { nextPow2(wl) }+ \\
& w l+8.5)+3
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using QR Decomposition & Synchronous & \(\left(w{ }^{*} 2+11\right) * n+2\) & \[
\begin{aligned}
& \left(w l^{*} 2+11\right) * n+ \\
& 3.5^{*} n^{2}+ \\
& n^{*}(\text { nextPow2 } 2(w l)+ \\
& w l+8.5)+3
\end{aligned}
\] & \[
\begin{aligned}
& \left(w w^{*}+11\right)^{*} n+ \\
& 3.5^{*}(n-1)^{2}+(n-1) \\
& (\text { nextPow2(wl) }+ \\
& w l+8.5)+3
\end{aligned}
\] \\
\hline Real Burst Matrix Solve Using Q-less QR Decomposition & Synchronous & \((w l+5) * n+2\) & \[
\begin{aligned}
& 7 *_{n}^{2}+27 *_{n}+6+ \\
& 3 *_{n}{ }^{*} w l+ \\
& 2 *_{n}{ }^{*} \text { nextPow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 77^{*} n^{2}+27 * n+6+ \\
& 3 * n^{*} w l+ \\
& 2{ }^{*} n^{*} \operatorname{nextPow} 2(w l) \\
& +\min (m, n)
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using Q-less QR Decomposition & Synchronous & \(\left(w l^{*} 2+11\right) * n+2\) & \[
\begin{aligned}
& 7 * 2^{2}+33^{*} n+6+ \\
& 4{ }^{*} n^{*} \text { wl + } \\
& 2 *_{n}{ }^{*} \text { nextPow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 77^{*} n^{2}+33^{*} n+6+ \\
& 4 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextPow2 }(w l) \\
& +\min (m, n)
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53.
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v. 2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(m=16\)
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16 -by-16
- Matrix \(B\) dimension: 16 -by- 1
- Input data type: sfix16_En14
- Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 13653 & 425280 & 3.21 \\
\hline CLB Registers & 15739 & 850560 & 1.85 \\
\hline DSPs & 4 & 4272 & 0.09 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.468 ns \\
\hline Slack & 0.427 ns \\
\hline Clock Frequency & 279.88 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2020a}

\section*{R2022a: Support for Tikhonov regularization parameter}

The Real Burst Matrix Solve Using Q-less QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Burst Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Real PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\title{
Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
}

Compute the value of \(X\) in the equation \(A^{\prime} A X=B\) for real-valued matrices with infinite number of rows using asynchronous Q -less QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block solves the system of linear equations \(A^{\prime} A X=B\) using asynchronous Q -less QR decomposition, where \(A\) and \(B\) are real-valued matrices. \(A\) is an infinitely tall matrix representing streaming data.

When "Regularization parameter" on page 2-0 is nonzero, the Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block solves the matrix equation
\[
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
\]
where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, and \(I_{n}=\) eye \((n)\).
This block operates asynchronously. The forward- and backward-substitution and Q-less QR decomposition run independently using the latest \(R\) and \(B\) matrices.

\section*{Ports}

\section*{Input}
\(\mathbf{A}(\mathbf{i},:)\) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an infinitely tall matrix of streaming data. If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
B - Rows of real matrix \(B\)
vector
Rows of real matrix \(B\), specified as a vector. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validInA - Whether A(i, : ) input is valid
Boolean scalar
Whether \(\mathrm{A}(\mathrm{i},:\) ) input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the readyA value is 1 (true), the block captures the values at the \(A(i,:)\) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
validInB - Whether \(B\) input is valid
Boolean scalar
Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(B\) input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the block captures the values at the B input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}
\(\mathbf{X}\) - Rows of matrix \(X\)
scalar | vector
Rows of the matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(X\) is valid. When this value is 1 (true), the block has successfully computed the matrix \(X\). When this value is 0 (false), the output data is not valid.

Data Types: Boolean
```

readyA - Whether block is ready for input A(i, :)
Boolean scalar

```

Whether block is ready for input \(\mathrm{A}(\mathrm{i},:\) ), returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInA is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
ready \(B\) - Whether block is ready for input \(B\)
Boolean scalar
Whether block is ready for input B, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInB is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean

\section*{Parameters}

Number of columns in matrix A and rows in matrix B - Number of columns in matrix \(A\) and rows in matrix \(B\)
```

4 (default) | positive integer-valued scalar

```

Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix B - Number of columns in matrix B
1 (default) | positive integer-valued scalar

```

Number of columns in matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

```
Forgetting factor - Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar. The output is updated as each row of \(A\) is input indefinitely.

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: real positive scalar
Default: 0
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt (1,18,14) (default) | double|single|fixdt (1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt \((1,18,14)\), double, single, fixdt \((1,16,0)\), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,14)'

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix A row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- \(n^{\text {th }}\) row validIn to validOut - From the \(n^{\text {th }}\) row input to the block starting to output the first solution.
- This block is always ready to accept \(B\) matrices, so ready \(B\) is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix \(A\) row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to valid0ut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to valid0ut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using \(Q\)-less \(Q R\) Decomposition with Forgetting Factor and Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & validOut to validOut (cycles) & \(\boldsymbol{n}^{\text {th }}\) Row validIn to validOut (cycles) \\
\hline Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \((w l+5) * n+2+n\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2^{*} n^{*} w l+ \\
& 2^{*} n^{*} \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+5) * n+n
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \[
\begin{aligned}
& (w l * 2+11) * n+2 \\
& +n
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l \\
& 2{ }^{*} n^{*} \text { nextpow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow } 2(w l) \\
& +\left(w l^{*} 2+11\right) * n+ \\
& n
\end{aligned}
\] \\
\hline Real PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \(w l+7\) & \[
\begin{aligned}
& 4{ }^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2{ }^{*} n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 * n^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+6)^{*} n+2
\end{aligned}
\] \\
\hline Complex PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \(w l+9\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l) \\
& +(w l+7.5) * 2 * n+ \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: inf-by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 16148 & 425280 & 3.80 \\
\hline CLB Registers & 21484 & 850560 & 2.53 \\
\hline DSPs & 20 & 4272 & 0.47 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.084 ns \\
\hline Slack & 0.23 ns \\
\hline Clock Frequency & 322.23 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2022b

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\text {rM }}\).

\section*{See Also}

\section*{Blocks}

Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Real Burst Q-less QR Decomposition}

Q-less QR decomposition for real-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Real Burst Q-less QR Decomposition block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the \(Q R\) decomposition \(A=Q R\), where \(A\) is a real-valued matrix, without computing \(Q\). The solution to \(A^{\prime} A x=B\) is \(x=R \backslash R^{\prime} \mid b\).

When "Regularization parameter" on page 2-0 is nonzero, the Real Burst Q-less QR Decomposition block computes the upper-triangular factor \(R\) of the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) where \(\lambda\) is the regularization parameter.

\section*{Ports}

\section*{Input}
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(A\) is a fixed-point data type, \(A\) must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validIn - Whether inputs are valid Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean
Output
\(\mathbf{R}(\mathbf{i},:\) : - Rows of upper-triangular matrix \(R\)
scalar | vector
Rows of the economy size QR decomposition matrix \(R\), returned as a scalar or vector. \(R\) is an upper triangular matrix. The size of the matrix \(R\) is \(\min (m, n)\)-by- \(n\). The output at \(R(i,:)\) has the same data type as the input at \(\mathrm{A}(\mathrm{i},:)\).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(\mathrm{R}(\mathrm{i},:\) ) is valid. When this value is 1 (true), the block has successfully computed the matrix \(R\). When this value is 0 ( false ), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of rows in input matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

```

Number of columns in matrix A - Number of columns in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.

\author{
Programmatic Use \\ Block Parameter: n \\ Type: character vector \\ Values: positive integer-valued scalar \\ Default: 4
}

Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

\section*{Tips}

Use fixed.getQlessQRDecompositionModel(A) to generate a template model containing a Real Burst Q-less QR Decomposition block for real-valued input matrix A.

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(R\) and \(C\) matrices row by row continuously. The matrices are output from the last row to the first row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1r3 is the third row of the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The Burst Q-less QR Decomposition blocks accept and process the matrix A row by row. After accepting \(m\) rows, the block outputs the matrix \(R\) row by row continuously. The matrix is output from the last row to the first row.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1r3 is the third row of the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst QR Decomposition blocks.
\begin{tabular}{|l|l|l|l|}
\hline Block & \begin{tabular}{l} 
validIn to ready \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
Last Row validIn to \\
validOut (cycles)
\end{tabular} & \begin{tabular}{l} 
validOut to ready \\
(cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Burst QR \\
Decomposition
\end{tabular} & \((w l+5) * \min (m, n)+2\) & \((w l+5) * \min (m, n)+2\) & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Complex Burst QR \\
Decomposition
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Real Burst Q-less QR \\
Decomposition
\end{tabular} & \((w l+5) * \min (m, n)+2\) & \((w l+5) * \min (m, n)+2\) & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Complex Burst Q-less \\
QR Decomposition
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
2
\end{tabular} & \(\min (m, n)+1\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix
\(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v. 2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(m=16\)
- \(\mathrm{n}=16\)
- Matrix A dimension: 16-by-16
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 8006 & 425280 & 1.88 \\
\hline CLB Registers & 8286 & 850560 & 0.97 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 2.89 ns \\
\hline Slack & 0.338 ns \\
\hline Clock Frequency & 333.85 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2020a}

\section*{R2022a: Support for Tikhonov regularization parameter}

The Real Burst Q-less QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Burst QR Decomposition | Complex Burst Q-less QR Decomposition \| Real Partial-Systolic QR Decomposition

\section*{Functions}
fixed.qlessQR

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Real Burst Matrix Solve Using QR Decomposition}

Compute the value of \(x\) in the equation \(A x=B\) for real-valued matrices using \(Q R\) decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Real Burst Matrix Solve Using QR Decomposition block solves the system of linear equations \(A x\) \(=B\) using QR decomposition, where \(A\) and \(B\) are real-valued matrices. To compute \(x=A^{-1}\), set \(B\) to be the identity matrix.

When "Regularization parameter" on page 2-0 is nonzero, the Real Burst Matrix Solve Using QR Decomposition block computes the matrix solution of real-valued \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right] X=\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, \(p\) is the number of columns in \(B, I_{n}=\) eye ( \(n\) ), and \(0_{n, p}=\operatorname{zeros}(n, p)\).

\section*{Ports}

\section*{Input}
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double | fixed point
\(\mathbf{B}(\mathbf{i},:\) ) - Rows of real matrix \(B\) vector

Rows of real matrix \(B\), specified as a vector. \(B\) is an \(m\)-by- \(p\) matrix where \(m \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validIn - Whether inputs are valid
Boolean scalar
Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) and \(B(i,:)\) input ports are valid. When this value is 1 (true) and the value at
ready is 1 (true), the block captures the values on the \(\mathrm{A}(\mathrm{i},:\) ) and \(\mathrm{B}(\mathrm{i},:\) ) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}
\(\mathbf{X ( i , : )}\) - Rows of matrix \(X\)
scalar | vector
Rows of the matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port \(\mathrm{X}(\mathrm{i},:\) ) is valid. When this value is 1 (true), the block has successfully computed a row of matrix \(X\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in matrices A and B - Number of rows in matrices \(A\) and \(B\)
4 (default) | positive integer-valued scalar
Number of rows in input matrices \(A\) and \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

```

Number of columns in matrix A - Number of columns in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

```

Number of columns in matrix B - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar
Number of columns in input matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | nonnegative scalar

```

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: positive integer-valued scalar
Default: 0
Output datatype - Data type of the output matrix \(X\)
fixdt (1,18,14) (default)|double| single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt (1, 18, 14), double, single, fixdt (1, 16, 0), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink. NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: ' fixdt (1, 18, 14)'

\section*{Tips}

Use fixed.getMatrixSolveModel ( \(\mathrm{A}, \mathrm{B}\) ) to generate a template model containing a Real Burst Matrix Solve Using QR Decomposition block for real-valued input matrices A and B.

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Matrix Solve Using QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(X\) matrix row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, X 1 r 3 is the third row of the first \(X\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row within one matrix.
- Last row validIn to valid0ut - From the last row input to the block starting to output the solution.
- Last row validIn to new matrix ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The Burst Matrix Solve Using Q-less QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(X\) matrix row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, X 1 r 3 is the third row of the first \(X\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row within one matrix.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- Last row validIn to new matrix ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition and Burst Matrix Solve Using Q-less QR Decomposition blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & Last Row validIn to validOut (cycles) & Last row validIn to new matrix ready (cycles) \\
\hline Real Burst Matrix Solve Using QR Decomposition & Synchronous & \((w l+5) * n+2\) & \[
\begin{aligned}
& (w l+5)^{*} n+3.5 * n^{2} \\
& +n^{*}(\text { nextPow2 }(w l) \\
& +w l+8.5)+3
\end{aligned}
\] & \[
\begin{aligned}
& (w l+5)^{*} n+3.5^{*}(n \\
& -1)^{2}+(n-1) \\
& (n e x t P o w 2(w l)+ \\
& w l+8.5)+3
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using QR Decomposition & Synchronous & \((w l * 2+11) * n+2\) & \[
\begin{aligned}
& \left(w l^{*} 2+11\right)^{*} n+ \\
& 3.5^{*} n^{2}+ \\
& n^{*}(\text { nextPow2 }(w l)+ \\
& w l+8.5)+3
\end{aligned}
\] & \[
\begin{aligned}
& \left(w l^{*} 2+11\right)^{*} n+ \\
& 3.5^{*}(n-1)^{2}+(n-1) \\
& (\text { nextPow2(wl) }) \\
& w l+8.5)+3
\end{aligned}
\] \\
\hline Real Burst Matrix Solve Using Q-less QR Decomposition & Synchronous & \((w l+5) * n+2\) & \[
\begin{aligned}
& 7 *^{2} n^{2}+27 *_{n}+6+ \\
& 3 *_{n}{ }^{*} w l+ \\
& 2 *_{n}{ }^{*} \text { nextPow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 77^{*} n^{2}+27 * n+6+ \\
& 3 * n^{*} w l+ \\
& 2^{*} n^{*} \text { nextPow } 2(w l) \\
& +\min (m, n)
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using Q-less QR Decomposition & Synchronous & \(\left(w{ }^{*} 2+11\right) * n+2\) & \[
\begin{aligned}
& 7 * 2^{2}+33^{*} n+6+ \\
& 4{ }^{*} n^{*} w l+ \\
& 2 * n * \text { nextPow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 77^{*} n^{2}+33^{*} n+6+ \\
& 4 n^{*} n^{*} w l+ \\
& 2 * n^{*} \operatorname{nextPow} 2(w l) \\
& +\min (m, n)
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16 -by-16
- Matrix \(B\) dimension: 16 -by- 1
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 9629 & 425280 & 2.26 \\
\hline CLB Registers & 10005 & 850560 & 1.18 \\
\hline DSPs & 2 & 4272 & 0.05 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 2.893 ns \\
\hline Slack & 0.421 ns \\
\hline Clock Frequency & 343.37 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2019b}

\section*{R2022a: Support for Tikhonov regularization parameter}

The Real Burst Matrix Solve Using QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0 .

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Burst Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using Q-less QR Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition

\section*{Functions}
fixed.qrAB

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\title{
Real Burst Q-less QR Decomposition Whole R Output
}

Q-less QR decomposition for real-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Real Burst Q-less QR Decomposition Whole R Output block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the QR decomposition \(A=Q R\), where \(A\) is a real-valued matrix, without computing \(Q\). The solution to \(A^{\prime} A x=B\) is \(x=R \backslash R^{\prime} \backslash b\).

When "Regularization parameter" on page 2-0 is nonzero, the Real Burst Q-less QR Decomposition Whole R Output block computes the upper-triangular factor \(R\) of the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) where \(\lambda\) is the regularization parameter.

\section*{Ports}

Input
A(i,:) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(A\) is a fixed-point data type, \(A\) must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar
Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean

\section*{restart - Whether to clear internal states \\ Boolean scalar}

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}
\(\mathbf{R}\) - Economy size QR decomposition matrix \(R\)
vector
Economy size QR decomposition matrix \(R\), returned as a vector. \(R\) is an upper triangular matrix. The size of matrix \(R\) is min( \(\mathrm{m}, \mathrm{n}\) )-by-n. \(R\) has the same data type as \(A\).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(R(i,:)\) is valid. When this value is 1 (true), the block has successfully computed the matrix \(R\). When this value is 0 (false), the output data is not valid.

Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of rows in input matrix \(A\), specified as a positive integer-valued scalar.

\footnotetext{
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix \(\mathbf{A}\) - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
}

Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar

```

Regularization parameter, specified as a real nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & \(C\) & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Q-less QR Decomposition Whole R Output blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(R\) matrix as a single vector.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst \(Q\)-less \(Q R\) Decomposition Whole \(R\) Output blocks.
\begin{tabular}{|l|l|l|l|}
\hline Block & \begin{tabular}{l} 
validIn to ready \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
Last Row validIn to \\
validOut (cycles)
\end{tabular} & \begin{tabular}{l} 
validOut to ready \\
(cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Burst Q-less QR \\
Decomposition Whole R \\
Output
\end{tabular} & \((w l+5)^{*} \min (m, n)+2\) & \begin{tabular}{l}
\((w l+5)^{*} \min (m, n)+2+\) \\
\(\min (m, n)-1\)
\end{tabular} & 2 \\
\begin{tabular}{l} 
Complex Burst Q-less \\
QR Decomposition \\
Whole R Output
\end{tabular} & \((w l * 2+11)^{*} \min (m, n)+\) & \begin{tabular}{l}
\((w l * 2+11) * \min (m, n)+\) \\
\(2+\min (m, n)-1\)
\end{tabular} & 2 \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then wl is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- Matrix A dimension: 16 -by- 16
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 7916 & 425280 & 1.86 \\
\hline CLB Registers & 8273 & 850560 & 0.97 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 2.762 ns \\
\hline Slack & 0.466 ns \\
\hline Clock Frequency & 348.76 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2022b}

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }_{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\text {TM }}\).

\section*{See Also}

Complex Burst Q-less QR Decomposition Whole R Output | Real Burst Q-less QR Decomposition | Real Burst QR Decomposition

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\title{
Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output
}

Q-less QR decomposition for real-valued matrices with infinite number of rows


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the QR decomposition, \(A=\) \(Q R\), without computing \(Q\). \(A\) is an infinitely tall real-valued matrix representing streaming data.

When the regularization parameter is nonzero, the Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output block initializes the first upper-triangular factor \(R\) to \(\lambda I_{n}\) before factoring in the rows of \(A\), where \(\lambda\) is the regularization parameter and \(I_{n}=\operatorname{eye}(n)\)

\section*{Ports}

Input
A(i,:) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an infinitely tall matrix of streaming data. If \(A\) uses a fixed-point data type, \(A\) must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar
Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}

R - Economy size QR decomposition matrix \(R\)
vector
Economy size QR decomposition matrix \(R\), returned as a vector. \(R\) is an upper triangular matrix. The size of matrix \(R\) is \(n\)-by-n. \(R\) has the same data type as \(A\).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(R(i,:)\) is valid. When this value is 1 (true), the block has successfully computed the matrix \(R\). When this value is 0 (false), the output data is not valid.

Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean

\section*{Parameters}

Number of columns in matrix A - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Forgetting factor - Forgetting factor applied after each row of the matrix is factored 0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar. The output is updated as each row of \(A\) is input indefinitely.

\author{
Programmatic Use \\ Block Parameter: forgetting_factor \\ Type: character vector \\ Values: real positive scalar \\ Default: 0 \\ \section*{Regularization parameter - Regularization parameter \\ \\ 0 (default) | real nonnegative scalar}
}

Regularization parameter, specified as a real nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Q-less QR Decomposition with Forgetting Factor Whole \(R\) Output blocks accept and process the matrix \(A\) row by row. After accepting the first \(m\) rows, the block starts to output the \(R\) matrix as a vector. Then, for each row input, the block calculates an \(R\) matrix.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- validIn to validOut - From a successful row input to the block starting to output the corresponding solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Q-less QR Decomposition with Forgetting Factor Whole R Output blocks.
\begin{tabular}{|l|l|l|l|}
\hline Block & \begin{tabular}{l} 
validIn to ready \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
validIn to valid0ut \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
validOut to ready \\
(cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Burst Q-less QR \\
Decomposition with \\
Forgetting Factor Whole \\
R Output
\end{tabular} & \((w l+5)^{*} n+2+n\) & \((w l+5)^{*} n+2+n-1\) & 1 \\
\hline \begin{tabular}{l} 
Complex Burst Q-less \\
QR Decomposition with \\
Forgetting Factor Whole \\
R Output
\end{tabular} & \((w l * 2+11)^{*} n+2+n\) & \((w l * 2+11)^{* n} n+2+n-\) & 1 \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=16\)
- Matrix A dimension: inf-by-16
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 8015 & 425280 & 1.88 \\
\hline CLB Registers & 8289 & 850560 & 0.97 \\
\hline DSPs & 16 & 4272 & 0.37 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 2.872 ns \\
\hline Slack & 0.441 ns \\
\hline Clock Frequency & 345.74 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2022b

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \(\circledR_{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\mathrm{TM}}\).

\section*{See Also}

Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output | Real Burst Q-less QR Decomposition Whole R Output

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Real Burst QR Decomposition}

QR decomposition for real-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Real Burst QR Decomposition block uses QR decomposition to compute \(R\) and \(C=Q^{\prime} B\), where \(Q R\) \(=A\), and \(A\) and \(B\) are real-valued matrices. The least-squares solution to \(A x=B\) is \(x=R \backslash C . R\) is an upper triangular matrix and \(Q\) is an orthogonal matrix. To compute \(C=Q^{\prime}\), set \(B\) to be the identity matrix.

When "Regularization parameter" on page 2-0 is nonzero, the Real Burst QR Decomposition block transforms \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) in-place to \(R=Q^{\prime}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) and \(\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) in-place to \(C=Q^{\prime}\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) where \(\lambda\) is the regularization parameter, QR is the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right], A\) is an \(m\)-by- \(n\) matrix, \(p\) is the number of columns in \(B, I_{n}=\operatorname{eye}(n)\), and \(0_{n, p}=\operatorname{zeros}(n, p)\).

\section*{Ports}

\section*{Input}
\(\mathbf{A ( i , : )}\) - Rows of matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single |double | fixed point
\(\mathbf{B ( i ,}\), ) - Rows of matrix \(B\)
vector
Rows of real matrix \(B\), specified as a vector. \(B\) is an \(m\)-by- \(p\) matrix where \(m \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.
```

Data Types: single|double|fixed point

```
validIn - Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) and \(B(i,:)\) input ports are valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values on the \(\mathrm{A}(\mathrm{i},:\) ) and \(\mathrm{B}(\mathrm{i},:)\) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}
\(\mathbf{R}(\mathbf{i}, \mathbf{:})\) - Rows of matrix \(R\)
scalar | vector
Rows of the economy size QR decomposition matrix \(R\), returned as a scalar or vector. \(R\) is an upper triangular matrix. The size of the matrix \(R\) is \(\min (m, n)\)-by- \(n\). \(R\) has the same data type as \(A\).
Data Types: single|double|fixed point
\(\mathbf{C}(\mathbf{i},:\) : \()\) Rows of matrix \(C=Q^{\prime} B\)
scalar | vector
Rows of the economy size \(Q R\) decomposition matrix \(C=Q^{\prime} B\), returned as a scalar or vector. \(C\) has the same number of rows as \(R\). \(C\) has the same data type as \(B\).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether output data is valid, returned as a Boolean scalar. This control signal indicates when the data at output ports \(R(i,:)\) and \(C(i,:)\) is valid. When this value is 1 (true), the block has successfully computed the \(R\) and \(C\) matrices. When this value is 0 (false), the output data is not valid.

Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether block is ready, returned as a Boolean scalar. This control signal that indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in matrices \(\mathbf{A}\) and \(\mathbf{B}\) - Number of rows in matrices \(A\) and \(B\)
4 (default) | positive integer-valued scalar
Number of rows in input matrices \(A\) and \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: }
Number of columns in matrix A - Number of columns in matrix A
4 (default) | positive integer-valued scalar

```

Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

```

Number of columns in matrix B - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar
Number of columns in input matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: }

```
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Tips}

Use fixed.getQRDecompositionModel(A, B) to generate a template model containing a Real Burst QR Decomposition block for real-valued input matrices A and B.

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row synchronously. After accepting \(m\) rows, the block outputs the \(R\) and \(C\) matrices row by row continuously. The matrices are output from the last row to the first row.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1r3 is the third row of the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- validOut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The Burst Q-less QR Decomposition blocks accept and process the matrix \(A\) row by row. After accepting \(m\) rows, the block outputs the matrix \(R\) row by row continuously. The matrix is output from the last row to the first row.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1r3 is the third row of the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.
- valid0ut to ready - From the block starting to output the solution to the block ready to accept the next matrix input.

The following table provides details of the timing for the Burst QR Decomposition blocks.
\begin{tabular}{|l|l|l|l|}
\hline Block & \begin{tabular}{l} 
validIn to ready \\
(cycles)
\end{tabular} & \begin{tabular}{l} 
Last Row validIn to \\
validOut (cycles)
\end{tabular} & \begin{tabular}{l} 
validOut to ready \\
(cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Burst QR \\
Decomposition
\end{tabular} & \((w l+5)^{*} \min (m, n)+2\) & \((w l+5)^{*} \min (m, n)+2\) & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Complex Burst QR \\
Decomposition
\end{tabular} & \begin{tabular}{l}
\((w l * 2+11)^{*} \min (m, n)+\) \\
2
\end{tabular} & \begin{tabular}{l}
\(\left(w l^{*} 2+11\right)^{*} \min (m, n)+\) \\
2
\end{tabular} & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Real Burst Q-less QR \\
Decomposition
\end{tabular} & \((w l+5)^{*} \min (m, n)+2\) & \((w l+5)^{*} \min (m, n)+2\) & \(\min (m, n)+1\) \\
\hline \begin{tabular}{l} 
Complex Burst Q-less \\
QR Decomposition
\end{tabular} & \begin{tabular}{l}
\(\left(w l^{*} 2+11\right)^{*} \min (m, n)+\) \\
2
\end{tabular} & \begin{tabular}{l}
\(\left(w l^{*} 2+11\right)^{*} \min (m, n)+\) \\
2
\end{tabular} & \(\min (m, n)+1\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53.
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v. 2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(m=16\)
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix A dimension: 16-by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 8646 & 425280 & 2.03 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB Registers & 8797 & 850560 & 1.03 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.104 ns \\
\hline Slack & 0.211 ns \\
\hline Clock Frequency & 320.27 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2019b}

\section*{R2022a: Support for Tikhonov regularization parameter}

The Real Burst QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0 .

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}
\(\mathbf{C} / \mathbf{C + +}\) Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

HDL Architecture
This block has one default HDL architecture.

HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Burst QR Decomposition | Real Burst Q-less QR Decomposition | Real Partial-Systolic QR Decomposition

\section*{Functions}
fixed.qrAB

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Real Divide HDL Optimized}

Divide one real input by another and generate optimized HDL code


\section*{Libraries:}

Fixed-Point Designer HDL Support / Math Operations

\section*{Description}

The Real Divide HDL Optimized block outputs the result of dividing the real scalar num by the real scalar den, such that \(y=n u m / d e n\).

\section*{Limitations}

Data type override is not supported for the Real Divide HDL Optimized block.

\section*{Ports}

\section*{Input}
num - Numerator
real scalar
Numerator, specified as a real scalar.
Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
den - Denominator
real scalar
Denominator, specified as a real scalar.
Slope-bias representation is not supported for fixed-point data types.
```

Data Types: single|double|fixed point

```
validIn - Whether input is valid
Boolean scalar
Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from the num and den input ports are valid. When this value is 1 (true), the block captures the values at the input ports num and den. When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

\section*{Output}
\(\mathbf{y}\) - Output computed by dividing inputs

\section*{real scalar}

Output computed by dividing num by den, such that \(y=\) num/den, returned as a real scalar with the data type specified by the Output datatype parameter.

Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is 1 (true), the block has successfully computed the output at port y . When this value is 0 (false), the output data is not valid.

\section*{Data Types: Boolean}

\section*{Parameters}

Output datatype - Data type of the output fixdt(1,18,10) (default)| single|fixdt(1,16,0)|<data type expression>

Data type of the output \(y\), specified as fixdt \((1,18,10)\), single, fixdt \((1,16,0)\), or as a userspecified data type expression. The type can be specified directly or expressed as a data type object, such as Simulink.NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,10)'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,10)'

\section*{Tips}

The blocks Divide by Constant HDL Optimized, Real Divide HDL Optimized, and Complex Divide HDL Optimized all perform the division operation and generate optimized HDL code.
- Real Divide HDL Optimized and Complex Divide HDL Optimized are based on a CORIDC algorithm. These blocks accept a wide variety of inputs, but will result in greater latency.
- Divide by Constant HDL Optimized accepts only real inputs and a constant divisor. Use of this block consumes DSP slices, but will complete the division operation in fewer cycles and at a higher clock rate.

\section*{Algorithms}

\section*{CORDIC}

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers.

\section*{Fully Pipelined Fixed-Point Computations}

The Real Divide HDL Optimized block supports HDL code generation for fixed-point data with binarypoint scaling. It is designed with this application in mind, and employs hardware specific semantics and optimizations. One of these optimizations is pipelining its entire internal circuitry to maintain a very high throughput.

When deploying intricate algorithms to FPGA or ASIC devices, there is often a trade-off between resource usage and total throughput for a given computation. Resource-sharing often reduces the resources consumed by a design, but also reduces the throughput in the process. Simple arithmetic and trigonometric computations, which typically form parts of bigger computations, require high throughput to drive circuits further in the design. Thus, fully pipelined implementations consume more on-chip resources but are beneficial in large designs.

All of the key computational units in the Real Divide HDL Optimized block are fully pipelined internally. This includes not only the CORDIC circuitry used to perform the Givens rotations, but also the adders and shifters used elsewhere in the design, thus ensuring maximum throughput.

\section*{How to Interface with the Real Divide HDL Optimized Block}

Because of its fully pipelined nature, the Real Divide HDL Optimized block is able to accept input data on any cycle, including consecutive cycles. To send input data to the block, the validIn signal must be true. When the block has finished the computation and is ready to send the output, it will change validOut to true for one clock cycle. For inputs sent on consecutive cycles, validOut will also be set to true on consecutive cycles. Both the numerator and the denominator must be sent together on the same cycle.


The latency depends on the input data type, as summarized in the table. The word length of the inputs num and den can differ. In the table, u represents the input with the larger word length.
\begin{tabular}{|l|l|}
\hline Input Type & Latency \\
\hline fi & \begin{tabular}{l}
\(1+(\) nextpow2 \((u\). WordLength \(+1-\) \\
issigned \((\mathrm{u}))+11)+2+u\). WordLength + \\
\(2-\) issigned \((u)+5\)
\end{tabular} \\
\hline Scaled double & \begin{tabular}{l}
\(1+2+\) u.WordLength \(+2-\) issigned(u) \\
+5
\end{tabular} \\
\hline Floating point & 8 \\
\hline
\end{tabular}

\section*{Division by Zero Behavior}

For fixed-point inputs num and den, the Real Divide HDL Optimized block saturates on overflow for division by zero. The behavior for fixed-point division by zero is summarized in the table below.
\begin{tabular}{|l|l|}
\hline Wrap Overflow & Saturate Overflow \\
\hline \(0 / 0=0\) & \(0 / 0=0\) \\
\hline \(1 / 0=0\) & \(1 / 0=\) upper bound \\
\hline\(-1 / 0=0\) & \(-1 / 0=\) lower bound \\
\hline
\end{tabular}

For floating-point inputs, the Real Divide HDL Optimized block follows IEEE Standard 754.

\section*{Version History}

Introduced in R2021a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{T \mathrm{TM}}\).

\section*{Restrictions}

Supports binary-point scaled fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Divide HDL Optimized | Real Reciprocal HDL Optimized | Normalized Reciprocal HDL Optimized

\section*{Functions}
fixed.cordicReciprocal|fixed.cordicDivide

\title{
Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
}

Compute value of \(X\) in the equation \(A^{\prime} A X=B\) for real-valued matrices using Q -less QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the system of linear equations \(A^{\prime} A X=B\) using Q -less QR decomposition, where \(A\) and \(B\) are real-valued matrices.

When "Regularization parameter" on page 2-0 is nonzero, the Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the matrix equation
\[
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
\]
where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, and \(I_{n}=\operatorname{eye}(n)\).

\section*{Ports}

\section*{Input}

A(i,:) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.

Data Types: single|double|fixed point
B - Matrix B
vector | matrix
Real matrix \(B\), specified as a vector or matrix. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
validInA - Whether A input is valid
Boolean scalar

Whether \(\mathrm{A}(\mathrm{i}, \quad:\) ) input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the readyA value is 1 (true), the block captures the values at the \(A(i,:)\) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.

\section*{Data Types: Boolean}
validInB - Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(B\) input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the block captures the values at the B input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validInA and validInB values are 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}

X - Matrix \(X\)
vector | matrix
Matrix \(X\), returned as a vector or matrix.

\section*{Data Types: single|double|fixed point}
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port \(X\) is valid. When this value is 1 (true), the block has successfully computed a row of \(X\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean
readyA - Whether block is ready for input \(A\)
Boolean scalar
Whether the block is ready for input A(i, : ), returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInA
value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.
Data Types: Boolean
ready \(\mathbf{B}\) - Whether block is ready for input \(B\)
Boolean scalar
Whether the block is ready for input \(B\), returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInB value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in matrix A - Number of rows in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of rows in matrix \(A\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix \(\mathbf{A}\) and rows in matrix \(\mathbf{B}-\) Number of columns in matrix \(A\) and rows in matrix \(B\)
4 (default) | positive integer-valued scalar
Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix \(\mathbf{B}\) - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar
Number of columns in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use Block Parameter: \(p\)}

Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt(1,18,14) (default)| double|single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt ( \(1,18,14\) ) , double, single, fixdt \((1,16,0)\), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink. NumericType.
Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: ' fixdt (1, 18, 14)'

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Synchronous vs Asynchronous Implementation}

The Matrix Solve Using \(Q R\) Decomposition blocks operate synchronously. These blocks first decompose the input \(A\) and \(B\) matrices into \(R\) and \(C\) matrices using a QR decomposition block. Then, a back substitute block computes \(R X=C\). The input \(A\) and \(B\) matrices propagate through the system in parallel, in a synchronized way.


The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR decomposition is performed on the input \(A\) matrix and the resulting \(R\) matrix is put into a buffer. Then, a forward backward substitution block uses the input \(B\) matrix and the buffered \(R\) matrix to compute \(R^{\prime} R X=B\). Because the \(R\) and \(B\) matrices are stored separately in buffers, the upstream Qless QR decomposition block and the downstream Forward Backward Substitute block can run independently. The Forward Backward Substitute block starts processing when the first \(R\) and \(B\) matrices are available. Then it runs continuously using the latest buffered \(R\) and \(B\) matrices, regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block stops providing \(A\) and \(B\) matrices, the Forward Backward Substitute block continues to generate the same output using the last pair of \(R\) and \(B\) matrices.


The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both synchronous and asynchronous operation variants, as denoted by the block name.

\section*{Block Timing}

The Burst Asynchronous Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-byrow and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) matrix is 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, Alr 2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to validOut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so ready \(B\) is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to validOut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition and Burst Matrix Solve Using Q-less QR Decomposition blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & validOut to validOut (cycles) & Last Row validIn to validOut (cycles) \\
\hline \begin{tabular}{l}
Real Burst \\
Asynchronous \\
Matrix Solve Using \\
Q-less QR \\
Decomposition
\end{tabular} & Asynchronous & \[
\begin{aligned}
& (w l+5) * n+2+(n \\
& +1)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} \text { wl + } \\
& 2{ }^{*} n n^{*} \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n \text { nextpow2(wl) } \\
& +(w l+5)^{*} n+n
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Complex Burst \\
Asynchronous \\
Matrix Solve Using \\
Q-less QR \\
Decomposition
\end{tabular} & Asynchronous & \[
\begin{aligned}
& \left(w l^{*} 2+11\right) * n+2 \\
& +(n+1)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2^{*} n^{*} w l+ \\
& 2^{*} n^{*} \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +\left(w l^{*} 2+11\right) * n+ \\
& n
\end{aligned}
\] \\
\hline Real PartialSystolic Matrix Solve Using Q-less QR Decomposition & Asynchronous & \(w l+7\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2^{*} n^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+6)^{*} n+2
\end{aligned}
\] \\
\hline Complex PartialSystolic Matrix Solve Using Q-less QR Decomposition & Asynchronous & \(w l+9\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l \\
& 2 * n^{*} \text { nextpow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2^{*} n^{*} w l+ \\
& 2^{*} n n^{*} \text { nextpow2 }(w l) \\
& +(w l+7.5)^{*} 2 * n+ \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then wl is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The following tables show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v. 2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(m=16\)
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16 -by-16
- Matrix \(B\) dimension: 16 -by- 1
- Input data type: sfix16_En14
- Target frequency: 250 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 104968 & 425280 & 24.68 \\
\hline CLB Registers & 90547 & 850560 & 10.65 \\
\hline DSPs & 4 & 4272 & 0.09 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.785 ns \\
\hline Slack & 0.197 ns \\
\hline Clock Frequency & 262.95 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2020b}

\section*{R2023a: Smart unrolling for improved resource utilization}

This block depends on a partial-systolic QR decomposition block. Since 23a, when you update the diagram, the loop which composes the partial-systolic pipeline in the QR decomposition block is unrolled. This updated internal architecture removes dead operations in simulation and generated code, thus requiring fewer hardware resources. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.

\section*{R2022a: Support for Tikhonov regularization parameter}

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline ConstrainedOutputPipeline & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Partial-Systolic Q-less QR Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real Burst Matrix Solve Using Q-less QR Decomposition

\section*{Functions}
fixed.qlessQRMatrixSolve

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\title{
Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
}

Compute value of \(X\) in the equation \(A^{\prime} A X=B\) for real-valued matrices with infinite number of rows using Q-less QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block solves the system of linear equations \(A^{\prime} A X=B\) using Q -less QR decomposition, where \(A\) and \(B\) are real-valued matrices. \(A\) is an infinitely tall matrix representing streaming data.

When the regularization parameter is nonzero, the Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor initializes the first upper-triangular factor \(R\) to \(\lambda I_{n}\) before factoring in the rows of \(A\), where \(\lambda\) is the regularization parameter and \(I_{n}=\operatorname{eye}(n)\).

\section*{Ports}

\section*{Input}
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an infinitely tall matrix of streaming data. If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
B - Matrix B
matrix
Real matrix \(B\), specified as a matrix. \(B\) is an \(n\)-by- \(p\) matrix where \(n \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixedpoint data types.
Data Types: single|double|fixed point
validInA - Whether A input is valid
Boolean scalar
Whether A (i, ; ) input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the readyA value is 1
(true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.

Data Types: Boolean
validInB - Whether B input is valid
Boolean scalar
Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(B\) input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the block captures the values at the B input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validInA and validInB values are both 1 (true), the block begins a new subframe.

Data Types: Boolean

\section*{Output}

X - Matrix X
vector | matrix
Matrix \(X\), returned as a vector or matrix.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port X is valid. When this value is 1 (true), the block has successfully computed a row of \(X\). When this value is 0 (false), the output data is not valid.
Data Types: Boolean
readyA - Whether block is ready for input A
Boolean scalar
Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validInA value is 1 ( true ), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To ensure all data is processed, you must wait until readyA is set to false before sending another true validInA signal.

\section*{Data Types: Boolean}
ready \(B\) - Whether block is ready for input \(B\)
Boolean scalar
Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 ( true ) and validInB value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To ensure all data is processed, you must wait until readyB is set to false before sending another true validInB signal.
Data Types: Boolean

\section*{Parameters}

Number of columns in matrix A and rows in matrix B - Number of columns in matrix \(A\) and rows in matrix \(B\)
4 (default) | positive integer-valued scalar
Number of columns in matrix \(A\) and rows in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix B - Number of columns in matrix \(B\)
1 (default) | positive integer-valued scalar
Number of columns in matrix \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Forgetting factor - Forgetting factor applied after each row of matrix is factored 0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar. The output is updated as each row of \(A\) is input indefinitely.

Programmatic Use
Block Parameter: forgettingFactor
Type: character vector
Values: positive integer-valued scalar

Default: 0.99
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt (1,18,14) (default)| double|single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt \((1,18,14)\), double, single, fixdt \((1,16,0)\), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink.NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,14)'

\section*{Tips}
- Use fixed. forgettingFactor to compute the forgetting factor, \(\alpha\), for an infinite number of rows with the equivalent gain of a matrix with \(m\) rows.
- Use fixed.forgettingFactorInverse to compute the number of rows, \(m\), of a matrix with equivalent gain corresponding to forgetting factor \(\alpha\)

\section*{Algorithms}

\section*{Q-less QR Decomposition with Forgetting Factor}

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block implements the following recursion to compute the upper-triangular factor \(R\) of continuously streaming \(n\)-by- 1 row vectors \(A(k,:)\) using forgetting factor \(\alpha\). It's as if matrix \(A\) is infinitely tall. The forgetting factor in the range \(0<\alpha<1\) prevents it from integrating without bound.
\[
\begin{gathered}
R_{0}=\operatorname{zeros}(n, n) \\
{\left[\sim, R_{1}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right], 0\right)} \\
R_{1}=\alpha R_{1} \\
{\left[\sim, R_{2}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{1} \\
A(2,:)
\end{array}\right], 0\right)} \\
R_{2}=\alpha R_{2} \\
\vdots \\
{\left[\sim, R_{k}\right]=\operatorname{qr}\left(\left[\left[\begin{array}{l}
R_{k}-1 \\
A(k,:)
\end{array}\right], 0\right)\right.} \\
R_{k}=\alpha R_{k} \\
\vdots
\end{gathered}
\]

\section*{Q-less QR Decomposition with Forgetting Factor and Tikhonov Regularization}

The output \(X_{k}\) after processing the \(k^{\text {th }}\) input \(A(k,:)\) is computed using the following iteration.
\[
\begin{gathered}
R_{0}=\lambda I_{n} \\
{\left[\sim, R_{1}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right], 0\right)} \\
R_{1}=\alpha R_{1} \\
X_{1}=R_{1} \backslash\left(R_{1}^{\prime} \backslash B\right) \\
{\left[\sim, R_{2}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{1} \\
A(2,:)
\end{array}\right], 0\right)} \\
R_{2}=\alpha R_{2} \\
X_{2}=R_{2} \backslash\left(R_{2}^{\prime} \backslash B\right) \\
\vdots \\
{\left[\sim, R_{k}\right]=\mathrm{qr}\left(\left[\begin{array}{l}
R_{k}-1 \\
A(k,:)
\end{array}\right], 0\right)} \\
R_{k}=\alpha R_{k} \\
X_{k}=R_{k} \backslash\left(R_{k}^{\prime} \backslash B\right)
\end{gathered}
\]

This is mathematically equivalent to computing \(A^{\prime}{ }_{k} A_{k} X=B\), where \(A_{k}\) is defined as follows, though the block never actually creates \(A_{k}\).
\[
A_{k}=\left[\right]
\]

\section*{Forward and Backward Substitution}

When an upper triangular factor is ready, then forward and backward substitution are computed with the current input \(B\) to produce output \(X\).
\[
X=R_{k} \backslash\left(R_{k}^{\prime} \backslash B\right)
\]

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix A row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously. The matrix is output from the first row to the last row.

For example, assume that the input \(A\) matrix is 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to validOut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- \(n^{\text {th }}\) row validIn to validOut - From the \(n^{\text {th }}\) row input to the block starting to output the first solution.
- This block is always ready to accept \(B\) matrices, so ready \(B\) is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix \(A\) row-by-row and matrix \(B\) as a single vector. After accepting the first valid pair of \(A\) and \(B\) matrices, the block outputs the \(X\) matrices row by row continuously.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, A1r2 is the second row of the first \(A\) matrix, and so on.
- validIn to ready - From a successful \(A\) row input to the block being ready to accept the next row.
- validOut to valid0ut - Because the Forward Backward Substitution block runs continuously, it generates output at a constant rate. This is the delay between two adjacent valid outputs.
- Last row validIn to valid0ut - From the last \(m^{\text {th }}\) row input to the block starting to output the solution.
- This block is always ready to accept \(B\) matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using \(Q\)-less \(Q R\) Decomposition with Forgetting Factor and Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & validOut to validOut (cycles) & \(\boldsymbol{n}^{\text {th }}\) Row validIn to validOut (cycles) \\
\hline Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \((w l+5) * n+2+n\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2^{*} n^{*} w l+ \\
& 2^{*} n^{*} \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+5) * n+n
\end{aligned}
\] \\
\hline Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \[
\begin{aligned}
& (w l * 2+11) * n+2 \\
& +n
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l \\
& 2{ }^{*} n^{*} \text { nextpow2(wl) }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*}{ }^{*} w l+ \\
& 2 * n^{*} \text { nextpow } 2(w l) \\
& +\left(w l^{*} 2+11\right) * n+ \\
& n
\end{aligned}
\] \\
\hline Real PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \(w l+7\) & \[
\begin{aligned}
& 4{ }^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2{ }^{*} n * \text { nextpow2 }(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 * n^{*} w l+ \\
& 2 * n^{*} \text { nextpow2(wl) } \\
& +(w l+6)^{*} n+2
\end{aligned}
\] \\
\hline Complex PartialSystolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor & Asynchronous & \(w l+9\) & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2 n^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l)
\end{aligned}
\] & \[
\begin{aligned}
& 4^{*} n^{2}+25^{*} n+5+ \\
& 2{ }^{*} n^{*} w l+ \\
& 2{ }^{*} n^{*} \text { nextpow } 2(w l) \\
& +(w l+7.5) * 2 * n+ \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The following tables show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: inf-by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 250 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 120582 & 425280 & 28.35 \\
\hline CLB Registers & 90769 & 850560 & 10.67 \\
\hline DSPs & 4 & 4272 & 0.09 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 4 ns \\
\hline Data Path Delay & 3.853 ns \\
\hline Slack & 0.129 ns \\
\hline Clock Frequency & 258.33 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b

\section*{R2023a: Smart unrolling for improved resource utilization}

This block depends on a partial-systolic QR decomposition block. Since 23a, when you update the diagram, the loop which composes the partial-systolic pipeline in the QR decomposition block is unrolled. This updated internal architecture removes dead operations in simulation and generated code, thus requiring fewer hardware resources. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.

\section*{R2022a: Support for Tikhonov regularization parameter}

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block now supports the Tikhonov "Regularization parameter" on page 2-0

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real Partial-Systolic Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using Qless QR Decomposition | Real Burst Matrix Solve Using QR Decomposition

\section*{Functions}
fixed.qlessQRMatrixSolve
Topics
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Real Partial-Systolic Matrix Solve Using QR Decomposition}

Compute value of \(x\) in the equation \(A x=B\) for real-valued matrices using QR decomposition


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

\section*{Description}

The Real Partial-Systolic Matrix Solve Using QR Decomposition block solves the system of linear equations \(A x=B\) using QR decomposition, where \(A\) and \(B\) are real-valued matrices. To compute \(x=\) \(A^{-1}\), set \(B\) to be the identity matrix.

When "Regularization parameter" on page 2-0 is nonzero, the Real Partial-Systolic Matrix Solve Using QR Decomposition block computes the matrix solution of real-valued \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right] X=\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) where \(\lambda\) is the regularization parameter, \(A\) is an \(m\)-by- \(n\) matrix, \(p\) is the number of columns in \(B, I_{n}=\operatorname{eye}(n)\), and \(0_{n, p}=\operatorname{zeros}(n, p)\).

\section*{Ports}

Input
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(m \geq n\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
\(\mathbf{B}(\mathbf{i},:\) ) - Rows of real matrix \(B\) vector

Rows of real matrix \(B\), specified as a vector. \(B\) is an \(m\)-by- \(p\) matrix where \(m \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) and \(B(i,:)\) input ports are valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values on the \(\mathrm{A}(\mathrm{i},:\) ) and \(\mathrm{B}(\mathrm{i},:)\) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}
\(\mathbf{X ( i , : )}\) - Rows of matrix \(X\)
scalar | vector
Rows of the matrix \(X\), returned as a scalar or vector.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output port \(X(i,:)\) is valid. When this value is 1 (true), the block has successfully computed a row of matrix \(X\). When this value is 0 ( \(f a l s e\) ), the output data is not valid.

Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrices \(\mathbf{A}\) and \(\mathbf{B}\) - Number of rows in matrices \(A\) and \(B\)
4 (default) | positive integer-valued scalar

Number of rows in input matrices \(A\) and \(B\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix \(\mathbf{A}\) - Number of columns in matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.

\section*{Programmatic Use \\ Block Parameter: n \\ Type: character vector \\ Values: positive integer-valued scalar \\ Default: 4 \\ Number of columns in matrix B - Number of columns in matrix \(B\)}

1 (default) | positive integer-valued scalar
Number of columns in input matrix \(B\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0
Output datatype - Data type of output matrix \(X\)
fixdt(1,18,14) (default)|double| single|fixdt(1,16,0)|<data type expression>
Data type of the output matrix \(X\), specified as fixdt (1, 18, 14), double, single, fixdt (1, 16, 0), or as a user-specified data type expression. The type can be specified directly, or expressed as a data type object such as Simulink. NumericType.

\section*{Programmatic Use}

Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)'|'double'|'single'|'fixdt(1,16,0)'|'<data type expression>'

Default: ' \(\mathrm{fixdt}(1,18,14)\) '

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Partial-Systolic Matrix Solve Using \(Q R\) Decomposition blocks accept and process \(A\) and \(B\) matrices row by row. After accepting \(m\) rows, the block outputs the matrix \(X\) as a single vector. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix and \(X 1\) is the matrix \(X\), output as a vector.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.

The following table provides details of the timing for the Partial-Systolic Matrix Solve Using \(Q R\) Decomposition blocks.
\begin{tabular}{|c|c|c|c|}
\hline Block & Operation & validIn to ready (cycles) & Last Row validIn to validOut (cycles) \\
\hline Real Partial-Systolic Matrix Solve Using QR Decomposition & Synchronous & \[
\begin{aligned}
& \max \left((w l+7), \operatorname{ceil}\left(\left(3.5^{*} n^{2}\right.\right.\right. \\
& +n^{*}(\text { nextpow2 }(w l)+w l \\
& +9.5)+1) / n))
\end{aligned}
\] & \[
\begin{aligned}
& (w l+6)^{*} n+3.5^{*} n^{2}+ \\
& n^{*}(\text { nextpow2 }(w l)+w l+ \\
& 9.5)+9-n
\end{aligned}
\] \\
\hline Complex Partial-Systolic Matrix Solve Using QR Decomposition & Synchronous & \[
\begin{aligned}
& \max ((w l+9), \\
& \operatorname{ceil}\left(\left(3.5^{*} n^{2}+\right.\right. \\
& n^{*}(n e x t p o w 2(w l)+w l+ \\
& 9.5)+1) / n))
\end{aligned}
\] & \[
\begin{aligned}
& (w l+7.5) * 2 * n+3.5 * n^{2} \\
& +n^{*}(\text { nextpow2 } w l)+w l \\
& +9.5)+9-n
\end{aligned}
\] \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The following tables show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16 -by- 16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 300 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 110589 & 425280 & 26.00 \\
\hline CLB Registers & 87850 & 850560 & 10.33 \\
\hline DSPs & 2 & 4272 & 0.05 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.163 ns \\
\hline Slack & 0.151 ns \\
\hline Clock Frequency & 314.23 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b

\section*{R2023a: Smart unrolling for improved resource utilization}

This block depends on a partial-systolic QR decomposition block. Since 23a, when you update the diagram, the loop which composes the partial-systolic pipeline in the QR decomposition block is unrolled. This updated internal architecture removes dead operations in simulation and generated code, thus requiring fewer hardware resources. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Partial-Systolic Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve Using QR Decomposition

\section*{Functions}
fixed.qrMatrixSolve

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Real Partial-Systolic Q-less QR Decomposition}

Q-less QR decomposition for real-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Real Partial-Systolic Q-less QR Decomposition block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the QR decomposition \(A=Q R\), where \(A\) is a real-valued matrix, without computing \(Q\). The solution to \(A^{\prime} A x=B\) is \(x=R \backslash R^{\prime} \backslash b\).

When "Regularization parameter" on page 2-0 is nonzero, the Real Partial-Systolic Q-less QR Decomposition block computes the upper-triangular factor \(R\) of the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) where \(\lambda\) is the regularization parameter.

\section*{Ports}

\section*{Input}
\(\mathbf{A}(\mathbf{i},:\) ) - Rows of real matrix \(A\) vector

Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(A\) is a fixed-point data type, \(A\) must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validIn - Whether inputs are valid
Boolean scalar
Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}

R - Upper-triangular matrix \(R\)
matrix
Economy size QR decomposition matrix \(R\), returned as a vector or matrix. \(R\) is an upper triangular matrix. The size of matrix \(R\) is \(n\)-by- \(n\). The output at \(R\) has the same data type as the input at \(A(i,:)\).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port \(R\) is valid. When this value is 1 ( \(t\) rue), the block has successfully computed the matrix \(R\). When this value is 0 ( false ), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean

\section*{Parameters}

Number of rows in matrix \(\mathbf{A}\) - Number of rows in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of rows in input matrix \(A\), specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4
Number of columns in matrix A - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: }

```
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

\section*{Programmatic Use}

Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & C & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & \(C\) & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Partial-Systolic QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row. After accepting \(m\) rows, the block outputs the \(R\) and \(C\) matrices as vectors. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input \(A\) and \(B\) matrices are 3 -by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.

The Partial-Systolic Q-less QR Decomposition blocks accept and process the matrix \(A\) row by row. After accepting \(m\) rows, the block outputs the \(R\) matrices as single vectors. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.

The following table provides details of the timing for the Partial-Systolic QR Decomposition blocks.
\begin{tabular}{|l|l|l|}
\hline Block & validIn to ready (cycles) & \begin{tabular}{l} 
Last Row validIn to \\
validOut (cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Partial-Systolic QR \\
Decomposition
\end{tabular} & \(w l+7\) & \((w l+6)^{*} n+6\) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic QR \\
Decomposition
\end{tabular} & \(w l+9\) & \((w l+7.5) * 2 * n+6\) \\
\hline \begin{tabular}{l} 
Real Partial-Systolic Q-less QR \\
Decomposition
\end{tabular} & \(w l+7\) & \((w l+6)^{*} n+3\) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic Q-less \\
QR Decomposition
\end{tabular} & \(w l+9\) & \((w l+7.5) * 2 * n+3\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The table below shows a summary of the resource utilization results.
This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board ( -2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- m = 10
- \(\mathrm{n}=10\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: 10 -by- 10
- Matrix \(B\) dimension: 10 -by- 1
- Input data type: sfix18_En12
\begin{tabular}{|l|l|}
\hline Resource & Usage \\
\hline LUT & 29896 \\
\hline LUTRAM & 994 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Resource & Usage \\
\hline Flip Flop & 18953 \\
\hline
\end{tabular}

The tables below show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(m=16\)
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: 16-by-16
- Matrix \(B\) dimension: 16-by-1
- Input data type: sfix16_En14
- Target frequency: 300 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 96911 & 425280 & 22.79 \\
\hline CLB Registers & 77355 & 850560 & 9.09 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.221 ns \\
\hline Slack & 0.095 ns \\
\hline Clock Frequency & 308.80 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b

\section*{R2023a: Smart unrolling for improved resource utilization}

When you update the diagram, the loop which composes the partial-systolic pipeline is unrolled. This updated internal architecture removes dead operations in simulation and generated code, resulting in a significant decrease in the number of hardware resources required. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.
\begin{tabular}{|l|l|l|}
\hline Resource & R2022b & R2023a \\
\hline LUT & 54305 & 29896 \\
\hline LUTRAM & 1090 & 994 \\
\hline Flip Flop & 33901 & 18953 \\
\hline
\end{tabular}

This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board (-2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- \(m=10\)
- \(\mathrm{n}=10\)
- \(p=1\)
- Matrix \(A\) dimension: 10-by-10
- Matrix \(B\) dimension: 10-by-1
- Input data type: sfix18_En12

\section*{R2022a: Support for Tikhonov regularization parameter}

The RealPartial-Systolic Q-less QR Decomposition block now supports the Tikhonov "Regularization parameter" on page 2-0

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.

HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{1}{|l|}{\begin{tabular}{l} 
ConstrainedOutputPipeline \\
InputPipeline \\
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular}} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Partial-Systolic Q-less QR Decomposition | Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor \| Real Partial-Systolic QR Decomposition \| Real Burst Q-less QR Decomposition

\section*{Functions}
fixed.qlessQR

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor}

Q-less QR decomposition for real-valued matrices with infinite number of rows


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block uses QR decomposition to compute the economy size upper-triangular \(R\) factor of the QR decomposition \(A=\) \(Q R\), without computing \(Q\). \(A\) is an infinitely tall real-valued matrix representing streaming data.

When the regularization parameter is nonzero, the Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block initializes the first upper-triangular factor \(R\) to \(\lambda I_{n}\) before factoring in the rows of \(A\), where \(\lambda\) is the regularization parameter and \(I_{n}=\) eye \((n)\).

\section*{Ports}

Input
A(i,:) - Rows of real matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an infinitely tall matrix of streaming data. If \(A\) uses a fixed-point data type, \(A\) must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
validIn - Whether inputs are valid
Boolean scalar
Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the block captures the values at the \(\mathrm{A}(\mathrm{i},:\) ) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.

Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the value at validIn is 1 (true), the block begins a new subframe.

\section*{Data Types: Boolean}

\section*{Output}

R - Upper-triangular matrix \(R\)
matrix
Economy size QR decomposition matrix \(R\) multiplied by the Forgetting factor parameter, returned as a matrix. \(R\) is an upper triangular matrix. The size of matrix \(R\) is \(n\)-by- \(n\). The output at \(R\) has the same data type as the input at \(\mathrm{A}(\mathrm{i},:\) ).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the data at output port R is valid. When this value is 1 (true), the block has successfully computed the matrix \(R\). When this value is 0 ( false ), the output data is not valid.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean

\section*{Parameters}

Number of columns in matrix A - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.

\section*{Programmatic Use}

Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4
Forgetting factor - Forgetting factor applied after each row of the matrix is factored 0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar. The output is updated as each row of \(A\) is input indefinitely.

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: positive integer-valued scalar
Default: 0.99
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Algorithms}

\section*{Q-less QR Decomposition with Forgetting Factor}

The Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block implements the following recursion to compute the upper-triangular factor \(R\) of continuously streaming \(n\)-by- 1 row vectors \(A(k,:)\) using forgetting factor \(\alpha\). It's as if matrix \(A\) is infinitely tall. The forgetting factor in the range \(0<\alpha<1\) prevents it from integrating without bound.
\[
\begin{gathered}
R_{0}=\operatorname{zeros}(n, n) \\
{\left[\sim, R_{1}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right], 0\right)} \\
R_{1}=\alpha R_{1} \\
{\left[\sim, R_{2}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{1} \\
A(2,:)
\end{array}\right], 0\right)} \\
R_{2}=\alpha R_{2} \\
\vdots \\
{\left[\sim, R_{k}\right]=\operatorname{qr}\left(\left[\left[\begin{array}{c}
R_{k}-1 \\
A(k,:)
\end{array}\right]\right], 0\right)} \\
R_{k}=\alpha R_{k} \\
\vdots
\end{gathered}
\]

\section*{Q-less QR Decomposition with Forgetting Factor and Tikhonov Regularization}

The upper-triangular factor \(R_{k}\) after processing the \(k^{\text {th }}\) input \(A(k,:)\) is computed using the following iteration.
\[
\begin{gathered}
R_{0}=\lambda I_{n} \\
{\left[\sim, R_{1}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right], 0\right)} \\
R_{1}=\alpha R_{1} \\
{\left[\sim, R_{2}\right]=\operatorname{qr}\left(\left[\begin{array}{c}
R_{1} \\
A(2,:)
\end{array}\right], 0\right)} \\
R_{2}=\alpha R_{2} \\
\vdots \\
{\left[\sim, R_{k}\right]=\operatorname{qr}\left(\left[\begin{array}{l}
R_{k}-1 \\
A(k,:)
\end{array}\right], 0\right)} \\
R_{k}=\alpha R_{k} \\
\vdots
\end{gathered}
\]

This is mathematically equivalent to computing the upper-triangular factor \(R_{k}\) of matrix \(A_{k}\), defined as follows, though the block never actually creates \(A_{k}\).
\[
A_{k}=\left[\right]
\]

\section*{Forward and Backward Substitution}

When an upper triangular factor is ready, then forward and backward substitution are computed with the current input \(B\) to produce output \(X\).
\[
X=R_{k} \backslash\left(R_{k}^{\prime} \backslash B\right)
\]

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & \(C\) & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Partial-Systolic QR Decomposition with Forgetting Factor blocks accept and process the matrix \(A\) row by row. After accepting the first \(m\) rows, the block starts to output the \(R\) matrix as a single vector. From this point, for each row input, the block calculates a \(R\) matrix. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input matrix \(A\) is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the Q-less QR decomposition.


In the figure,
- A1r1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- validIn to validOut - From a successful row input to the block starting to output the corresponding solution.

The following table provides details of the timing for the Partial-Systolic Q-less QR Decomposition with Forgetting Factor blocks.
\begin{tabular}{|l|l|l|}
\hline Block & validIn to ready (cycles) & validIn to validOut (cycles) \\
\hline \begin{tabular}{l} 
Real Partial-Systolic Q-less QR \\
Decomposition with Forgetting \\
Factor
\end{tabular} & \(w l+7\) & \((w l+6)^{*} n+3\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Block & validIn to ready (cycles) & validIn to validOut (cycles) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic Q-less \\
QR Decomposition with \\
Forgetting Factor
\end{tabular} & \(w l+9\) & \((w l+7.5)^{*} 2 * n+3\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The table below shows a summary of the resource utilization results.
This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board ( -2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- \(m=10\)
- \(\mathrm{n}=10\)
- \(\mathrm{p}=1\)
- Matrix A dimension: 10 -by-10
- Matrix \(B\) dimension: 10-by-1
- Input data type: sfix18_En12
\begin{tabular}{|l|l|}
\hline Resource & Usage \\
\hline LUT & 30190 \\
\hline LUTRAM & 10 \\
\hline Flip Flop & 17570 \\
\hline BRAM & 31 \\
\hline
\end{tabular}

The following tables show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=16\)
- \(p=1\)
- Matrix \(A\) dimension: inf-by-16
- Matrix \(B\) dimension: 16 -by- 1
- Input data type: sfix16_En14
- Target frequency: 300 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 112218 & 425280 & 26.39 \\
\hline CLB Registers & 77563 & 850560 & 9.12 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.191 ns \\
\hline Slack & 0.125 ns \\
\hline Clock Frequency & 311.69 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b

\section*{R2023a: Smart unrolling for improved resource utilization}

When you update the diagram, the loop which composes the partial-systolic pipeline is unrolled. This updated internal architecture removes dead operations in simulation and generated code, resulting in a significant decrease in the number of hardware resources required. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.
\begin{tabular}{|l|l|l|}
\hline Resource & R2022b & R2023a \\
\hline LUT & 55482 & 30190 \\
\hline LUTRAM & 10 & 10 \\
\hline Flip Flop & 32375 & 17570 \\
\hline BRAM & 45 & 31 \\
\hline
\end{tabular}

This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board ( -2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- \(m=10\)
- \(\mathrm{n}=10\)
- \(p=1\)
- Matrix \(A\) dimension: 10-by-10
- Matrix \(B\) dimension: 10-by-1
- Input data type: sfix18_En12

\section*{R2022a: Support for Tikhonov regularization parameter}

The Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block now supports the Tikhonov "Regularization parameter" on page 2-0

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \(®\) Coder \(^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline General \\
\hline OutputPipeline \\
\hline
\end{tabular}

> Number of output pipeline stages to insert in the generated code. Distributed pipelining and constrained output pipelining can move these registers. The default is 0 . For more details, see "OutputPipeline" (HDL Coder).

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Real Partial-Systolic Q-less QR Decomposition | Real Partial-Systolic QR Decomposition | Real Burst Q-less QR Decomposition

\section*{Functions}
fixed.qlessQR

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Real Partial-Systolic QR Decomposition}

QR decomposition for real-valued matrices


\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

The Real Partial-Systolic QR Decomposition block uses QR decomposition to compute \(R\) and \(C=Q^{\prime} B\), where \(Q R=A\), and \(A\) and \(B\) are real-valued matrices. The least-squares solution to \(A x=B\) is \(x=R \backslash C\). \(R\) is an upper triangular matrix and \(Q\) is an orthogonal matrix. To compute \(C=Q^{\prime}\), set \(B\) to be the identity matrix.

When "Regularization parameter" on page 2-0 is nonzero, the Real Partial-Systolic QR Decomposition block transforms \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) in-place to \(R=Q^{\prime}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\) and \(\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) in-place to \(C=Q^{\prime}\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]\) where \(\lambda\) is the regularization parameter, QR is the economy size QR decomposition of \(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right], A\) is an \(m\)-by- \(n\) matrix, \(p\) is the number of columns in \(B, I_{n}=\operatorname{eye}(n)\), and \(O_{n, p}=\operatorname{zeros}(n, p)\).

\section*{Ports}

\section*{Input}
\(\mathbf{A ( i , : )}\) - Rows of matrix \(A\)
vector
Rows of real matrix \(A\), specified as a vector. \(A\) is an \(m\)-by- \(n\) matrix where \(m \geq 2\) and \(n \geq 2\). If \(B\) is single or double, \(A\) must be the same data type as \(B\). If \(A\) is a fixed-point data type, \(A\) must be signed, use binary-point scaling, and have the same word length as \(B\). Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point
\(\mathbf{B ( i ,}\), ) - Rows of matrix \(B\)
vector
Rows of real matrix \(B\), specified as a vector. \(B\) is an \(m\)-by- \(p\) matrix where \(m \geq 2\). If \(A\) is single or double, \(B\) must be the same data type as \(A\). If \(B\) is a fixed-point data type, \(B\) must be signed, use binary-point scaling, and have the same word length as \(A\). Slope-bias representation is not supported for fixed-point data types.

\section*{Data Types: single|double|fixed point}
validIn - Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A(i,:)\) and \(B(i,:)\) input ports are valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values on the \(\mathrm{A}(\mathrm{i},:\) ) and \(\mathrm{B}(\mathrm{i},:)\) input ports. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}

R - Matrix \(R\)
scalar | vector
Economy size QR decomposition matrix \(R\), returned as a scalar or vector. \(R\) is an upper triangular matrix. The size of matrix \(R\) is \(n\)-by- \(n\). \(R\) has the same data type as \(A\).
Data Types: single|double|fixed point
C - Matrix \(C=Q^{\prime} B\)
scalar | vector
Economy size QR decomposition matrix \(C=Q^{\prime} B\), returned as a scalar or vector. \(C\) has the same number of rows as \(R . C\) has the same data type as \(B\).
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether output data is valid, returned as a Boolean scalar. This control signal indicates when the data at output ports R and C is valid. When this value is 1 (true), the block has successfully computed the \(R\) and \(C\) matrices. When this value is 0 (false), the output data is not valid.

\section*{Data Types: Boolean}
ready - Whether block is ready
Boolean scalar
Whether block is ready, returned as a Boolean scalar. This control signal that indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To ensure all data is processed, you must wait until ready is set to false before sending another true validIn signal.
Data Types: Boolean

\section*{Parameters}

Number of rows in input matrices \(\mathbf{A}\) and \(\mathbf{B}\) - Number of rows in matrices \(A\) and \(B\)
4 (default) | positive integer-valued scalar
Number of rows in input matrices \(A\) and \(B\), specified as a positive integer-valued scalar.

\section*{Programmatic Use \\ Block Parameter: m \\ Type: character vector \\ Values: positive integer-valued scalar \\ Default: 4}

Number of columns in matrix A - Number of columns in input matrix \(A\)
4 (default) | positive integer-valued scalar
Number of columns in input matrix \(A\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

```

Number of columns in matrix B - Number of columns in input matrix \(B\)
1 (default) | positive integer-valued scalar
Number of columns in input matrix \(B\), specified as a positive integer-valued scalar.
```

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: }

```
Regularization parameter - Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
```

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

```

\section*{Algorithms}

\section*{Choosing the Implementation Method}

Partial-systolic implementations prioritize speed of computations over space constraints, while burst implementations prioritize space constraints at the expense of speed of the operations. The following table illustrates the tradeoffs between the implementations available for matrix decompositions and solving systems of linear equations.
\begin{tabular}{|l|l|l|l|}
\hline Implementation & Ready & Latency & Area \\
\hline Systolic & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) \\
\hline Partial-Systolic & \(C\) & \(\mathrm{O}(m)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline \begin{tabular}{l} 
Partial-Systolic with \\
Forgetting Factor
\end{tabular} & C & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(n^{2}\right)\) \\
\hline Burst & \(\mathrm{O}(n)\) & \(\mathrm{O}\left(m n^{2}\right)\) & \(\mathrm{O}(n)\) \\
\hline
\end{tabular}

Where \(C\) is a constant proportional to the word length of the data, \(m\) is the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\).

For additional considerations in selecting a block for your application, see "Choose a Block for HDLOptimized Fixed-Point Matrix Operations".

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate. A valid signal indicates when data is available. The ready signal indicates that the block can accept the data. Transfer of data occurs only when both the valid and ready signals are high.

\section*{Block Timing}

The Partial-Systolic QR Decomposition blocks accept and process \(A\) and \(B\) matrices row by row. After accepting \(m\) rows, the block outputs the \(R\) and \(C\) matrices as vectors. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input \(A\) and \(B\) matrices are 3-by-3. Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.

The Partial-Systolic Q-less QR Decomposition blocks accept and process the matrix \(A\) row by row. After accepting \(m\) rows, the block outputs the \(R\) matrices as single vectors. The partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs before outputting the result of the current matrix.

For example, assume that the input \(A\) matrix is 3 -by- 3 . Additionally assume that validIn asserts before ready, meaning that the upstream data source is faster than the QR decomposition.


In the figure,
- Alr1 is the first row of the first \(A\) matrix, R1 is the first \(R\) matrix, and so on.
- validIn to ready - From a successful row input to the block being ready to accept the next row.
- Last row validIn to validOut - From the last row input to the block starting to output the solution.

The following table provides details of the timing for the Partial-Systolic QR Decomposition blocks.
\begin{tabular}{|l|l|l|}
\hline Block & validIn to ready (cycles) & \begin{tabular}{l} 
Last Row validIn to \\
valid0ut (cycles)
\end{tabular} \\
\hline \begin{tabular}{l} 
Real Partial-Systolic QR \\
Decomposition
\end{tabular} & \(w l+7\) & \((w l+6)^{* n}+6\) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic QR \\
Decomposition
\end{tabular} & \(w l+9\) & \((w l+7.5) * 2 * n+6\) \\
\hline \begin{tabular}{l} 
Real Partial-Systolic Q-less QR \\
Decomposition
\end{tabular} & \(w l+7\) & \((w l+6)^{* n}+3\) \\
\hline \begin{tabular}{l} 
Complex Partial-Systolic Q-less \\
QR Decomposition
\end{tabular} & \(w l+9\) & \((w l+7.5) * 2 * n+3\) \\
\hline
\end{tabular}

In the table, \(m\) represents the number of rows in matrix \(A\), and \(n\) is the number of columns in matrix \(A\). wl represents the word length of \(A\).
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double, then \(w l\) is 53 .
- If the data type of \(A\) is single, then \(w l\) is 24 .

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

The table below shows a summary of the resource utilization results.
This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board ( -2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- m = 10
- \(\mathrm{n}=10\)
- \(p=1\)
- Matrix \(A\) dimension: 10 -by- 10
- Matrix \(B\) dimension: 10-by-1
- Input data type: sfix18_En12
\begin{tabular}{|l|l|}
\hline Resource & Usage \\
\hline LUT & 35455 \\
\hline LUTRAM & 1126 \\
\hline Flip Flop & 22334 \\
\hline
\end{tabular}

The tables below show the post place-and-route resource utilization results and timing summary, respectively.

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.
- Block parameters:
- m = 16
- \(\mathrm{n}=16\)
- \(\mathrm{p}=1\)
- Matrix \(A\) dimension: 16 -by- 16
- Matrix \(B\) dimension: 16 -by- 1
- Input data type: sfix16_En14
- Target frequency: 300 MHz
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization (\%) \\
\hline CLB LUTs & 105922 & 425280 & 24.91 \\
\hline CLB Registers & 82211 & 850560 & 9.67 \\
\hline DSPs & 0 & 4272 & 0.00 \\
\hline Block RAM Tile & 0 & 1080 & 0.00 \\
\hline URAM & 0 & 80 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & 3.3333 ns \\
\hline Data Path Delay & 3.276 ns \\
\hline Slack & 0.038 ns \\
\hline Clock Frequency & 303.46 MHz \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2020b

\section*{R2023a: Smart unrolling for improved resource utilization}

When you update the diagram, the loop which composes the partial-systolic pipeline is unrolled. This updated internal architecture removes dead operations in simulation and generated code, resulting in a significant decrease in the number of hardware resources required. This block simulates with clock and bit-true fidelity with respect to library versions of these blocks in previous releases.
\begin{tabular}{|l|l|l|}
\hline Resource & R2022b & R2023a \\
\hline LUT & 58179 & 35455 \\
\hline LUTRAM & 1330 & 1126 \\
\hline Flip Flop & 37355 & 22334 \\
\hline
\end{tabular}

This example data was generated by synthesizing the block on a Xilinx Zynq-7 ZC706 evaluation board (-2 speed grade).

The following parameters were used for synthesis.
- Block parameters:
- \(m=10\)
- \(\mathrm{n}=10\)
- \(p=1\)
- Matrix \(A\) dimension: 10-by-10
- Matrix \(B\) dimension: 10-by-1
- Input data type: sfix18_En12

\section*{References}
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/ ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Complex Partial-Systolic QR Decomposition | Real Partial-Systolic Q-less QR Decomposition | Real Burst QR Decomposition

\section*{Functions}
fixed.qrAB

\section*{Topics}
"Choose a Block for HDL-Optimized Fixed-Point Matrix Operations"

\section*{Real Reciprocal HDL Optimized}

Compute reciprocal and generate optimized HDL code


\section*{Libraries:}

Fixed-Point Designer HDL Support / Math Operations

\section*{Description}

The Real Reciprocal HDL Optimized block computes \(1 / \mathrm{u}\), where u is a real scalar.

\section*{Limitations}

Data type override is not supported for the Real Reciprocal HDL Optimized block.

\section*{Ports}

Input
\(\mathbf{u}\) - Value to take reciprocal of real scalar

Value to take the reciprocal of, specified as a real scalar.
Slope-bias representation is not supported for fixed-point data types.
Data Types: single|double|fixed point
validIn - Whether input is valid
Boolean scalar
Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(u\) input port is valid. When this value is 1 ( true ), the block captures the value at the \(u\) input port. When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean
Output
y - Reciprocal
real scalar
Reciprocal, returned as a real scalar with the data type specified by the Output datatype parameter.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar

Whether output data is valid, returned as a Boolean scalar. When the value of this control signal is 1 (true), the block has successfully computed the output at port y . When this value is 0 (false), the output data is not valid.
Data Types: Boolean

\section*{Parameters}

Output datatype - Data type of output
fixdt \((1,18,10)\) (default) | single|fixdt \((1,16,0) \mid<d a t a ~ t y p e ~ e x p r e s s i o n>~\)
Data type of the output \(y\), specified as \(\operatorname{fixdt}(1,18,10)\), single, \(\operatorname{fixdt}(1,16,0)\), or as a userspecified data type expression. The type can be specified directly, or expressed as a data type object, such as Simulink.NumericType.
Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,10)'|'single'|'fixdt(1,16,0)'|'<data type expression>'
Default: 'fixdt(1,18,10)'

\section*{Algorithms}

\section*{Division by Zero Behavior}

For fixed-point input \(u\), the Real Reciprocal HDL Optimized block wraps on overflow for division by zero. The behavior for fixed-point division by zero is summarized in the table below.
\begin{tabular}{|l|l|}
\hline Wrap Overflow & Saturate Overflow \\
\hline \(0 / 0=0\) & \(0 / 0=0\) \\
\hline \(1 / 0=0\) & \(1 / 0=\) upper bound \\
\hline\(-1 / 0=0\) & \(-1 / 0=\) lower bound \\
\hline
\end{tabular}

For floating-point inputs, the Real Reciprocal HDL Optimized block follows IEEE Standard 754.

\section*{How to Interface with the Real Reciprocal HDL Optimized Block}

Because of its fully pipelined nature, the Real Reciprocal HDL Optimized block is able to accept input data on any cycle, including consecutive clock cycles. To send input data to the block, the validIn signal must be true. When the block has finished the computation and is ready to send the output, it will change validOut to true for one clock cycle. For inputs set of consecutive cycles, validOut will also be set to true on consecutive cycles.

The latency is defined from the input to the corresponding output. For example in the figure below, from In1 to Out1, In2 to Out2, In3 to Out3, etc.


The latency depends on the input data type, as summarized in the table.
\begin{tabular}{|l|l|}
\hline Input Type & Latency \\
\hline fi & \begin{tabular}{l} 
nextpow2 (u.WordLength \(+1+\) \\
u.WordLength \(+2-\) issigned \((u)+7\)
\end{tabular} \\
\hline Scaled double & u.WordLength \(+2-\) issigned \((u)+7\) \\
\hline Floating point & 7 \\
\hline
\end{tabular}

\section*{Version History}

Introduced in R2021a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

\section*{Restrictions}

Supports fixed-point data types only.

\section*{See Also}

\section*{Blocks}

Real Divide HDL Optimized | Complex Divide HDL Optimized | Normalized Reciprocal HDL Optimized

\section*{Functions}
fixed.cordicReciprocal|fixed.cordicDivide

\section*{Square Jacobi SVD HDL Optimized}

Fixed-point singular value decomposition

\section*{Libraries:}

Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Matrix Factorizations

\section*{Description}

Use the Square Jacobi SVD HDL Optimized block to perform singular value decomposition (SVD) on square matrices using the two-sided Jacobi algorithm. Given a square matrix \(A\), the Square Jacobi SVD HDL Optimized block uses the two-sided Jacobi method to produce a vector \(s\) of nonnegative elements and unitary matrices \(U\) and \(V\) such that \(A=U * \operatorname{diag}(s) * V^{\prime}\).

\section*{Ports}

\section*{Input}

A - Square matrix \(A\)
real or complex square matrix
Square n -by-n matrix \(A\), specified as a real or complex square matrix.
If the matrix \(A\) has a fixed-point data type, the matrix must use signed binary-point scaling. Slope and bias scaling and unsigned fixed-point types are not supported.
Data Types: single|double|fixed point
validIn - Whether input is valid
Boolean scalar
Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from the \(A\) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block captures the values at the \(A\) input port. When this value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, a delay may occur before the ready signal is false. To ensure all data is processed, you must wait until the ready signal is false before sending another true validIn signal.
Data Types: Boolean
readyln - Whether downstream block is ready
Boolean scalar
Whether downstream block is ready, specified as a Boolean scalar. This control signal monitors the ready port of the downstream block. When the readyIn value is 1 (true), and the value at validOut is 1 (true), the block outputs data to the downstream block. When the readyIn value is 0
(false), the downstream block is not ready to accept data. The Square Jacobi SVD HDL Optimized block pauses on the output stage and the ready signal remains 0 (false) until the readyIn signal is high.

\section*{Data Types: Boolean}
restart - Whether to clear internal states
Boolean scalar
Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the current calculation and clears all internal states. When this value is 0 (false) and the validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

\section*{Output}
\(\mathbf{s}\) - Singular values
column vector
Singular values, returned as a column vector of length n . The "Singular Values" are nonnegative and returned in descending order such that \(s(1)>=s(2)>=\ldots\)... \(\mathrm{s}(\mathrm{n})\). Singular values are returned with the same data type as the input matrix A .
Data Types: single|double|fixed point
\(\mathbf{U}\) - Left singular vectors
unitary n-by-n matrix
Left singular vectors, returned as a unitary \(n\)-by-n matrix.
For fixed-point and scaled-double inputs, U is returned as a signed fixed-point or scaled-double fi with the same word length as A and fraction length equal to two less than the word length. One of these integer bits is used for the sign. The other integer bit allows +1 to be represented exactly.

For floating-point input, U has the same data type as A .
Data Types: single|double|fixed point

\section*{V - Right singular vectors}
unitary n-by-n matrix
Right singular vectors, returned as a unitary n -by- n matrix.
For fixed-point and scaled-double inputs, \(V\) is returned as a signed fixed-point or scaled-double fi with the same word length as A and fraction length equal to two less than the word length. One of these integer bits is used for the sign. The other integer bit allows +1 to be represented exactly.

For floating-point input, V has the same data type as A.
Data Types: single|double|fixed point
validOut - Whether output data is valid
Boolean scalar
Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the data at the output ports \(\mathrm{U}, \mathrm{S}\), and V are valid. When this value is 1 (true), the output data is valid.

When this value is 0 (false), the output data is not valid. Transfer of data to the downstream block occurs only when both the validOut and readyIn signals are high.
Data Types: Boolean
ready - Whether block is ready
Boolean scalar
Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the block ignores input data in the next time step.

After sending a true validIn signal, there may be some delay before the ready signal is false. To ensure all data is processed, you must wait until the ready signal is false before sending another true validIn signal.
Data Types: Boolean

\section*{Parameters}

Dimension of matrix A - Dimension of square matrix A
n (default) | positive integer-valued scalar
Dimension of square matrix \(A\), specified as a positive integer-valued scalar.

\section*{Programmatic Use \\ Block Parameter: \(n\)}

Type: string
Values: positive integer-valued scalar
Default: n
Number of Jacobi iterations - Number of iterations of Jacobi algorithm
10 (default) | positive integer
Number of iterations of the Jacobi algorithm, specified as a positive integer. Most sources indicate that 10 iterations is sufficient for the Jacobi algorithm to converge [7][8][9][10].

\section*{Programmatic Use \\ Block Parameter: nIterations}

Type: string
Values: positive integer-valued scalar
Default: 10
Select outputs - Block outputs
UsV (default) \| Us \| sV | s
Block outputs, specified as UsV, Us, sV, or s.
```

Programmatic Use
Block Parameter: output0ption
Type: string
Values: UsV | Us | sV | s
Default: UsV

```

Signal type - Complexity of input matrix \(A\)
real (default) | complex
Complexity of the input matrix \(A\), specified as real, or complex.
Programmatic Use
Block Parameter: complexity
Type: string
Values: real | complex
Default: real

\section*{Tips}
- The Square Jacobi SVD HDL Optimized block computes the singular value decomposition in place. Set the fixed-point data type of the input \(n\)-by-n matrix \(A\) with enough precision and enough headroom to avoid overflow.

First, use the fixed.singularValueUpperBound function to determine the upper bound on the singular values. Then define the integer length based on the value of the upper bound, with one additional bit for the sign, another additional bit for intermediate CORDIC growth, and one more bit for intermediate growth to compute the Jacobi rotations. Compute the fraction length based on the integer length and the desired word length.
```

svdUpperBound = fixed.singularValueUpperBound(n,n,max(abs(A(:))))
additionalBitGrowth = 3;
integerLength = ceil(log2(svdUpperBound)) + additionalBitGrowth
wordLength = 16
fractionLength = wordLength - integerLength

```
- The behavior of the Square Jacobi SVD HDL Optimized block is equivalent to [ \(\mathrm{U}, \mathrm{s}, \mathrm{V}\) ] = fixed.jacobiSVD(A). The fixed. JacobiSVD function uses the same algorithm as the Square Jacobi SVD HDL Optimized, with the same output data types. However, there may be small numerical differences in the least-significant bit between the function and the block.
- The behavior of the Square Jacobi SVD HDL Optimized block is equivalent to [U, \(\mathrm{s}, \mathrm{V}\) ] = fixed.svd(A,'econ', 'vector') when A is a square matrix.

\section*{Algorithms}

\section*{Jacobi Singular Value Decomposition}

The Square Jacobi SVD HDL Optimized block uses a two-sided Jacobi algorithm for singular value decomposition (SVD) [2][3][4]. Compared to the sequential Golub-Kahan-Reinsch algorithm for SVD [5], the Jacobi algorithm has inherent parallelism and performs better for FPGA and ASIC applications [6]. The Jacobi method is an iterative algorithm. Use the Number of Jacobi iterations parameter to set the number of iterations necessary for convergence. Most sources indicate that 10 iterations is sufficient for the Jacobi algorithm to converge [7][8][9][10].

\section*{AMBA AXI Handshake Process}

This block uses the AMBA AXI handshake protocol on both the input and the output side [1]. The valid/ready handshake process is used to transfer data and control information. This two-way control mechanism allows both the manager and subordinate to control the rate at which information moves between manager and subordinate.

On the input side, the validIn signal indicates when the upstream data is available. The ready signal indicates that the block can accept the data. Transfer of data from the upstream block occurs only when both the validIn and ready signals are high.

On the output side, the valid0ut signal indicates the solution data is available. The ready In signal indicates when the downstream block can accept data. Transfer of data to the downstream block occurs only when both the valid0ut and readyIn signals are high.

When the readyIn signal is low, the block pauses on the output stage and the ready signal remains low. This configuration allows a stall from the downstream block to back-propagate to the upstream block.

To use the Square Jacobi SVD HDL Optimized block in feed-forward fashion without back pressure from the downstream block, feed a constant Boolean 'true' to the readyIn port.

\section*{Block Timing}

The latency of the Square Jacobi SVD HDL Optimized block depends on the size (n), complexity, and word length ( wl ) of the input matrix A, and the number of iterations ( nIt terations) of the two-sided Jacobi algorithm, as summarized in the table.
- If the data type of \(A\) is fixed point, then \(w l\) is the word length.
- If the data type of \(A\) is double precision, then \(w l\) is 53 .
- If the data type of \(A\) is single precision, then \(w l\) is 24 .
\begin{tabular}{|l|l|}
\hline Signal Complexity & validIn to validOut \\
\hline Real & \((w l * 2+31) *(n-1+\) rem \((n, 2)) * n I t e r a t i o n s+2+n e x t p o w 2(n) *(n)\) \\
\hline Complex & \((w l * 6+48) *(n-1+\) rem \((n, 2)) * n I t e r a t i o n s+2+n e x t p o w 2(n) *(r\) \\
\hline
\end{tabular}

For example, assume that validIn asserts before ready, meaning that the upstream data source is faster than the Square Jacobi SVD HDL Optimized block. Additionally, assume that readyIn is always asserted, meaning that the downstream consumer of the data is faster than the Square Jacobi SVD HDL Optimized.


In the figure:
- A 1 is the first \(A\) matrix, U 1 is the first \(U\) matrix, s 1 is the first \(s\) vector, V 1 is the first \(V\) matrix, and so on.
- validIn to valid0ut - Goes from a successful matrix input to the block starting to output the solution.
- After a successful solution output, the block is ready again at the next clock cycle.

\section*{Hardware Resource Utilization}

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example, see "HDL Code Generation and FPGA Synthesis from Simulink Model" (HDL Coder) and "Implement Digital Downconverter for FPGA" (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq-7000 xc7z100 SoC. The synthesis tool was Vivado v2022.1 (win64).

\section*{Signal Type: Real}

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=8\)
- nIterations \(=10\)
- Input data type: sfix32_En25
- Target frequency: 90 MHz

These tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization \\
\hline Slice LUTs & 71541 & 277400 & \(25.79 \%\) \\
\hline Slice Registers & 35781 & 554800 & \(6.45 \%\) \\
\hline DSPs & 256 & 2020 & \(12.67 \%\) \\
\hline Block RAM Tile & 0 & 755 & \(0 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & \(11.111 \mathrm{~ns}(90 \mathrm{MHz})\) \\
\hline Data Path Delay & 11.007 ns \\
\hline Slack & 0.085 ns \\
\hline Clock Frequency & 90.69 MHz \\
\hline
\end{tabular}

\section*{Signal Type: Complex}

The following parameters were used for synthesis.
- Block parameters:
- \(\mathrm{n}=8\)
- nIterations = 10
- Input data type: sfix32_En25
- Target frequency: 60 MHz

The following tables show the post place-and-route resource utilization results and timing summary, respectively.
\begin{tabular}{|l|l|l|l|}
\hline Resource & Usage & Available & Utilization \\
\hline Slice LUTs & 196506 & 277400 & \(70.84 \%\) \\
\hline Slice Registers & 85150 & 554800 & \(15.35 \%\) \\
\hline DSPs & 1344 & 2020 & \(66.53 \%\) \\
\hline Block RAM Tile & 0 & 755 & \(0 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Requirement & \(16.667 \mathrm{~ns}(60 \mathrm{MHz})\) \\
\hline Data Path Delay & 16.572 ns \\
\hline Slack & 0.076 ns \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Value \\
\hline Clock Frequency & 60.27 MHz \\
\hline
\end{tabular}

\section*{Version History}

\section*{Introduced in R2023a}

\section*{References}
[1] Arm Developer. "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/ documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process.
[2] Jacobi, Carl G. J., "Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen." Journal fur die reine und angewandte Mathematik 30 (1846): 51-94.
[3] Forsythe, George E. and Peter Henrici. "The Cyclic Jacobi Method for Computing the Principal Values of a Complex Matrix." Transactions of the American Mathematical Society 94, no. 1 (January 1960): 1-23.
[4] Shiri, Aidin and Ghader Khosroshahi. "An FPGA Implementation of Singular Value Decomposition", ICEE 2019: 27th Iranian Conference on Electrical Engineering, Yazd, Iran, April 30-May 2, 2019, 416-22, IEEE.
[5] Golub, Gene H. and Charles F. Van Loan. Matrix Computations, 4th ed. Baltimore, MD: Johns Hopkins University Press, 2013.
[6] Athi, Mrudula V., Seyed R. Zekavat, and Alan A. Struthers. "Real-Time Signal Processing of Massive Sensor Arrays via a Parallel Fast Converging SVD Algorithm: Latency, Throughput, and Resource Analysis." IEEE Sensors Journal 16, no. 18 (January 2016): 2519-26. https:// doi.org/10.1109/JSEN.2016.2517040.
[7] Brent, Richard P., Franklin T. Luk, and Charles Van Loan. "Computation of the Singular Value Decomposition Using Mesh-Connected Processors." Journal of VLSI and Computer Systems 1, 3 (1985): 242-70.
[8] Hemkumar, Nariankadu D. A Systolic VLSI Architecture for Complex SVD. Master's thesis, Rice University, 1991.
[9] Duryea, R. A. Finite Precision Arithmetic in Singular Value Decomposition Architectures. Ph.D. thesis, Cornell University, 1987.
[10] Cavallaro, Joseph R. and Franklin T. Luk. 1987. "CORDIC Arithmetic for an SVD Processor." 1987 IEEE 8th Symposium on Computer Arithmetic (ARITH), Como, Italy, May 18-21, 1987, 113-20. IEEE. https://doi.org/10.1109/ARITH.1987.6158686.

\section*{Extended Capabilities}

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

Note When generating code for large matrices set the configuration parameter HDL Code Generation > Global Settings > Ports tab Check for DUT pin count exceeding I/O Threshold to Warning or None. To learn more about this setting, see "DUT Port Configuration Parameters" (HDL Coder).

HDL Coder provides additional configuration options that affect HDL implementation and synthesized logic.

\section*{HDL Architecture}

This block has one default HDL architecture.
HDL Block Properties
\begin{tabular}{|l|l|}
\hline General & \multicolumn{2}{|l|}{} & \begin{tabular}{l} 
Number of registers to place at the outputs by \\
moving existing delays within your design. \\
Distributed pipelining does not redistribute these \\
registers. The default is 0. For more details, see \\
"ConstrainedOutputPipeline" (HDL Coder).
\end{tabular} \\
\hline InputPipeline & \begin{tabular}{l} 
Number of input pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"InputPipeline" (HDL Coder).
\end{tabular} \\
\hline OutputPipeline & \begin{tabular}{l} 
Number of output pipeline stages to insert in the \\
generated code. Distributed pipelining and \\
constrained output pipelining can move these \\
registers. The default is 0. For more details, see \\
"OutputPipeline" (HDL Coder).
\end{tabular} \\
\hline
\end{tabular}

\section*{Restrictions}

Supports fixed-point data types only. Fixed-point data types must use signed binary-point scaling. Slope and bias scaling and unsigned fixed-point types are not supported.

\section*{See Also}
"Singular Values" | fixed.svd

\section*{Properties}

\section*{fi Object Data Properties}

Data properties of the fi object

\section*{Description}

The fi object has three types of properties: data properties, fimath properties, and numerictype properties. Use data properties to access data in a fi object using dot notation. The data properties of a fi object are always writable.

\section*{Properties}

\section*{Data Properties}

\section*{bin - Stored integer value of fi object}
binary
Stored integer value of fi object in binary.
data - Numerical real-world value of fi object
double
Numerical real-world value of fi object.

\section*{dec - Stored integer value of fi object}
decimal
Stored integer value of fi object in decimal.

\section*{double - Real-world value of fi object}
double
Real-world value of fi object stored as a MATLAB double.
hex - Stored integer value of \(f i\) object
hexadecimal
Stored integer value of fi object in hexadecimal.

\section*{int - Stored integer value of fi object}
integer
Stored integer value of fi object stored in a built-in MATLAB integer data type.

\section*{oct - Stored integer value of fi object}
octal
Stored integer value of fi object in octal.

\section*{Value - Full-precision real-world value of fi object \\ character vector}

Full-precision real-world value of fi object, stored as a character vector.

\section*{Version History}

Introduced before R2006a

\section*{See Also}
fi

\section*{fimath Object Properties}

Properties of the fimath object

\section*{Description}
fimath properties determine the rules for performing fixed-point arithmetic operations on fi objects. fimath properties are, by transitivity, also properties of the fi object. You can set these properties for individual fi objects. fimath object properties are always writable.

\section*{Properties}

\section*{Sum Data Type Properties}

CastBeforeSum - Whether both operands are cast to the sum data type before addition 0 (false) (default) | 1 (true)

Whether both operands are cast to the sum data type before addition, specified as one of these values:
- 0 (false) - Do not cast before sum
- 1 (true) - Cast before sum

Note This property is hidden when the SumMode is set to FullPrecision.

MaxSumWordLenth - Maximum allowable word length for the sum data type 65535 (default) | positive integer

Maximum allowable word length for the sum data type, specified as a positive integer.

\section*{SumBias - Bias of the sum data type}

0 (default) | floating-point number
Bias of the sum data type, specified as a floating-point number.

\section*{SumFixedExponent - Fixed exponent of the sum data type}
- 30 (default) | positive or negative integer

Fixed exponent of the sum data type, specified as a positive or negative integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property changes the other.

\section*{SumFractionLength - Fraction length of the sum data type in bits \\ 30 (default) | positive or negative integer}

Fraction length of the sum data type in bits, specified as a positive or negative integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property changes the other.

\section*{SumMode - How the sum data type is determined}

Full Precision (default) | KeepLSB | KeepMSB | SpecifyPrecision
How the sum data type is determined, specified as one of the following:
- FullPrecision - Keep the full precision of the result.
- KeepLSB - Keep least significant bits. Specify the sum data type word length, while the fraction length is set to maintain the least significant bits of the sum.
- KeepMSB - Keep most significant bits. Specify the sum data type word length, while the fraction length is set to maintain the most significant bits of the sum and no more fractional bits than necessary.
- SpecifyPrecision - Specify the word and fraction lengths or the slope and bias of the sum data type.

\section*{SumSlope - Slope of the sum data type}
9.3132e-010 (default) | floating-point number

Slope of the sum data type, specified as a floating-point number.

\section*{Note}

SumSlope \(=\) SumSlopeAdjustmentFactor \(\times 2^{\text {SumFixedExponent }}\)
Changing one of these properties affects the others.

\section*{SumSlopeAdjustmentFactor - Slope adjustment factor of the sum data type}

1 (default) | floating-point number greater than or equal to 1 and less than 2
Slope adjustment factor of the sum data type, specified as a floating-point number greater than or equal to 1 and less than 2.

\section*{\(\overline{\text { Note }}\)}

SumSlope \(=\) SumSlopeAdjustmentFactor \(\times 2^{\text {SumFixedExponent }}\)
Changing one of these properties affects the others.

\section*{SumWordLength - Word length of the sum data type in bits}

32 (default) | positive integer
Word length of the sum data type in bits, specified as a positive integer.

\section*{Product Data Type Properties}

MaxProductWordLenth - Maximum allowable word length for the product data type 65535 (default) | positive integer

Maximum allowable word length for the product data type, specified as a positive integer.

\section*{ProductBias - Bias of the product data type}

0 (default) | floating-point number
Bias of the product data type, specified as a floating-point number.

\section*{ProductFixedExponent - Fixed exponent of the product data type \\ - 30 (default) | positive or negative integer}

Fixed exponent of the product data type, specified as a positive or negative integer.

Note The ProductFractionLength is the negative of the ProductFixedExponent. Change one property changes the other.

\section*{ProductFractionLength - Fraction length of the product data type in bits \\ 30 (default) | positive or negative integer}

Fraction length of the product data type in bits, specified as a positive or negative integer.

Note The ProductFractionLength is the negative of the ProductFixedExponent. Changing one property changes the other.

\section*{ProductMode - How the product data type is determined}

FullPrecision (default) | KeepLSB | KeepMSB \| SpecifyPrecision
How the product data type is determined, specified as one of these values:
- FullPrecision - Keep the full precision of the result.
- KeepLSB - Keep least significant bits. Specify the product word length, while the fraction length is set to maintain the least significant bits of the product.
- KeepMSB - Keep most significant bits. Specify the product word length, while the fraction length is set to maintain the most significant bits of the product.
- SpecifyPrecision - Specify the word and fraction lengths or slope and bias of the product.

\section*{ProductSlope - Slope of the product data type}
9.3132e-010 (default) | floating-point number

Slope of the product data type, specified as a floating-point number.

\section*{\(\overline{\text { Note }}\)}

ProductSlope \(=\) ProductSlopeAdjustmentFactor \(\times 2^{\text {ProductFixedExponent }}\)
Changing one of these properties affects the others.

ProductSlopeAdjustmentFactor - Slope adjustment factor of the product data type
1 (default) | floating-point number greater than or equal to 1 and less than 2

Slope adjustment factor of the product data type, specified as a floating-point number greater than or equal to 1 and less than 2.

\section*{Note}

ProductSlope \(=\) ProductSlopeAd justmentFactor \(\times 2^{\text {ProductFixedExponent }}\)
Changing one of these properties affects the others.

\section*{ProductWordLength - Word length of the product data type in bits}

32 (default) | positive integer
Word length of the product data type in bits, specified as a positive integer.

\section*{Rounding and Overflow Properties}

\section*{OverflowAction - Action to take on overflow}

Saturate (default) | Wrap
Action to take on overflow, specified as one of these values:
- Saturate - Saturate to maximum or minimum value of the fixed-point range on overflow.
- Wrap - Wrap on overflow. This mode is also known as two's complement overflow.

\section*{RoundingMethod - Rounding method to use}

Nearest (default) | Ceiling | Convergent | Zero | Floor | Round
Rounding method to use, specified as one of the following:
- Nearest - Round toward nearest. Ties round toward positive infinity.
- Ceiling - Round toward positive infinity.
- Convergent - Round toward nearest. Ties round to the nearest even stored integer (least biased).
- Zero - Round toward zero.
- Floor - Round toward negative infinity.
- Round - Round toward nearest. Ties round toward negative infinity for negative numbers, and toward positive infinity for positive numbers.

Introduced before R2006a

\section*{numerictype Object Properties}

Properties of the numerictype object

\section*{Description}
numerictype object properties define the data type and scaling attributes of a fixed-point object. All properties of a numerictype object are writable. However, the numerictype properties of a fi object become read only after the fi object has been created. Any numerictype properties of a fi object that are unspecified at the time of fi object creation are automatically set to their default values.

\section*{Properties}

\section*{numerictype Object Properties}

\section*{Bias - Bias associated with the object}

0 (default) | floating-point number
Bias associated with the object, specified as a floating-point number. Along with the slope, the bias forms the scaling of a fixed-point number.

\section*{DataType - Data type category}

Fixed (default) | double | single | boolean | ScaledDouble
Data type category, specified as one of the following:
- Fixed - Fixed-point or integer data type
- double - Built-in MATLAB double data type
- single - Built-in MATLAB single data type
- boolean - Built-in MATLAB boolean data type
- ScaledDouble - Scaled double data type

\section*{DataTypeMode - Data type and scaling associated with the object}

Fixed-point: binary point scaling (default)|Fixed-point: slope and bias scalingFixed-point: unspecified scaling|Scaled double: binary point scaling| Scaled double: slope and bias scaling|Scaled double: unspecified scaling| Double | Single | Boolean

Data type and scaling associated with the object, specified as one of the following:
- Fixed-point: binary point scaling - Fixed-point data type and scaling defined by the word length and fraction length
- Fixed-point: slope and bias scaling - Fixed-point data type and scaling defined by the slope and bias
- Fixed-point: unspecified scaling - Fixed-point data type with unspecified scaling
- Scaled double: binary point scaling - Double data type with fixed-point word length and fraction length information retained
- Scaled double: slope and bias scaling - Double data type with fixed-point slope and bias information retained
- Scaled double: unspecified scaling - Double data type with unspecified fixed-point scaling
- Double - Built-in double data type
- Single - Built-in single data type
- Boolean - Built-in boolean data type

For more details on these data types, see "Valid Values for numerictype Object Properties".

\section*{FixedExponent - Fixed-point exponent associated with the object}
- 15 (default) | integer

Fixed-point exponent associated with the object, specified as an integer.

Note The FixedExponent property is the negative of the FractionLength. Changing one property changes the other.

\section*{FractionLength - Fraction length of the stored integer value in bits}
best precision fraction length (default) | integer
Fraction length of the stored integer value in bits, specified as an integer. The default is the best precision fraction length based on the value of the object and the word length.

Note The FractionLength property is the negative of the FixedExponent. Changing one property changes the other.

\section*{Scaling - Scaling mode of the object}

BinaryPoint (default) | SlopeBias | Unspecified
Scaling mode of the object, specified as one of the following:
- BinaryPoint (default) - Scaling for the fi object is defined by the fraction length.
- SlopeBias - Scaling for the fi object is defined by the slope and bias.
- Unspecified - Unspecified scaling. This is a temporary setting that is only allowed at fi object creation to allow for the automatic assignment of a binary point best-precision scaling.

\section*{Signed - Whether the object is signed (not recommended)}

1 (true) (default) | 0 (false) | []
Whether the object is signed, specified as one of the following:
- 1 (true) - Signed
- 0 (false) - Unsigned
- [] - Auto

Note The Signed property is not recommended. Use Signedness instead. There are no plans to remove the Signed property.

Although the Signed property is still supported, the Signedness property always appears in the numerictype object display. If you choose to change or set the signedness of your numerictype objects using the Signed property, MATLAB updates the corresponding value of the Signedness property.

\section*{Signedness - Whether the object is signed}

Signed (default) |Unsigned |Auto
Whether the object is signed, specified as one of the following:
- Signed - Signed
- Unsigned - Unsigned
- Auto - Unspecified sign

Note numerictype objects can have a Signedness of Auto, but all fi objects must be Signed or Unsigned. If a fi object with Auto Signedness is used to create a fi object, the Signedness property of the fi object automatically defaults to Signed.

\section*{Slope - Slope associated with the object}
finite floating-point number greater than zero
Slope associated with the object, specified as a finite floating-point number greater than zero. Along with the bias, the slope forms the scaling of a fixed-point number.

Note Slope \(=\) SlopeAdjustmentFactor X \(2^{\text {FixedExponent }}\) Changing one of these properties changes the other.

\section*{SlopeAdjustmentFactor - Slope adjustment associated with the object \\ number greater than or equal to 1 and less than 2}

Slope adjustment associated with the object, specified as a number greater than or equal to 1 and less than 2.
\(\overline{\text { Note }}\) Slope \(=\) SlopeAdjustmentFactor X \(2^{\text {FixedExponent } C h a n g i n g ~ o n e ~ o f ~ t h e s e ~ p r o p e r t i e s ~ c h a n g e s ~ t h e ~}\) other.

\section*{WordLength - Word length of the stored integer value in bits}

16 (default) | positive integer if Signedness is Unsigned or unspecified | integer greater than one if Signedness is set to Signed

Word length of the stored integer value in bits, specified as:
- A positive integer if Signedness is Unsigned or unspecified
- An integer greater than one if Signedness is set to Signed

\section*{Version History \\ Introduced before R2006a}

Functions

\section*{abs}

Absolute value of fi object

\section*{Syntax}
\(y=a b s(a)\)
\(y=\operatorname{abs}(a, T)\)
\(y=a b s(a, F)\)
\(\mathrm{y}=\mathrm{abs}(\mathrm{a}, \mathrm{T}, \mathrm{F})\)

\section*{Description}
\(y=a b s(a)\) returns the absolute value of fi object a with the same numerictype object as a. Intermediate quantities are calculated using the fimath associated with \(a\). The output fi object, \(y\), has the same local fimath as a.
\(y=a b s(a, T)\) returns a fi object with a value equal to the absolute value of a and numerictype object T. Intermediate quantities are calculated using the fimath associated with a and the output fi object y has the same local fimath as a. See "Data Type Propagation Rules" on page 4-8.
\(y=\operatorname{abs}(a, F)\) returns a fi object with a value equal to the absolute value of \(a\) and the same numerictype object as a. Intermediate quantities are calculated using the fimath object F. The output fi object, \(y\), has no local fimath.
\(y=\operatorname{abs}(a, T, F)\) returns a fi object with a value equal to the absolute value of \(a\) and the numerictype object \(T\). Intermediate quantities are calculated using the fimath object \(F\). The output fi object, y, has no local fimath. See "Data Type Propagation Rules" on page 4-8.

\section*{Examples}

\section*{Absolute Value of Most Negative Representable Value}

This example shows the difference between the absolute value results for the most negative value representable by a signed data type when the 'OverflowAction' property is set to 'Saturate' or 'Wrap'.

Calculate the absolute value when the 'OverflowAction' is set to the default value 'Saturate'.
```

P = fipref('NumericTypeDisplay','full',...
'FimathDisplay','full');
a = fi(-128)
y = abs(a)
a =
-128
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

```
```

FractionLength: 8

```
\(y=\)
127.9961
```

 DataTypeMode: Fixed-point: binary point scaling
    ```
        Signedness: Signed
        WordLength: 16
FractionLength: 8
abs returns 127.9961 , which is a result of saturation to the maximum positive value.
Calculate the absolute value when the 'OverflowAction' is set to 'Wrap'.
```

a.OverflowAction = 'Wrap'
y = abs(a)
a =
-128
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 8
RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision
y =
-128
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 8
RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

```
abs returns 128 , which is a result of wrapping back to the most negative value.

\section*{Difference Between Absolute Values for Real and Complex fi Inputs}

This example shows the difference between the absolute value results for complex and real fi inputs that have the most negative value representable by a signed data type when the 'OverflowAction ' property is set to 'Wrap'.

Define a complex fi object.
```

re = fi(-1,1,16,15);
im = fi(0,1,16,15);
a = complex(re,im)
a =
-1.0000 + 0.0000i
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

```
a is complex, but numerically equal to the real part, re.
Calculate the absolute value of the complex fi object.
```

y = abs(a,re.numerictype,fimath('OverflowAction','Wrap'))
y =
1.0000
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

```

Calculate the absolute value of the real fi object.
```

y = abs(re,re.numerictype,fimath('OverflowAction','Wrap'))
y =
-1

```
```

 DataTypeMode: Fixed-point: binary point scaling
    ```
        DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                        Signedness: Signed
        WordLength: 16
        WordLength: 16
        FractionLength: 15
```

 FractionLength: 15
    ```

\section*{Specify numerictype and fimath Inputs to Control the Result of abs for Real Inputs}

This example shows how to specify numerictype and fimath objects as optional arguments to control the result of the abs function for real inputs. When you specify a fimath object as an argument, that fimath object is used to compute intermediate quantities, and the resulting fi object has no local fimath.
```

a = fi(-1,1,6,5,'OverflowAction','Wrap');
y = abs(a)
y =
-1

```
```

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

```
```

 WordLength: 6
 FractionLength: 5
RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

```

The returned output is identical to the input. This may be undesirable because the absolute value is expected to be positive.
```

F = fimath('OverflowAction','Saturate');
y = abs(a,F)
y =
0.9688
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 5

```

The returned fi object is saturated to a value of 0.9688 and has the same numerictype object as the input.

Because the output of abs is always expected to be positive, an unsigned numerictype may be specified for the output.
```

T = numerictype(a.numerictype, 'Signed', false);
y = abs(a,T,F)
y =
1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 6
FractionLength: 5

```

Specifying an unsigned numerictype enables better precision.

\section*{Specify numerictype and fimath Inputs to Control the Result of abs for Complex Inputs}

This example shows how to specify numerictype and fimath objects as optional arguments to control the result of the abs function for complex inputs.

Specify a numerictype input and calculate the absolute value of a.
```

a = fi(-1-i,1,16,15,'OverflowAction','Wrap');
T = numerictype(a.numerictype,'Signed',false);
y = abs(a,T)
y =

```
```

1.4142
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 15
RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

```

A fi object is returned with a value of 1.4142 and the specified unsigned numerictype. The fimath used for intermediate calculation and the fimath of the output are the same as that of the input.

Now specify a fimath object different from that of a.
```

F = fimath('OverflowAction','Saturate','SumMode',...
'KeepLSB','SumWordLength',a.WordLength,...
'ProductMode','specifyprecision',...
'ProductWordLength',a.WordLength,...
'ProductFractionLength',a.FractionLength);
y = abs(a,T,F)
y =
1.4142
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 15

```

The specified fimath object is used for intermediate calculation. The fimath associated with the output is the default fimath.

\section*{Input Arguments}
a - Input fi array
scalar | vector \(\mid\) matrix \(\mid\) multidimensional array
Input fi array, specified as a scalar, vector, matrix, or multidimensional array.
abs only supports fi objects with trivial [Slope Bias] scaling, that is, when the bias is 0 and the fractional slope is 1 .
abs uses a different algorithm for real and complex inputs. For more information, see "Absolute Value" on page 4-7.

Data Types: fi
Complex Number Support: Yes

\section*{T - numerictype of the output}
numerictype object
numerictype of the output fi object \(y\), specified as a numerictype object. For more information, see "Data Type Propagation Rules" on page 4-8.
Example: T = numerictype(0,24,12,'DataType','Fixed')

\section*{F - Fixed-point math settings to use \\ fimath object}

Fixed-point math settings to use for the calculation of absolute value, specified as a fimath object.
Example: F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

\section*{Algorithms}

\section*{Absolute Value}

The absolute value of a real number is the corresponding nonnegative value that disregards the sign.
For a real input, \(a\), the absolute value, \(y\), is:
\(y=a\) if \(a>=0\)
\(y=-a\) if \(a<0\)
abs ( -0 ) returns 0 .

Note When the fi object a is real and has a signed data type, the absolute value of the most negative value is problematic since it is not representable. In this case, the absolute value saturates to the most positive value representable by the data type if the 'OverflowAction' property is set to 'Saturate'. If 'OverflowAction' is 'Wrap', the absolute value of the most negative value has no effect.

For a complex input, \(a\), the absolute value, \(y\), is related to its real and imaginary parts as follows:
\(y=\operatorname{sqrt}(\operatorname{real}(a) * \operatorname{real}(a)+i m a g(a) * i m a g(a))\)
The abs function computes the absolute value of a complex input, \(a\), as follows:
1 Calculate the real and imaginary parts of a.
\[
\begin{align*}
& r e=\operatorname{real}(a)  \tag{4-4}\\
& i m=\operatorname{imag}(a) \tag{4-5}
\end{align*}
\]

2 Compute the squares of re and im using one of the following objects:
- The fimath object \(F\) if \(F\) is specified as an argument.
- The fimath associated with a if \(F\) is not specified as an argument.

3 If the input is signed, cast the squares of re and im to unsigned types.
4 Add the squares of re and im using one of the following objects:
- The fimath object \(F\) if \(F\) is specified as an argument.
- The fimath object associated with a if F is not specified as an argument.

5 Compute the square root of the sum computed in Step 4 using the sqrt function with the following additional arguments:
- The numerictype object T if T is specified, or the numerictype object of a otherwise.
- The fimath object F if F is specified, or the fimath object associated with a otherwise.

Note Step 3 prevents the sum of the squares of the real and imaginary components from being negative. This is important because if either re or im has the maximum negative value and the 'OverflowAction' property is set to 'Wrap' then an error will occur when taking the square root in Step 5.

\section*{Data Type Propagation Rules}

For syntaxes for which you specify a numerictype object \(T\), the abs function follows the data type propagation rules listed in the following table. In general, these rules can be summarized as "floatingpoint data types are propagated." This allows you to write code that can be used with both fixed-point and floating-point inputs.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Data Type of Input fi Object \\
a
\end{tabular} & \begin{tabular}{l} 
Data Type of numerictype \\
object T
\end{tabular} & Data Type of Output y \\
\hline fi Fixed & fi Fixed & \begin{tabular}{l} 
Data type of numerictype \\
object T
\end{tabular} \\
\hline fi ScaledDouble & fi Fixed & \begin{tabular}{l} 
ScaledDouble with properties \\
of numerictype object T
\end{tabular} \\
\hline fi double & fi Fixed & fi double \\
\hline fi single & fi Fixed & fi single \\
\hline Any fi data type & fi double & fi double \\
\hline Any fi data type & fi single & fi single \\
\hline
\end{tabular}

Note When the Signedness of the input numerictype object T is Auto, the abs function always returns an Unsigned fi object.

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

\section*{\(\mathbf{C} / \mathbf{C}++\) Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).
Double and complex data types are not supported.

\section*{See Also}
fi|fimath|numerictype

\section*{accumneg}

Subtract two fi objects or values

\section*{Syntax}
\(c=\operatorname{accumneg}(a, b)\)
\(c=\) accumneg(a,b,RoundingMethod)
\(c=\) accumneg(a,b,RoundingMethod,OverflowAction)

\section*{Description}
\(c=\operatorname{accumneg}(a, b)\) subtracts \(b\) from \(a\) using the data type of \(a . b\) is cast into the data type of \(a\). If a is a fi object, the default 'Floor' rounding method and default 'Wrap' overflow action are used. The fimath properties of \(a\) and \(b\) are ignored.
\(c=\) accumneg( \(a, b\), RoundingMethod) subtracts \(b\) from a using the rounding method specified by RoundingMethod if a is a fi object.
\(c=\) accumneg(a,b,RoundingMethod,OverflowAction) subtracts \(b\) from a using the rounding method specified by RoundingMethod and the overflow action specified by OverflowAction if a is a fi object.

\section*{Examples}

\section*{Subtract Two fi Objects or Values}

This example shows how to subtract two fi numbers using accumneg.

\section*{Subtract two fi numbers}

Subtract b from a , where a and b are both fi numbers, using the default rounding method of 'Floor' and overflow action of 'Wrap'.
\(\mathrm{a}=\mathrm{fi}(\mathrm{pi}, 1,16,13)\);
b = fi(1.5,1,16,14);
subtr_default \(=\operatorname{accumneg}(a, b)\)
subtr_default =
1.6416

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 13

\section*{Subtract two fi numbers using specified rounding and overflow action}

Subtract \(b\) from \(a\), where \(a\) and \(b\) are both fi numbers, using specified rounding method of
'Nearest' and overflow action of 'Saturate'.
```

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
subtr_custom = accumneg(a,b,'Nearest','Saturate')
subtr_custom =
1. }641
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

```

\section*{Input Arguments}

\section*{a - Number to subtract from}
fi object (default) | double | single | logical| integer
Number from which to subtract. The data type of a is used to compute the output data type.
Data Types: single | double | int8 | int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi

\section*{b - Number to subtract}
fi object (default) | double | single | logical | integer
Number to subtract.
Data Types: single | double | int8 | int16|int32 | int64|uint8|uint16|uint32|uint64 | logical|fi

\section*{RoundingMethod - Rounding method to use}
'Floor' (default)|'Ceiling'|'Convergent'|'Nearest'|'Round'|'Zero'
Rounding method to use if a is a fi object.
Example: c = accumneg(a,b,'Ceiling')
Data Types: string

\section*{OverflowAction - Overflow action to take}
'Wrap ' (default)|'Saturate'
Overflow action to take if a is a fi object.
Example: c = accumneg(a,b,'Ceiling','Saturate')
Data Types: string

\section*{Output Arguments}

\section*{c - Difference of inputs}
fi object | double | single | logical | integer
Result of subtracting input b from input a .

\section*{Version History}

Introduced in R2012a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{Tm}}\).
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder \({ }^{\text {™ }}\).

\section*{See Also}
accumpos

\section*{Topics}
"Avoid Multiword Operations in Generated Code"

\section*{accumpos}

Add two fi objects or values

\section*{Syntax}
\(\mathrm{c}=\operatorname{accumpos}(\mathrm{a}, \mathrm{b})\)
\(c=\operatorname{accumpos}(a, b\), RoundingMethod)
\(\mathrm{c}=\) accumpos(a,b,RoundingMethod,OverflowAction)

\section*{Description}
\(c=\operatorname{accumpos}(a, b)\) adds \(a\) and \(b\) using the data type of \(a\). \(b\) is cast into the data type of \(a\). If \(a\) is \(a\) fi object, the default 'Floor' rounding method and default 'Wrap' overflow action are used. The fimath properties of \(a\) and \(b\) are ignored.
\(\mathrm{c}=\mathrm{accumpos}(\mathrm{a}, \mathrm{b}\), RoundingMethod) adds a and b using the rounding method specified by RoundingMethod.
\(\mathrm{c}=\) accumpos( \(\mathrm{a}, \mathrm{b}\), RoundingMethod,OverflowAction) adds a and b using the rounding method specified by RoundingMethod and the overflow action specified by OverflowAction.

\section*{Examples}

\section*{Add Two fi Objects or Values}

This example shows how to add two fi numbers using accumpos.

\section*{Add two fi numbers}

Add \(a\) and \(b\), where \(a\) and \(b\) are both fi numbers, using the default rounding method of ' \(F\) loor' and overflow action of 'Wrap'.
```

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
add_default = accumpos(a,b)
add_default =
3.3584
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

```

\section*{Add two fi numbers using specified rounding and overflow action}

Add \(a\) and \(b\), where \(a\) and \(b\) are both fi numbers, using specified rounding method of 'Nearest' and overflow action of 'Saturate'.
```

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
add_custom = accumpos(a,b,'Nearest','Saturate')
add_custom =
3.9999
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

```

\section*{Input Arguments}

\section*{a - Number to add}
fi object (default) | double | single | logical | integer
Number to add. The data type of \(a\) is used to compute the output data type.
```

Data Types: single| double| int8| int16| int32| int64|uint8|uint16|uint32|uint64|
logical|fi

```

\section*{b - Number to add}
fi object (default) | double | single | logical | integer
Number to add.
Data Types: single|double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi

\section*{RoundingMethod - Rounding method to use}
'Floor' (default)| 'Ceiling'| 'Convergent'| 'Nearest'|'Round'|'Zero'
Rounding method to use if a is a fi object.
Example: \(\mathrm{c}=\mathrm{accumpos}(\mathrm{a}, \mathrm{b}\), 'Ceiling')
Data Types: string

\section*{OverflowAction - Overflow action to take}
'Wrap' (default)|'Saturate'
Overflow action to take if a is a fi object.
Example: c \(=\) accumpos(a,b,'Ceiling','Saturate')
Data Types: string

\section*{Output Arguments}

\section*{c - Sum of inputs}
fi object | double | single | logical | integer
Result of adding input \(a\) and input \(b\).

\section*{Version History}

Introduced in R2012a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{Tm}}\).
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder \({ }^{\text {™ }}\).

\section*{See Also}
accumneg

\section*{Topics}
"Avoid Multiword Operations in Generated Code"

\section*{add}

Add two fi objects using fimath object

\section*{Syntax}
\(c=\operatorname{add}(F, a, b)\)

\section*{Description}
\(c=\operatorname{add}(F, a, b)\) adds fi objects \(a\) and \(b\) using fimath object \(F\). This is helpful in cases when you want to override the fimath objects of \(a\) and \(b\), or if the fimath properties associated with \(a\) and \(b\) are different. The output of fi object \(c\) has no local fimath.

\section*{Examples}

\section*{Add Two Fixed-Point Numbers}

In this example, c is the 32 -bit sum of a and b with a fraction length of 16 .
```

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision',...
'SumWordLength',32,'SumFractionLength',16);
c = add(F,a,b)
c =
5.8599
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 32
FractionLength: 16

```

\section*{Input Arguments}

\section*{F - fimath}
fimath object
fimath object to use for addition.

\section*{a,b-Operands}
scalars | vectors | matrices | multidimensional arrays
Operands, specified as scalars, vectors, matrices, or multidimensional arrays.
\(a\) and \(b\) must both be fi objects and must have the same dimensions unless one is a scalar. If either a or b is scalar, then c has the dimensions of the nonscalar object.
Data Types: fi

\section*{Algorithms}
\(c=\operatorname{add}(F, a, b)\)
is similar to
a.fimath \(=\) F;
b.fimath = F;
\(c=a+b\)
but not identical. When you use add, the fimath properties of \(a\) and \(b\) are not modified, and the output fi object, \(c\), has no local fimath. When you use the syntax \(c=a+b\), where \(a\) and \(b\) have their own fimath objects, the output fi object, c , gets assigned the same fimath object as inputs a and b .

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using MATLAB® \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
Usage notes and limitations:
- The syntax F. \(\operatorname{add}(a, b)\) is not supported. You must use the syntax \(\operatorname{add}(F, a, b)\).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

\section*{See Also}
divide|fi|fimath|mpy|mrdivide|numerictype|rdivide|sub|sum

\section*{Topics}
"fimath Rules for Fixed-Point Arithmetic"

\section*{assignmentquantizer}

Package: embedded
Create quantizer object with fi object attributes

\section*{Syntax}
q = assignmentquantizer(a)

\section*{Description}
\(\mathrm{q}=\) assignmentquantizer(a) creates a quantizer object q that is used in assignment operations for the fi object a. To use this object to quantize values, use quantize.

\section*{Examples}

\section*{Create quantizer Object from fi Object}

Use assignmentquantizer to create a quantizer object with the same quantization attributes as a fi object.
```

F = fimath('RoundingMethod','Convergent','OverflowAction','Saturate');
a = fi([],0,16,13,F);
q = assignmentquantizer(a)
q =

```
```

 DataMode = ufixed
 RoundMode = convergent
 OverflowMode = saturate
Format = [ll6 13]

```

\section*{Input Arguments}
a - Properties used for quantization
fi object
Properties used for quantization, specified as a fi object.
Data Types: fi

\section*{Version History \\ Introduced in R2008a}

\section*{See Also}
quantize| quantizer|fi

\section*{atan2}

Four-quadrant inverse tangent of fixed-point values

\section*{Syntax}
\(z=\operatorname{atan} 2(y, x)\)

\section*{Description}
\(z=\operatorname{atan2}(y, x)\) returns the four-quadrant arctangent of \(f i\) inputs \(y\) and \(x\).

\section*{Examples}

\section*{Calculate Arctangent of Fixed-Point Input Values}

Use the atan2 function to calculate the arctangent of unsigned and signed fixed-point input values.

\section*{Unsigned Input Values}

This example uses unsigned, 16 -bit word length values.
```

y = fi(0.125,0,16);
x = fi(0.5,0,16);
z = atan2(y,x)
z =
0.2450
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 15

```

\section*{Signed Input Values}

This example uses signed, 16 -bit word length values.
\(y=f i(-0.1,1,16)\);
\(x=\) fi(-0.9,1,16);
\(z=\operatorname{atan} 2(y, x)\)
z =
\(-3.0309\)
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed

\section*{WordLength: 16}

FractionLength: 13

\section*{Input Arguments}

\section*{\(\mathbf{y} \boldsymbol{-} \boldsymbol{y}\)-coordinates}
scalar | vector | matrix | multidimensional array
\(y\)-coordinates, specified as a scalar, vector, matrix, or multidimensional array.
y and x can be real-valued, signed or unsigned scalars, vectors, matrices, or N -dimensional arrays containing fixed-point angle values in radians. The inputs \(y\) and \(x\) must be the same size. If they are not the same size, at least one input must be a scalar value. Valid data types of \(y\) and \(x\) are:
- fi single
- fi double
- fi fixed-point with binary point scaling
- fi scaled double with binary point scaling

\section*{Data Types: fi}

\section*{x - x-coordinates}
scalar | vector | matrix | multidimensional array
\(x\)-coordinates, specified as a scalar, vector, matrix, or multidimensional array.
y and x can be real-valued, signed or unsigned scalars, vectors, matrices, or N -dimensional arrays containing fixed-point angle values in radians. The inputs \(y\) and \(x\) must be the same size. If they are not the same size, at least one input must be a scalar value. Valid data types of \(y\) and \(x\) are:
- fi single
- fi double
- fi fixed-point with binary point scaling
- fi scaled double with binary point scaling

Data Types: fi

\section*{Output Arguments}

\section*{z - Four-quadrant arctangent}
scalar | vector | matrix | multidimensional array
Four-quadrant arctangent, returned as a scalar, vector, matrix, or multidimensional array.
\(z\) is the four-quadrant arctangent of \(y\) and \(x\). The numerictype of \(z\) depends on the signedness of \(y\) and \(x\) :
- If either y or x is signed, then z is a signed, fixed-point number in the range [-pi,pi]. It has a 16 -bit word length and 13-bit fraction length (numerictype(1, 16, 13)).
- If both \(y\) and \(x\) are unsigned, then \(z\) is an unsigned, fixed-point number in the range [ \(0, \mathrm{pi} / 2\) ]. It has a 16 -bit word length and 15 -bit fraction length (numerictype \((0,16,15)\) ).

The output, \(z\), is always associated with the default fimath.

\section*{More About}

\section*{Four-Quadrant Arctangent}

The four-quadrant arctangent is defined as follows, with respect to the atan function:
\[
\operatorname{atan} 2(y, x)= \begin{cases}\operatorname{atan}\left(\frac{y}{x}\right) & x>0 \\ \pi+\operatorname{atan}\left(\frac{y}{x}\right) & y \geq 0, x<0 \\ -\Pi+\operatorname{atan}\left(\frac{y}{x}\right) & y<0, x<0 \\ \frac{\pi}{2} & y>0, x=0 \\ -\frac{\pi}{2} & y<0, x=0 \\ 0 & y=0, x=0\end{cases}
\]

\section*{Algorithms}

The atan2 function computes the four-quadrant arctangent of fixed-point inputs using an 8-bit lookup table as follows:

1 Divide the input absolute values to get an unsigned, fractional, fixed-point, 16-bit ratio between 0 and 1 . The absolute values of y and x determine which value is the divisor.

The signs of the \(y\) and \(x\) inputs determine in what quadrant their ratio lies. The input with the larger absolute value is used as the denominator, thus producing a value between 0 and 1.


2 Compute the table index, based on the 16-bit, unsigned, stored integer value:
a Use the 8 most-significant bits to obtain the first value from the table.
b Use the next-greater table value as the second value.
3 Use the 8 least-significant bits to interpolate between the first and second values using nearest neighbor linear interpolation. This interpolation produces a value in the range [0, pi/4).
4 Perform octant correction on the resulting angle, based on the values of the original \(y\) and \(x\) inputs.

This arctangent calculation is accurate only to within the top 16 most-significant bits of the input.

\section*{fimath Propagation Rules}

The atan2 function ignores and discards any fimath attached to the inputs. The output, z , is always associated with the default fimath.

\section*{Version History}

Introduced in R2012a

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\section*{See Also}
atan2|sin|angle|cos|cordicatan2

\section*{autofixexp}

Automatically change scaling of fixed-point data types

\section*{Syntax}
autofixexp

\section*{Description}

The autofixexp script automatically changes the scaling for model objects that specify fixed-point data types. However, if an object's Lock output data type setting against changes by the fixedpoint tools parameter is selected, the script refrains from scaling that object.

This script collects range data for model objects, either from design minimum and maximum values that objects specify explicitly, or from logged minimum and maximum values that occur during simulation. Based on these values, the tool changes the scaling of fixed-point data types in a model so as to maximize precision and cover the range.

You can specify design minimum and maximum values for model objects using parameters typically titled Output minimum and Output maximum. See "Blocks That Allow Signal Range Specification" for a list of Simulink blocks that permit you to specify these values. In the autoscaling procedure that the autofixexp script executes, design minimum and maximum values take precedence over the simulation range.

If you intend to scale fixed-point data types using simulation minimum and maximum values, the script yields meaningful results when exercising the full range of values over which your design is meant to run. Therefore, the simulation you run prior to using autofixexp must simulate your design over its full intended operating range. It is especially important that you use simulation inputs with appropriate speed and amplitude profiles for dynamic systems. The response of a linear dynamic system is frequency dependent. For example, a bandpass filter will show almost no response to very slow and very fast sinusoid inputs, whereas the signal of a sinusoid input with a frequency in the passband will be passed or even significantly amplified. The response of nonlinear dynamic systems can have complicated dependence on both the signal speed and amplitude.

Note If you already know the simulation range you need to cover, you can use an alternate autoscaling technique described in the fixptbestprec reference page.

To control the parameters associated with automatic scaling, such as safety margins, use the FixedPoint Tool.

To learn how to use the Fixed-Point Tool, refer to "Propose Fraction Lengths Using Simulation Range Data".

\section*{Version History \\ Introduced before R2006a}

\section*{See Also}
fxptdlg

\section*{bin}

Package: embedded
Unsigned binary representation of stored integer of fi object

\section*{Syntax}
\(\mathrm{b}=\mathrm{bin}(\mathrm{a})\)

\section*{Description}
\(b=b i n(a)\) returns the stored integer of fi object \(a\) in unsigned binary format as a character vector.

Fixed-point numbers can be represented as
\[
\text { real-worldvalue }=2^{- \text {fractionlength }} \times \text { storedinteger }
\]
or, equivalently as
\[
\text { real-worldvalue }=(\text { slope } \times \text { storedinteger })+\text { bias }
\]

The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.

Tip bin returns the unsigned binary representation of the stored integer of a fi object. To obtain the binary representation of the real-world value of a fi object, use dec2bin.

\section*{Examples}

\section*{View Stored Integer of fi Object in Unsigned Binary Format}

Create a signed fi object with values -1 and 1 , a word length of 8 bits, and a fraction length of 7 bits.
```

a = fi([-1 1], 1, 8, 7)
a =
-1.0000 0.9922
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 7

```

Find the unsigned binary representation of the stored integers of fi object a.
```

b = bin(a)

```
```

b =
'10000000 01111111'

```

\section*{Input Arguments}
a - Input array
fi object
Input array, specified as a fi object.
Data Types: fi

\section*{Version History}

Introduced before R2006a

\section*{See Also}
dec | hex | storedInteger |oct | dec2hex | dec2base | dec2bin

\section*{bin2num}

Convert two's complement binary string to number using quantizer object

\section*{Syntax}
\(y=\operatorname{bin} 2 \operatorname{num}(q, b)\)

\section*{Description}
\(y=b i n 2 n u m(a, b)\) converts the binary character vector \(b\) to a numeric array \(y\) using the properties of the quantizer object \(q\).

If \(b\) is a cell array containing binary strings, then \(y\) will be a cell array of the same dimension containing numeric arrays.
\([y 1, y 2, \ldots]=\operatorname{bin} 2\) num \((q, b 1, b 2, \ldots)\) converts the binary character vectors \(b 1, b 2, \ldots\) to numeric arrays y1, y2, ....

\section*{Examples}

\section*{Convert Between Binary String and Numeric Array}

Convert between a binary character vector and a numeric array using the properties specified in a quantizer object.

\section*{Convert Numeric Array to Binary String}

Create a quantizer object specifying a word length of 4 bits and a fraction length of 3 bits. The other properties of the quantizer object take the default values of specifying a signed, fixed-point data type, rounding towards negative infinity, and saturate on overflow.
```

q = quantizer([4 3])

```
\(q=\)
\[
\begin{aligned}
\text { DataMode } & =\text { fixed } \\
\text { RoundMode } & =\text { floor } \\
\text { OverflowMode } & =\text { saturate } \\
\text { Format } & =\left[\begin{array}{ll}
4 & 3
\end{array}\right]
\end{aligned}
\]

Create an array of numeric values.
```

[a,b] = range(q);
x = (b:-eps(q):a)
x = 1\times16

```
0.8750
0.7500
0.6250
0.5000
0.3750
0.2500
0.1250
\(0-0.1250\)

Convert the numeric vector x to binary representation using the properties specified by the quantizer object \(q\). Note that num2bin always returns the binary representations in a column.
```

b = num2bin(q,x)
b = 16x4 char array
'0111'
'0110'
'0101'
'0100'
'0011'
'0010'
'0001'
'0000'
'1111'
'1110'
'1101'
'1100'
'1011'
'1010'
'1001'
'1000'

```

Use bin2num to perform the inverse operation.
```

y = bin2num(q,b)
y = 16x1
0.8750
0.7500
0.6250
0.5000
0.3750
0.2500
0.1250
0
-0.1250
-0.2500

```

\section*{Convert Binary String to Numeric Array}

All of the 3-bit fixed-point two's-complement numbers in fractional form are given by:
```

q = quantizer([3 2]);
b = ['011 111'
'010 110'
'001 101'
'000 100'];

```

Use bin2num to view the numeric equivalents of these values.
```

x = bin2num(a,b)
x = 4×2

```
```

0.7500 -0.2500
0.5000 -0.5000
0.2500 -0.7500
0 -1.0000

```

\section*{Input Arguments}
\(q\) - Data type properties to use for conversion
quantizer object
Data type properties to use for conversion, specified as a quantizer object.
Example: \(q\) = quantizer([16 15]);

\section*{b - Binary string to convert}
character vector | character array | cell array
Binary string to convert, specified as a character vector, character array, or cell array containing binary strings.
Data Types: string | char | cell

\section*{Tips}
- bin2num and num2bin are inverses of one another. Note that num2bin always returns the binary representations in a column.

\section*{Algorithms}
- The fixed-point binary representation is two's complement.
- The floating-point binary representation is in IEEE Standard 754 style.
- If there are fewer binary digits than are necessary to represent the number, then fixed-point zeropads on the left, and floating-point zero-pads on the right.

\section*{Version History}

Introduced before R2006a

\section*{See Also}
num2bin | quantizer | hex2num | num2hex | num2int

\section*{bitand}

Bitwise AND of two fi objects

\section*{Syntax}
\(\mathrm{c}=\mathrm{bitand}(\mathrm{a}, \mathrm{b})\)

\section*{Description}
\(c=b i t a n d(a, b)\) returns the bitwise AND of \(f i\) objects \(a\) and \(b\) in fi object \(c\).
The numerictype properties associated with a and b must be identical. If both inputs have a local fimath object, the fimath objects must be identical. If the numerictype is signed, then the bit representation of the stored integer is in two's complement representation.
a and b must have the same dimensions unless one is a scalar.
bitand only supports fi objects with fixed-point data types.

\section*{Examples}

\section*{Compute Bitwise AND of Two fi Objects}

Create a truth table for the logical AND operation.
```

A = fi([0 1; 0 1]);
B = fi([0 0; 1 1]);
TTable = bitand(A, B)
TTable =
0 0
0 1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 14

```
bitand returns 1 only if both bit-wise inputs are 1.

\section*{Input Arguments}

\section*{\(a, b\) - Input values}
scalars | vectors | matrices | multidimensional arrays
Input values, specified as scalars, vectors, matrices, or multidimensional arrays. \(a\) and \(b\) must have the same dimensions unless one is a scalar. Inputs \(a\) and \(b\) must be fi objects with fixed-point data types and identical numerictype properties. If both inputs have a local fimath object, the fimath objects must be identical.

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder \(^{\text {TM }}\).
Usage notes and limitations:
- Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
bitcmp|bitget|bitor|bitset|bitxor

\section*{bitandreduce}

Reduce consecutive slice of bits to one bit by performing bitwise AND operation

\section*{Syntax}
c = bitandreduce(a)
\(c=\) bitandreduce(a, lidx)
c = bitandreduce(a, lidx, ridx)

\section*{Description}
\(\mathrm{c}=\) bitandreduce(a) performs a bitwise AND operation on the entire set of bits in the fixed-point input, \(a\), and returns the result as an unsigned integer of word length 1.
\(\mathrm{c}=\mathrm{bitandreduce}(\mathrm{a}\), lidx) performs a bitwise AND operation on a consecutive range of bits, starting at position lidx and ending at the LSB (the bit at position 1).
c = bitandreduce(a, lidx, ridx) performs a bitwise AND operation on a consecutive range of bits, starting at position lidx and ending at position ridx.

The bitandreduce arguments must satisfy the following condition:
a.WordLength >= lidx >= ridx >= 1

\section*{Examples}

\section*{Perform Bitwise AND Operation on an Entire Set of Bits}

Create a fixed-point number.
```

a = fi(73,0,8,0);
disp(bin(a))
01001001

```

Perform a bitwise AND operation on the entire set of bits in a.
```

c = bitandreduce(a)
C =
0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```

Because the bits of a do not all have a value of 1 , the output has a value of 0 .

\section*{Perform Bitwise AND Operation on a Range of Bits in a Vector}

Create a fixed-point vector.
```

a = fi([12, 4, 8, 15],0,8,0);
disp(bin(a))
00001100 00000100 00001000 00001111

```

Perform a bitwise AND operation on the bits of each element of a, starting at position fi(4).
```

c = bitandreduce(a, fi(4))
c =
0 0 0 1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```

The only element in output c with a value of 1 is the 4 th element. This is because it is the only element of a that had only 1 's between positions fi(4) and 1.

\section*{Perform Bitwise AND Operation on a Range of Bits in a Matrix}

Create a fixed-point matrix.
```

a = fi([7, 8, 1; 5, 9, 5; 8, 37, 2], 0, 8, 0);
disp(bin(a))
00000111 00001000 00000001
00000101 00001001 00000101
00001000 00100101 00000010

```

Perform a bitwise AND operation on the bits of each element of matrix a beginning at position 3 and ending at position 1.
```

c = bitandreduce(a, 3, 1)
c =
1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```

There is only one element in output c with a value of 1 . This condition occurs because the corresponding element in \(a\) is the only element with only 1 's between positions 3 and 1.

\section*{Input Arguments}

\section*{a - Input array}
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.
bitandreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and scaling properties do not affect the result type and value. bitandreduce performs the operation on a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

\section*{lidx - Start position of range}
scalar
Start position of range specified as a scalar of built-in type. lidx represents the position in the range closest to the MSB.

Data Types: fi|single | double | int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{ridx - End position of range}
scalar
End position of range specified as a scalar of built-in type. ridx represents the position in the range closest to the LSB (the bit at position 1).

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Output Arguments}

\section*{c - Output array}
scalar | vector | matrix | multidimensional array
Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. c is unsigned with word length 1.

\section*{Version History \\ Introduced in R2007b}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
For \(\mathrm{VHDL}^{\circledR}\), generates the bitwise AND operator operating on a set of individual slices.

For Verilog \({ }^{\circledR}\), generates the reduce operator:
\&a[lidx:ridx]

\section*{See Also}
bitconcat|bitorreduce|bitsliceget|bitxorreduce

\section*{bitcmp}

Bitwise complement of fi object

\section*{Syntax}
\(\mathrm{c}=\mathrm{bitcmp}(\mathrm{a})\)

\section*{Description}
\(c=\operatorname{bitcmp}(a)\) returns the bitwise complement of fi object a. If a has a signed numerictype, the bit representation of the stored integer is in two's complement representation.
bitcmp only supports fi objects with fixed-point data types. a can be a scalar fi object or a vector fi object.

\section*{Examples}

This example shows how to get the bitwise complement of a fi object. Consider the following unsigned fixed-point fi object with a value of 10 , word length 4 , and fraction length 0 :
\(a=f i(10,0,4,0) ;\)
disp(bin(a))
1010
Complement the values of the bits in a:
\(\mathrm{c}=\mathrm{bitcmp}(\mathrm{a})\);
disp(bin(c))
0101

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

\section*{See Also}
bitand|bitget|bitor|bitset|bitxor

\section*{bitconcat}

Concatenate bits of fi objects

\section*{Syntax}
\(y=\) bitconcat \((a)\)
\(y=\) bitconcat \((a, b, \ldots)\)

\section*{Description}
\(y=\) bitconcat(a) concatenates the bits of the elements of fixed-point fi input array, \(a\).
\(y=\) bitconcat \((a, b, \ldots)\) concatenates the bits of the fixed-point fi inputs.

\section*{Examples}

\section*{Concatenate the Elements of a Vector}

Create a fixed-point vector.
\(a=f i([1,2,5,7], 0,4,0) ;\)
disp(bin(a))
0001001001010111
Concatenate the bits of the elements of a.
\(y=\) bitconcat(a)
\(y=\)
4695
DataTypeMode: Fixed-point: binary point scaling Signedness: Unsigned WordLength: 16
FractionLength: 0
disp(bin(y))
0001001001010111
The word length of the output, \(y\), equals the sum of the word lengths of each element of a.

\section*{Concatenate the Bits of Two fi Objects}

Create two fixed-point numbers.
\(a=f i(5,0,4,0)\);
disp(bin(a))
```

0101
b = fi(10,0,4,0);
disp(bin(b))
1010
Concatenate the bits of the two inputs.

```
```

y = bitconcat(a,b)

```
y = bitconcat(a,b)
y =
y =
    90
    90
        DataTypeMode: Fixed-point: binary point scaling
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Unsigned
        Signedness: Unsigned
        WordLength: 8
        WordLength: 8
        FractionLength: 0
        FractionLength: 0
disp(bin(y))
disp(bin(y))
01011010
```

01011010

```

The output, \(y\), is unsigned with a word length equal to the sum of the word lengths of the two inputs, and a fraction length of 0 .

\section*{Perform Element-by-Element Concatenation of Two Vectors}

When \(a\) and \(b\) are both vectors of the same size, bitconcat performs element-wise concatenation of the two vectors and returns a vector.

Create two fixed-point vectors of the same size.
```

a = fi([1,2,5,7],0,4,0);
disp(bin(a))
0001 0010 0101 0111
b = fi([7,4,3,1],0,4,0);
disp(bin(b))
0111 0100 0011 0001

```

Concatenate the elements of \(a\) and \(b\).
```

y = bitconcat(a,b)
y =
23 36 83 113
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0
disp(bin(y))
00010111 00100100 01010011 01110001

```

The output, y , is a vector of the same length as the input vectors, and with a word length equal to the sum of the word lengths of the two input vectors.

\section*{Perform Element-by-Element Concatenation of Two Matrices}

When the inputs are both matrices of the same size, bitconcat performs element-wise concatenation of the two matrices and returns a matrix of the same size.

Create two fixed-point matrices.
```

a = fi([1,2,5;7,4,5;3,1,12],0,4,0);
disp(bin(a))
0001 0010 0101
0111 0100 0101
0011 0001 1100
b = fi([6,1,7;7,8,1;9,7,8],0,4,0);
disp(bin(b))

| 0110 | 0001 | 0111 |
| :--- | :--- | :--- |
| 0111 | 1000 | 0001 |
| 1001 | 0111 | 1000 |

```

Perform element-by-element concatenation of the bits of \(a\) and \(b\).
```

y = bitconcat(a,b)
y =
22 33 87
119 72 81
57 23 200
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0
disp(bin(y))

| 00010110 | 00100001 | 01010111 |
| :--- | :--- | :--- |
| 01110111 | 01001000 | 01010001 |
| 00111001 | 00010111 | 11001000 |

```

The output, \(y\), is a matrix with word length equal to the sum of the word lengths of \(a\) and \(b\).

\section*{Input Arguments}

\section*{a - Input array}
scalar | vector \(\mid\) matrix \(\mid\) multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. bitconcat accepts varargin number of inputs for concatenation.

Data Types: fixed-point fi
b - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If b is nonscalar, it must have the same dimension as the other inputs.

Data Types: fixed-point fi

\section*{Output Arguments}
y - Output array
scalar | vector | matrix | multidimensional array
Output array, specified as a scalar, vector, matrix, or multidimensional array of unsigned fixed-point fi objects.

The output array has word length equal to the sum of the word lengths of the inputs and a fraction length of zero. The bit representation of the stored integer is in two's complement representation. Scaling does not affect the result type and value.

If the inputs are all scalar, then bitconcat concatenates the bits of the inputs and returns a scalar.
If the inputs are all arrays of the same size, then bitconcat performs element-wise concatenation of the bits and returns an array of the same size.

\author{
Version History \\ Introduced in R2007b
}

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
For VHDL, generates the concatenation operator: ( \(\mathrm{a} \& \mathrm{~b}\) ).
For Verilog, generates the concatenation operator: \(\{\mathrm{a}, \mathrm{b}\}\).

\section*{See Also}
bitand|bitcmp|bitor|bitreplicate| bitget|bitset|bitsliceget|bitxor

\section*{bitget}

Get bits at certain positions

\section*{Syntax}
c = bitget (a, bit)

\section*{Description}
c = bitget(a, bit) returns the values of the bits at the positions specified by bit in a as unsigned integers of word length 1.

\section*{Examples}

\section*{Get Bit When Input and Index Are Both Scalar}

Consider the following unsigned fixed-point fi number with a value of 85 , word length 8 , and fraction length 0 :
\(a=f i(85,0,8,0)\);
disp(bin(a))
01010101
Get the binary representation of the bit at position 4:
c = bitget (a, 4) ;
bitget returns the bit at position 4 in the binary representation of a.

\section*{Get Bit When Input Is a Matrix and the Index Is a fi}

Begin with a signed fixed-point 3-by-3 matrix with word length 4 and fraction length 0 .
```

a = fi([2 3 4;6 8 2;3 5 1],0,4,0);
disp(bin(a))
0010 0011 0100
0110 1000 0010
0011 0101 0001

```

Get the binary representation of the bits at a specified position.
c = bitget(a,fi(2))
c =
\begin{tabular}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{tabular}
```

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

```

MATLAB® returns a matrix of the bits in position \(\mathrm{fi}(2)\) of a. The output matrix has the same dimensions as a, and a word length of 1.

\section*{Get Bit When Both Input and Index Are Vectors}

Begin with a signed fixed-point vector with word length 16 , fraction length 4.
```

a = fi([86 6 53 8 1],0,16,4);
disp(bin(a))

```
\(0000010101100000 \quad 0000000001100000 \quad 0000001101010000 \quad 0000000010000000 \quad 0000000000010000\)
Create a vector that specifies the positions of the bits to get.
```

bit = [1, 2,5,7,4]
bit = 1\times5
1 2

```

Get the binary representation of the bits of a at the positions specified in bit.
```

c = bitget(a,bit)
c =
0}0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```
bitget returns a vector of the bits of a at the positions specified in bit. The output vector has the same length as inputs, a and bit, and a word length of 1 .

\section*{Get Bit When Input Is Scalar and Index Is a Vector}

Create a default fi object with a value of pi.
\(a=f i(p i) ;\)
disp(bin(a))
0110010010001000
The default object is signed with a word length of 16 .

Create a vector of the positions of the bits you want to get in a, and get the binary representation of those bits.
```

bit = fi([15,3,8,2]);
c = bitget(a,bit)
c =
1 0 1 0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```

MATLAB® returns a vector of the bits in a at the positions specified by the index vector, bit.

\section*{Input Arguments}

\section*{a - Input array}
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If a and bit are both nonscalar, they must have the same dimension. If a has a signed numerictype, the bit representation of the stored integer is in two's complement representation.

Data Types: fixed-point fi

\section*{bit - Bit index}
scalar | vector | matrix | multidimensional array
Bit index, specified as a scalar, vector, matrix or multidimensional array of fi objects or built-in data types. If a and bit are both nonscalar, they must have the same dimension. bit must contain integer values between 1 and the word length of a, inclusive. The LSB (right-most bit) is specified by bit index 1 and the MSB (left-most bit) is specified by the word length of a. bit does not need to be a vector of sequential bit positions; it can also be a variable index value.
\(a=f i(p i, 0,8) ;\)
a.bin

11001001


Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Output Arguments}
c - Output array
scalar | vector \(\mid\) matrix \(\mid\) multidimensional array
Output array, specified as an unsigned scalar, vector, matrix, or multidimensional array with WordLength 1.

If \(a\) is an array and bit is a scalar, \(c\) is an unsigned array with word length 1 . This unsigned array comprises the values of the bits at position bit in each fixed-point element in a.

If \(a\) is a scalar and bit is an array, \(c\) is an unsigned array with word length 1 . This unsigned array comprises the values of the bits in a at the positions specified in bit.

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{Tm}}\).

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
For VHDL, generates the slice operator: \(\mathrm{a}(\mathrm{idx}\) ).
For Verilog, generates the slice operator: a [idx].

\section*{See Also}
bitand|bitcmp|bitor|bitset|bitxor

\section*{bitor}

Bitwise OR of two fi objects

\section*{Syntax}
c = bitor(a,b)

\section*{Description}
\(c=\operatorname{bitor}(a, b)\) returns the bitwise OR of fi objects \(a\) and \(b\). The output is determined as follows:
- Elements in the output array c are assigned a value of 1 when the corresponding bit in either input array has a value of 1.
- Elements in the output array c are assigned a value of 0 when the corresponding bit in both input arrays has a value of 0 .

The numerictype properties associated with \(a\) and \(b\) must be identical. If both inputs have a local fimath, their local fimath properties must be identical. If the numerictype is signed, then the bit representation of the stored integer is in two's complement representation.
a and b must have the same dimensions unless one is a scalar.
bitor only supports fi objects with fixed-point data types.

\section*{Examples}

The following example finds the bitwise OR of fi objects \(a\) and \(b\).
```

a = fi(-30,1,6,0);
b = fi(12, 1, 6, 0);
c = bitor(a,b)
C =
-18
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 0

```

You can verify the result by examining the binary representations of \(a, b\) and \(c\).
```

binary_a = a.bin
binary_b = b.bin
binary_c = c.bin
binary_a =
100010

```
```

binary_b =
0 0 1 1 0 0
binary_c =

```
101110

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder \({ }^{\mathrm{TM}}\).
Usage notes and limitations:
- Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

\section*{See Also}
bitand|bitcmp|bitget|bitset|bitxor

\section*{bitorreduce}

Reduce consecutive slice of bits to one bit by performing bitwise OR operation

\section*{Syntax}
c = bitorreduce(a)
c = bitorreduce(a, lidx)
c = bitorreduce(a, lidx, ridx)

\section*{Description}
\(\mathrm{c}=\) bitorreduce(a) performs a bitwise OR operation on the entire set of bits in the fixed-point input, a, and returns the result as an unsigned integer of word length 1.
\(c=\) bitorreduce (a, lidx) performs a bitwise OR operation on a consecutive range of bits, starting at position lidx and ending at the LSB (the bit at position 1).
c = bitorreduce(a, lidx, ridx) performs a bitwise OR operation on a consecutive range of bits, starting at position lidx and ending at position ridx.

The bitorreduce arguments must satisfy the following condition:
a.WordLength >= lidx >= ridx >= 1

\section*{Examples}

\section*{Perform Bitwise OR Operation on an Entire Set of Bits}

Create a fixed-point number.
```

a = fi(73,0,8,0);
disp(bin(a))
01001001

```

Perform a bitwise OR operation on the entire set of bits in a.
```

c = bitorreduce(a)
C =
1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```

Because there is at least one bit in a with a value of 1 , the output has a value of 1 .

\section*{Perform Bitwise OR Operation on a Range of Bits in a Vector}

Create a fixed-point vector.
```

a=fi([12,4,8,15],0,8,0);
disp(bin(a))
00001100 00000100 00001000 00001111

```

Perform a bitwise OR operation on the bits of each element of a, starting at position fi(4).
```

c=bitorreduce(a,fi(4))
C =
1 1 1 1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```

All of the entries of output chave a value of 1 because all of the entries of a have at least one bit with a value of 1 between the positions \(\mathrm{fi}(4)\) and 1 .

\section*{Perform Bitwise OR Operation on a Range of Bits in a Matrix}

Create a fixed-point matrix.
```

a = fi([7,8,1;5,9,5;8,37,2],0,8,0);
disp(bin(a))
0 0 0 0 0 1 1 1 ~ 0 0 0 0 1 0 0 0 ~ 0 0 0 0 0 0 0 1
00000101 00001001 00000101
00001000 00100101 00000010

```

Perform a bitwise OR operation on the bits of each element of matrix a beginning at position 5, and ending at position 2.
```

c = bitorreduce(a,5,2)
c =
lll
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```

There is only one element in output c that does not have a value of 1 . This condition occurs because the corresponding element in a is the only element of a that does not have any bits with a value of 1 between positions 5 and 2.

\section*{Input Arguments}

\section*{a - Input array}
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
bitorreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and scaling properties do not affect the result type and value. bitor reduce performs the operation on a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

\section*{lidx - Start position of range}
scalar
Start position of range specified as a scalar of built-in type. lidx represents the position in the range closest to the MSB.

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{ridx - End position of range}
scalar
End position of range specified as a scalar of built-in type. ridx represents the position in the range closest to the LSB (the bit at position 1).

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Output Arguments}

\section*{c - Output array}
scalar | vector | matrix | multidimensional array
Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. c is unsigned with word length 1.

\section*{Version History \\ Introduced in R2007b}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using MATLAB® Coder \(^{\mathrm{TM}}\).

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
For VHDL, generates the bitwise OR operator operating on a set of individual slices.

For Verilog, generates the reduce operator:
|a[lidx:ridx]

\section*{See Also}
bitandreduce|bitconcat|bitsliceget|bitxorreduce

\section*{bitreplicate}

Replicate and concatenate bits of fi object

\section*{Syntax}
\(c=\) bitreplicate(a, \(n\) )

\section*{Description}
\(c=\) bitreplicate \((a, n)\) concatenates the bits in fi object a \(n\) times and returns an unsigned fixed-point value. The word length of the output fi object \(c\) is equal to \(n\) times the word length of \(a\) and the fraction length of \(c\) is zero. The bit representation of the stored integer is in two's complement representation.

The input fi object can be signed or unsigned. bitreplicate concatenates signed and unsigned bits the same way.
bitreplicate only supports fi objects with fixed-point data types.
bitreplicate does not support inputs with complex data types.
Sign and scaling of the input fi object does not affect the result type and value.

\section*{Examples}

The following example uses bitreplicate to replicate and concatenate the bits of fi object a.
```

a = fi(14,0,6,0);
a_binary = a.bin
c= bitreplicate(a,2);
c_binary = c.bin
MATLAB returns the following:
a_binary =
0 0 1 1 1 0
c_binary =
0 0 1 1 1 0 0 0 1 1 1 0

```

\section*{Version History \\ Introduced in R2008a}

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
bitand|bitconcat|bitget|bitset|bitor|bitsliceget|bitxor

\section*{bitrol}

Bitwise rotate left

\section*{Syntax}
c = bitrol(a, k)

\section*{Description}
\(\mathrm{c}=\mathrm{bitrol}(\mathrm{a}, \mathrm{k})\) returns the value of the fixed-point fi object, a , rotated left by k bits. bitrol rotates bits from the most significant bit (MSB) side into the least significant bit (LSB) side. It performs the rotate left operation on the stored integer bits of a.
bitrol does not check overflow or underflow. It ignores fimath properties such as RoundingMode and OverflowAction.
a and chave the same fimath and numerictype properties.

\section*{Examples}

\section*{Rotate the Bits of a fi Object Left}

Create an unsigned fixed-point fi object with a value of 10 , word length 4 , and fraction length 0 .
\(a=f i(10,0,4,0)\);
disp(bin(a))
1010
Rotate a left 1 bit.
disp(bin(bitrol(a,1)))
0101
Rotate a left 2 bits.
```

disp(bin(bitrol(a,2)))

```

1010

\section*{Rotate Bits in a Vector Left}

Create a vector of fi objects.
\(a=f i([1,2,5,7], 0,4,0)\)
a \(=\)
\(\begin{array}{llll}1 & 2 & 5 & 7\end{array}\)
```

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 4
 FractionLength: 0
 0001 0010 0101 0111

```
disp(bin(a))

Rotate the bits in vector a left 1 bit.
```

disp(bin(bitrol(a,1)))
0010 0100 1010 1110

```

\section*{Rotate Bits Left Using fi to Specify Number of Bits to Rotate}

Create an unsigned fixed-point fi object with a value 10 , word length 4 , and fraction length 0 .
\(a=f i(10,0,4,0) ;\)
disp(bin(a))
1010
Rotate a left 1 bit where k is a fi object.
disp(bin(bitrol(a,fi(1))))
0101

\section*{Input Arguments}

\section*{a - Data that you want to rotate}
scalar | vector | matrix | multidimensional array
Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional array of fi objects. a can be signed or unsigned.

Data Types: fixed-point fi
Complex Number Support: Yes
k - Number of bits to rotate
non-negative, integer-valued scalar
Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or built-in numeric type. k can be greater than the word length of a . This value is always normalized to \(\bmod (a . W o r d L e n g t h, k)\).

Data Types: fi |single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Version History}

Introduced in R2007b

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
For VHDL, generates the rol operator.
For Verilog, generates the following expression (where \(w l\) is the word length of a:
a << idx || a >> wl - idx

\section*{See Also}
bitconcat|bitror|bitshift|bitsliceget|bitsll|bitsra|bitsrl

\section*{bitror}

Bitwise rotate right

\section*{Syntax}
c = bitror(a, k)

\section*{Description}
\(\mathrm{c}=\mathrm{bitror}(\mathrm{a}, \mathrm{k})\) returns the value of the fixed-point fi object, a , rotated right by k bits. bitror rotates bits from the least significant bit (LSB) side into the most significant bit (MSB) side. It performs the rotate right operation on the stored integer bits of a.
bitror does not check overflow or underflow. It ignores fimath properties such as RoundingMode and OverflowAction.
a and \(c\) have the same fimath and numerictype properties.

\section*{Examples}

\section*{Rotate Bits of a fi Object Right}

Create an unsigned fixed-point fi object with a value 5, word length 4, and fraction length 0 .
\(a=f i(5,0,4,0)\);
disp(bin(a))
0101
Rotate a right 1 bit.
disp(bin(bitror(a,1)))
1010
Rotate a right 2 bits.
disp(bin(bitror(a,2)))
0101

\section*{Rotate Bits in a Vector Right}

Create a vector of fi objects.
```

a = fi([1,2,5,7],0,4,0);
disp(bin(a))
0001 0010 0101 0111

```

Rotate the bits in vector a right 1 bit.
```

disp(bin(bitror(a,fi(1))))
1000 0001 1010 1011

```

\section*{Rotate Bits Right Using fi to Specify Number of Bits to Rotate}

Create an unsigned fixed-point fi object with a value 5 , word length 4 , and fraction length 0 .
```

a = fi(5,0,4,0);
disp(bin(a))
0 1 0 1

```

Rotate a right 1 bit where k is a fi object.
```

disp(bin(bitror(a,fi(1))))

```
1010

\section*{Input Arguments}
a - Data that you want to rotate
scalar | vector | matrix | multidimensional array
Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional array of fi objects. a can be signed or unsigned.

Data Types: fixed-point fi
Complex Number Support: Yes
k - Number of bits to rotate
non-negative, integer-valued scalar
Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or built-in numeric type. k can be greater than the word length of a . This value is always normalized to \(\bmod (a\). WordLength, k\()\).

Data Types: fi |single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Version History}

Introduced in R2007b

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{Tm}}\).

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
For VHDL, generates the ror operator.
For Verilog, generates the following expression (where wl is the word length of a:
a >> idx || a << wl - idx

\section*{See Also}
bitrol|bitconcat|bitshift|bitsliceget|bitsll|bitsra|bitsrl

\section*{bitset}

Package: embedded
Set bit at specific location

\section*{Syntax}

C = bitset(A,bit)
C = bitset(A,bit,V)

\section*{Description}
\(\mathrm{C}=\mathrm{bitset}(\mathrm{A}, \mathrm{bit})\) returns the value of A with position bit set to 1 (on).
\(\mathrm{C}=\mathrm{bitset}(\mathrm{A}, \mathrm{bit}, \mathrm{V})\) returns the value of A with position bit set to V .

\section*{Examples}

\section*{Set Bit at Certain Position}

Begin with an unsigned fixed-point fi number with a value of 5, word length 4, and fraction length 0 .
\(a=f i(5,0,4,0)\);
disp(bin(a))
0101
Set the bit at position 4 to 1 (on).
\(c=\) bitset(a,4);
disp(bin(c))
1101

\section*{Set Bit at Certain Position in Vector}

Consider the following fixed-point vector with word length 4 and fraction length 0.
```

a = fi([0 1 8 2 4],0,4,0);
disp(bin(a))
$0000 \quad 0001 \quad 1000 \quad 0010 \quad 0100$

```

In each element of vector a, set the bits at position 2 to 1 .
```

c = bitset(a,2,1);
disp(bin(c))
$0010 \quad 0011 \quad 1010 \quad 0010 \quad 0110$

```

\section*{Set Bit at Certain Position with Fixed Point Index}

Consider the following fixed-point scalar with a value of 5 .
\(a=f i(5,0,4,0)\);
disp(bin(a))
0101
Set the bit at position \(\mathrm{fi}(2)\) to 1 .
\(\mathrm{c}=\mathrm{bitset}(\mathrm{a}, \mathrm{fi}(2), 1)\);
disp(bin(c))
0111

\section*{Set Bit When Index Is Vector}

Create a fi object with a value of pi.
\(\mathrm{a}=\mathrm{fi}(\mathrm{pi})\);
disp(bin(a))
0110010010001000
In this case, a is signed with a word length of 16.
Create a vector of the bit positions in a that you want to set to on. Then, get the binary representation of the resulting fi vector.
bit \(=\) fi([15, 3, 8,2\(])\);
c = bitset(a,bit);
disp(bin(c))
\(0110010010001000 \quad 0110010010001100 \quad 0110010010001000 \quad 0110010010001010\)

\section*{Input Arguments}

\section*{A - Input values}
scalar | vector | matrix | multidimensional array
Input values, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If any of \(A\), bit, or \(V\) are nonscalar, the other inputs must be scalar or arrays of the same size. If \(A\) has a signed numerictype, the bit representation of the stored integer is in two's complement representation.
```

Data Types: fi
Complex Number Support: Yes

```

\section*{bit - Bit position}
integer | integer array

Bit position, specified as an integer or integer array of fi objects or built-in data types. If any of \(A\), bit, or \(V\) are nonscalar, the other inputs must be scalar or arrays of the same size. The values of bit must be between 1 and the word length of A, inclusive. The LSB, the right-most bit, is specified by bit index 1 . The MSB, the left-most bit, is specified by the word length of \(A\).
\(a=f i(p i, 0,8) ;\)
a.bin
ans =
'11001001'


Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi

V - Bit value
scalar | vector | matrix | multidimensional array
Bit value of \(A\) at index bit, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in data types. If any of \(A\), bit, or V are nonscalar, the other inputs must be scalar or arrays of the same size. V can have values of 0 or 1 . Any value other than 0 is automatically set to 1 .

Data Types: single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi
Complex Number Support: Yes

\section*{Output Arguments}

\section*{C - Output array}
scalar | vector | matrix | multidimensional array
Output array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.
- If \(A\), bit, and \(V\) are all scalars, then \(C\) is also a scalar.
- If any of \(A\), bit, or \(V\) is an array, then \(C\) is the same size as that array.

\section*{Version History}

\section*{Introduced before R2006a}

\section*{R2022a: Scalar expansion support for fi bitset}

Behavior changed in R2022a
Prior to R2022a, fi bitset required that the second and third input arguments be the same size, otherwise an error would occur.
```

A = fi(pi);
disp(bin(A))
bit = fi([15,3,8,2]);
C = bitset(A,bit,1);
disp(bin(C))
0110010010001000
The Second and third arguments to BITSET must be the same size.

```

Starting in R2022a, the input arguments A, bit, and V support scalar expansion. That is, if any of A, bit, or \(V\) are nonscalar, the other inputs can be scalar or arrays of the same size.
```

A = fi(pi);
disp(bin(A))
bit = fi([15,3,8,2]);
C = bitset(A,bit,1);
disp(bin(C))
0110010010001000
0110010010001000 0110010010001100 0110010010001000 0110010010001010

```

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

\author{
See Also \\ bitand|bitcmp|bitget|bitor|bitxor
}

\section*{bitshift}

Shift bits specified number of places

\section*{Syntax}
c = bitshift(a,k)

\section*{Description}
\(\mathrm{c}=\) bitshift \((\mathrm{a}, \mathrm{k})\) returns the value of fi object a shifted by k bits.
The shift is arithmetic and behaves like \(b=a \cdot * 2^{\wedge} k\) with the value of \(b\) cast to the type of input \(a\). The cast of \(b\) may involve overflow or loss of precision.

The OverflowAction property of a is obeyed, but the RoundingMethod is always Floor. If obeying the RoundingMethod property of a is important, try using the pow2 function.

When the overflow action of \(a\) is Saturate, the sign bit is always preserved. When the overflow action of \(a\) is Wrap and \(k\) is negative, the sign bit is preserved. When the overflow action of a is Wrap and \(k\) is positive, the sign bit may change.
- When k is positive, 0 -valued bits are shifted in on the right.
- When \(k\) is negative and \(a\) is unsigned, or a signed and positive fi object, 0 -valued bits are shifted in on the left.
- When k is negative and a is a signed and negative fi object, 1 -valued bits are shifted in on the left.

\section*{Examples}

\section*{Use OverflowAction Settings to Change Results of bitshift}

This example highlights how changing the OverflowAction property of the fimath object can change the results returned by the bitshift function. Consider the following signed fixed-point fi object with a value of 3 , word length 16 , and fraction length 0 .
\(a=f i(3,1,16,0) ;\)
By default, the OverflowAction fimath property is Saturate. When a is shifted such that it overflows, it is saturated to the maximum possible value.
```

for k=0:16
b=bitshift(a,k);
disp([num2str(k,'%02d'),'.',bin(b)]);
end
00. 0000000000000011

1. 0000000000000110
2. 0000000000001100
3. 0000000000011000
```
```

4. 0000000000110000
5. 0000000001100000
6. 0000000011000000
7. 0000000110000000
8. 0000001100000000
9. 0000011000000000
10. 0000110000000000
11. 0001100000000000
12. 0011000000000000
13. 0110000000000000
14. 0111111111111111
15. 0111111111111111
16. 0111111111111111
```

Now change OverflowAction to Wrap. In this case, most significant bits shift off the "top" of a until the value is zero.
```

a = fi(3,1,16,0,'OverflowAction','Wrap');
for k=0:16
b=bitshift(a,k);
disp([num2str(k,'%02d'),'. ',bin(b)]);
end
00. 0000000000000011

1. 0000000000000110
2. 0000000000001100
3. 0000000000011000
4. 0000000000110000
5. 0000000001100000
6. 0000000011000000
7. 0000000110000000
8. 0000001100000000
9. 0000011000000000
10. 0000110000000000
11. 0001100000000000
12. 0011000000000000
13. 0110000000000000
14. 1100000000000000
15. 1000000000000000
16. 0000000000000000
```

\section*{Input Arguments}
a - Input fi object
scalar | vector
Input fi object, specified as a scalar or vector. a can be any fixed-point numeric type.
Data Types: fi

\section*{k - Number of bits to shift by \\ scalar}

Number of bits to shift by, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64

\section*{Output Arguments}
c - Result of shifting a by kits
fi object
Result of shifting a by k bits, returned as a fi object. The output fi object c has the same numerictype as a.

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder \(^{\mathrm{TM}}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).
For efficient HDL code generation, use bitsll, bitsrl, or bitsra instead of bitshift.

\section*{See Also}
bitand|bitcmp|bitget|bitor|bitset|bitsll|bitsra|bitsrl|bitxor|pow2

\section*{bitsliceget}

Get consecutive slice of bits

\section*{Syntax}
c = bitsliceget(a)
c = bitsliceget(a, lidx)
c = bitsliceget(a, lidx, ridx)

\section*{Description}
\(c=\) bitsliceget (a) returns the entire set of bits in the fixed-point input \(a\).
c = bitsliceget (a, lidx) returns a consecutive slice of bits from a, starting at position lidx and ending at the LSB (the bit at position 1).
\(\mathrm{c}=\) bitsliceget (a, lidx, ridx) returns a consecutive slice of bits from a , starting at position lidx and ending at position ridx.

The bitsliceget arguments must satisfy the following condition:
a.WordLength >= lidx >= ridx >= 1

\section*{Examples}

\section*{Get Entire Set of Bits}

Begin with the following fixed-point number.
```

a = fi(85,0,8,0);
disp(bin(a))

```

01010101
Get the entire set of bits of a.
c = bitsliceget(a);
disp(bin(c))
01010101

\section*{Get a Slice of Consecutive Bits with Unspecified Endpoint}

Begin with the following fixed-point number.
```

a = fi(85,0,8,0);
disp(bin(a))
01010101

```

Get the binary representation of the consecutive bits, starting at position 6 .
```

c = bitsliceget(a,6);

```
disp(bin(c))

010101

\section*{Get a Slice of Consecutive Bits with Fixed-Point Indexes}

Begin with the following fixed-point number.
\(a=f i(85,0,8,0)\);
disp(bin(a))
01010101
Get the binary representation of the consecutive bits from \(\mathrm{fi}(6)\) to \(\mathrm{fi}(2)\).
```

c = bitsliceget(a,fi(6),fi(2));

```
disp(bin(c))

01010

\section*{Get a Specified Set of Consecutive Bits from Each Element of a Matrix}

Begin with the following unsigned fixed-point 3-by-3 matrix.
```

a = fi([2 3 4;6 8 2;3 5 1],0,4,0);
disp(bin(a))
0010 0011 0100
0110 1000 0010
0011 0101 0001

```

Get the binary representation of a consecutive set of bits of matrix a. For each element, start at position 4 and end at position 2.
```

c = bitsliceget(a,4,2);
disp(bin(c))
001 001 010
011 100 001
0 0 1 0 1 0 0 0 0

```

\section*{Input Arguments}

\section*{a - Input array}
scalar | vector \(\mid\) matrix \(\mid\) multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If a has a signed numerictype, the bit representation of the stored integer is in two's complement representation.

Data Types: fixed-point fi

\section*{lidx - Start position for slice \\ scalar}

Start position of slice specified as a scalar of built-in type. lidx represents the position in the slice closest to the MSB.

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{ridx - End position for slice}
scalar
End position of slice specified as a scalar of built-in type. ridx represents the position in the slice closest to the LSB (the bit at position 1).

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Output Arguments}

\section*{c - Output array}
scalar | vector | matrix | multidimensional array
Fixed-point fi output, specified as a scalar, vector, matrix, or multidimensional array with no scaling. The word length is equal to slice length, lidx-ridx+1.

If lidx and ridx are equal, bitsliceget only slices one bit, and bitsliceget(a, lidx, ridx) is the same as bitget(a, lidx).

\section*{Version History \\ Introduced in R2007b}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using MATLAB® \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
bitand|bitcmp|bitget|bitor|bitset|bitxor

\section*{bitsII}

Bit shift left logical

\section*{Syntax}
c = bitsll(a, k)

\section*{Description}
\(c=\operatorname{bitsll}(a, k)\) returns the result of a logical left shift by \(k\) bits on input a for fixed-point operations. bitsll shifts zeros into the positions of bits that it shifts left. The function does not check overflow or underflow. For floating-point operations, bits \(l l\) performs a multiply by \(2^{\mathrm{k}}\).
bitsll ignores fimath properties such as RoundingMode and OverflowAction.
When a is a fi object, a and chave the same associated fimath and numerictype objects.

\section*{Examples}

\section*{Shift Left a Signed fi Input}

Shift a signed fi input left by 1 bit.
Create a fi object, and display its binary value.
```

a = fi(10,0,4,0);
disp(bin(a))

```

1010
Shift a left by 1 bit, and display its binary value.
```

disp(bin(bitsll(a,1)))

```
0100

Shift a left by 1 more bit.
```

disp(bin(bitsll(a,2)))

```
1000

\section*{Shift Left Using a fi Shift Value}

Shift left a built-in int8 input using a fi shift value.
```

k = fi(2);
a = int8(16);
bitsll(a,k)

```
```

ans = int8

```
    64

\section*{Shift Left a Built-in int8 Input}

Use bitsll to shift an int8 input left by 2 bits.
```

a = int8(4);
bitsll(a,2)
ans = int8
16

```

\section*{Shift Left a Floating-Point Input}

Scale a floating-point double input by \(2^{3}\).
```

a = double(16);

```
bitsll(a,3)
ans \(=128\)

\section*{Input Arguments}

\section*{a - Data that you want to shift}
scalar | vector | matrix | multidimensional array
Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in numeric types.

Data Types: fi|single | double |int8| int16|int32|int64|uint8|uint16|uint32| uint64

Complex Number Support: Yes
k - Number of bits to shift
non-negative integer-valued scalar
Number of bits to shift, specified as a non-negative integer-valued scalar fi object or built-in numeric type.

Data Types: fi|single|double|int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Version History}

Introduced in R2007b

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Generated code might not handle out of range shifting.

\section*{GPU Code Generation}

Generate CUDA® code for NVIDIA® GPUs using GPU Coder \({ }^{\text {™ }}\).
Usage notes and limitations:
- Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
Generates sll operator in VHDL code.
Generates << operator in Verilog code.

\section*{See Also}
bitsrl|bitsra|bitshift|pow2|bitconcat|bitrol|bitror

\section*{bitsra}

Bit shift right arithmetic

\section*{Syntax}
c=bitsra(a,k)

\section*{Description}
\(\mathrm{c}=\mathrm{bitsra}(\mathrm{a}, \mathrm{k})\) returns the result of an arithmetic right shift by k bits on input a for fixed-point operations. For floating-point operations, it performs a multiply by \(2^{-k}\).

If the input is unsigned, bitsra shifts zeros into the positions of bits that it shifts right. If the input is signed, bits ra shifts the most significant bit (MSB) into the positions of bits that it shifts right.
bitsra ignores fimath properties such as RoundingMode and OverflowAction.
When a is a fi object, a and chave the same associated fimath and numerictype objects.

\section*{Examples}

\section*{Shift Right a Signed fi Input}

Create a signed fixed-point fi object with a value of -8 , word length 4 , and fraction length 0 . Then display the binary value of the object.
```

a = fi(-8,1,4,0);
disp(bin(a))
1000

```

Shift a right by 1 bit.
```

disp(bin(bitsra(a,1)))

```
1100
bits ra shifts the MSB into the position of the bit that it shifts right.

\section*{Shift Right a Built-in int8 Input}

Use bits ra to shift an int8 input right by 2 bits.
```

a = int8(64);
bitsra(a,2)
ans = int8
16

```

\section*{Shift Right Using a fi Shift Value}

Shift right a built-in int8 input using a fi shift value.
```

k = fi(2);
a = int8(64);
bitsra(a,k)
ans = int8
16

```

\section*{Shift Right a Floating-Point Input}

Scale a floating-point double input by \(2^{-3}\).
```

a = double(128);

```
bitsra(a,3)
ans \(=16\)

\section*{Input Arguments}

\section*{a - Data that you want to shift}
scalar | vector | matrix | multidimensional array
Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in numeric types.

Data Types: fi |single |double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

Complex Number Support: Yes
k - Number of bits to shift
non-negative integer-valued scalar
Number of bits to shift, specified as a non-negative integer-valued scalar fi object or built-in numeric type.

Data Types: fi |single |double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Version History}

Introduced in R2007b

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using MATLAB® \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
Usage notes and limitations:
- Generated code might not handle out of range shifting.

\section*{GPU Code Generation}

Generate CUDA® code for NVIDIA® GPUs using GPU Coder \({ }^{\text {TM }}\).
Usage notes and limitations:
- Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).
Generates sra operator in VHDL code.
Generates >>> operator in Verilog code.

\section*{See Also}
bitsll|bitsrl|bitshift|pow2

\section*{bitsrl}

Bit shift right logical

\section*{Syntax}
c = bitsrl(a, k)

\section*{Description}
\(c=\) bitsrl (a, \(k\) ) returns the result of a logical right shift by \(k\) bits on input a for fixed-point operations. bitsrl shifts zeros into the positions of bits that it shifts right. It does not check overflow or underflow.
bitsrl ignores fimath properties such as RoundingMode and OverflowAction.
When a is a fi object, a and chave the same associated fimath and numerictype objects.

\section*{Examples}

\section*{Shift right a signed fi input}

Shift a signed fi input right by 1 bit.
Create a signed fixed-point fi object with a value of -8 , word length 4 , and fraction length 0 and display its binary value.
```

a = fi(-8,1,4,0);
disp(bin(a))
1 0 0 0

```

Shift a right by 1 bit, and display the binary value.
disp(bin(bitsrl(a,1)))
0100
bitsrl shifts a zero into the position of the bit that it shifts right.

\section*{Shift right using a fi shift value}

Shift right a built-in int8 input using a fi shift value.
```

k = fi(2);
a = int8(64);
bitsrl(a,k)
ans = int8
1 6

```

\section*{Shift right a built-in uint8 input}

Use bitsrl to shift a uint8 input right by 2 bits.
```

a = uint8(64);

```
bitsrl(a,2)
ans \(=u i n t 8\) 16

\section*{Input Arguments}

\section*{a - Data that you want to shift}
scalar | vector | matrix | multidimensional array
Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi | int8|int16|int32 | int64 | uint8|uint16|uint32|uint64
Complex Number Support: Yes
k - Number of bits to shift
non-negative integer-valued scalar
Number of bits to shift, specified as a non-negative integer-valued scalar.
Data Types: fi|single |double | int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Version History}

Introduced in R2007b

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder \(^{\text {TM }}\).
Usage notes and limitations:
- Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA \({ }^{\circledR}\) GPUs using GPU Coder \({ }^{T M}\).
Usage notes and limitations:
- Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

Generates srl operator in VHDL.
Generates >> operator in Verilog.

\section*{See Also}
bitconcat|bitrol|bitror|bitshift|bitsliceget|bitsll|bitsra|pow2

\section*{bitxor}

Package: embedded
Bitwise XOR of two fi objects

\section*{Syntax}
c = bitxor(a,b)

\section*{Description}
\(c=\) bitxor \((a, b)\) returns the bitwise exclusive OR of fi objects \(a\) and \(b\) in fi object \(c\).
The output is determined as follows:
- Elements in the output array c are assigned a value of 1 when exactly one of the corresponding bits in the input arrays has a value of 1.
- Elements in the output array c are assigned a value of 0 when the corresponding bits in the input arrays have the same value (e.g. both 1's or both 0's).
\(\overline{\text { Note This function only supports fi objects with fixed-point data types. To compute bitwise XOR of }}\) other data types, use the bitxor function.

\section*{Examples}

\section*{Bitwise Exclusive OR of Two fi Objects}

Find the bitwise exclusive OR of fi objects a and b.
```

a = fi(-28,1,6,0);
b = fi(12, 1, 6, 0);
c = bitxor(a,b)
c =
-24
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 0

```

To verify the result, examine the binary representations of \(a, b\), and \(c\).
```

binary_a = a.bin
binary_a =
'100100'
binary_b = b.bin

```
```

binary_b =
'001100'
binary_c = c.bin
binary_c =
'101000'

```

\section*{Input Arguments}

\section*{a,b - Input fixed-point fi objects}
scalars | vectors | matrices | multidimensional arrays
Input fixed-point fi objects, specified as scalars, vectors, matrices, or multidimensional arrays. a and b must have the same dimensions unless one is a scalar.

The numerictype properties associated with \(a\) and \(b\) must be identical. If both inputs have an attached fimath object, their local fimath properties must be identical. If the numerictype is signed, then the bit representation of the stored integer is in "Two's Complement" representation.

\section*{Data Types: fi}

Complex Number Support: Yes

\section*{Version History}

\section*{Introduced before R2006a}

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
bitand|bitcmp|bitget|bitor|bitset

\section*{bitxorreduce}

Reduce consecutive slice of bits to one bit by performing bitwise exclusive OR operation

\section*{Syntax}
c = bitxorreduce(a)
c = bitxorreduce(a, lidx)
c = bitxorreduce(a, lidx, ridx)

\section*{Description}
c = bitxorreduce(a) performs a bitwise exclusive OR operation on the entire set of bits in the fixed-point input, a. It returns the result as an unsigned integer of word length 1.
\(c=\) bitxorreduce(a, lidx) performs a bitwise exclusive OR operation on a consecutive range of bits. This operation starts at position lidx and ends at the LSB (the bit at position 1).
c = bitxorreduce(a, lidx, ridx) performs a bitwise exclusive OR operation on a consecutive range of bits, starting at position lidx and ending at position ridx.

The bitxorreduce arguments must satisfy the following condition:
a. WordLength >= lidx >= ridx >= 1

\section*{Examples}

\section*{Perform Bitwise Exclusive OR Operation on an Entire Set of Bits}

Create a fixed-point number.
a = fi(73, 0, 8,0 );
disp(bin(a))
01001001
Perform a bitwise exclusive OR operation on the entire set of bits in a.
\(c=\) bitxorreduce(a)
C =
1
DataTypeMode: Fixed-point: binary point scaling Signedness: Unsigned WordLength: 1
FractionLength: 0

\section*{Perform Bitwise Exclusive OR Operation on a Range of Bits in a Vector}

Create a fixed-point vector.
```

a = fi([12,4,8,15],0,8,0);

```
disp(bin(a))
```

00001100 00000100 00001000 00001111

```

Perform a bitwise exclusive OR operation on the bits of each element of a, starting at position fi (4).
```

c = bitxorreduce(a,fi(4))
c =
0}101
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```

\section*{Perform a Bitwise Exclusive OR Operation on a Range of Bits in a Matrix}

Create a fixed-point matrix.
\(a=f i([7,8,1 ; 5,9,5 ; 8,37,2], 0,8,0)\);
disp(bin(a))
\begin{tabular}{lll}
00000111 & 00001000 & 00000001 \\
00000101 & 00001001 & 00000101 \\
00001000 & 00100101 & 00000010
\end{tabular}

Perform a bitwise exclusive OR operation on the bits of each element of matrix a beginning at position 5 and ending at position 2.
```

c = bitxorreduce(a,5,2)
C =
lll
1 1 1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

```

\section*{Input Arguments}
a - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
bitxorreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and scaling properties do not affect the result type and value. bitxorreduce performs the operation on a two's complement bit representation of the stored integer.

Data Types: fixed-point fi
lidx - Start position of range
scalar
Start position of range specified as a scalar of built-in type. lidx represents the position in the range closest to the MSB.

Data Types: fi|single|double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{ridx - End position of range}
scalar
End position of range specified as a scalar of built-in type. ridx represents the position in the range closest to the LSB (the bit at position 1).

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

\section*{Output Arguments}

\section*{c - Output array}
scalar | vector | matrix | multidimensional array
Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. c is unsigned with word length 1.

\section*{Version History}

Introduced in R2007b

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder \({ }^{\mathrm{TM}}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
For VHDL, generates a set of individual slices.
For Verilog, generates the reduce operator:
^a[lidx:ridx]

\section*{See Also}
bitandreduce | bitconcat | bitorreduce |bitsliceget

\section*{buildInstrumentedMex}

Generate compiled C code function including logging instrumentation

\section*{Syntax}
buildInstrumentedMex fcn -options
buildInstrumentedMex fcn_1... fcn_n -options -coder

\section*{Description}
buildInstrumentedMex fcn -options translates the MATLAB file fcn.m to a MEX function and enables instrumentation for logging minimum and maximum values of all named and intermediate variables. Optionally, you can enable instrumentation for \(\log 2\) histograms of all named, intermediate and expression values. The general syntax and options of buildInstrumentedMex and fiaccel are the same, except buildIntstrumentedMex has no fi object restrictions and supports the ' coder' option.

Note Like the fiaccel function, the buildInstrumentedMex function generates a MEX function. To generate C code, use the codegen function.
buildInstrumentedMex fcn_1...fen_n -options -coder translates the MATLAB functions \(f c n \_1\) through fcn_n to a MEX function and enables instrumentation for logging minimum and maximum values of all named and intermediate variables. Generating a MEX function for multiple entry-point functions requires the '-coder' option.

Note Generating a MEX function for multiple entry-point functions using the buildInstrumentedMex function requires a MATLAB Coder license.

\section*{Examples}

\section*{Create Instrumented MEX Function}

This example shows how to create an instrumented MEX function, run a test bench, then view logged results.

Define prototype input arguments.
n = 128;
x = complex(zeros(n,1));
w = fi_radix2twiddles(n);
Generate an instrumented MEX function. Use the - o option to specify the MEX function name. Use the -histogram option to compute histograms.

If you have a MATLAB® \({ }^{\circledR}\) Coder \({ }^{\text {TM }}\) license, you can also add the - coder option. In this case,
```

buildInstrumentedMex testfft -o testfft instrumented -args {x,coder.Constant(w)} -histogram

```

If you have a MATLAB \(\circledR^{\circledR}\) Coder \(^{\mathrm{TM}}\) license, you can also add the - coder option. For example, buildInstrumentedMex testfft -coder -o testfft_instrumented -args \{x,w\}

Like the fiaccel function, the buildInstrumentedMex function generates a MEX function. To generate \(C\) code, use the MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\) codegen function.

Run a test file to record instrumentation results. Use the showInstrumentedMex function to open the report. To view the simulation minimum and maximum values and whole number status, pause over a variable in the report. You can also see proposed data types for double precision numbers in the table.
```

for i=1:20
y = testfft_instrumented(randn(size(x)),w);
end
showInstrumentationResults testfft_instrumented

```


Close the histogram display, then use the clearInstrumentationResults function to clear the results log.
clearInstrumentationResults testfft_instrumented
Run a different test bench, then view the new instrumentation results.
```

for i=1:20
y = testfft_instrumented(cast(rand(size(x))-0.5,'like',x),w);
end
showInstrumentationResults testfft_instrumented

```


To view the histogram for a variable, click the histogram icon in the Variables tab.


Close the histogram display, then use the clearInstrumentationResults function to clear the results log.
clearInstrumentationResults testfft_instrumented
Clear the MEX function.
clear testfft_instrumented

\section*{Create Instrumented MEX Function for Multiple Entry Point Functions}

This example shows how to create an instrumented MEX function for multiple entry point functions. Generating a MEX function for multiple entry point functions using the buildInstrumentedMex function requires using the ' - coder \({ }^{\prime}\) option and a MATLAB® \({ }^{\text {Coder }}{ }^{\text {TM }}\) license.

\section*{Section 1 Title}

This example uses the two entry-point functions, ep1 and ep2.
```

function y1 = ep1(u) %\#codegen
y1 = u;
end
function y2 = ep2(u,v) %\#codegen
y2 = u + v;
end

```

Generate an instrumented MEX function for the two entry-point functions. Use the -o option to specify the name of the MEX function. Use the -histogram option to compute histograms. Use the coder option to enable generating multiple entry points with the buildInstrumentedMex function.
```

u = 1:100;
v = 5:104;
buildInstrumentedMex -o sharedmex ...
ep1 -args {u} ... % Entry point 1
ep2 -args {u,v} ... % Entry point 2
-histogram -coder
Code generation successful.

```

Use the generated MEX function to call the first entry-point function.
```

y1 = sharedmex('ep1',u);

```

Use the generated MEX function to call the second entry-point function.
```

y2 = sharedmex('ep2',u,v);

```

Show the instrumentation results.
```

showInstrumentationResults sharedmex

```


\section*{Input Arguments}

\section*{fon - Entry-point functions to instrument}
function name
MATLAB entry-point functions to be instrumented, specified as a function existing in the current working folder or on the path. The entry-point functions must be suitable for code generation. For more information, see "Make the MATLAB Code Suitable for Code Generation" (MATLAB Coder).

\section*{options - Compiler options}
option value | space delimited list of option values
Choice of compiler options. buildInstrumentedMex gives precedence to individual command-line options over options specified using a configuration object. If command-line options conflict, the rightmost option prevails.
-args example_inputs
Define the size, class, and complexity of all MATLAB function inputs. Use the values in example inputs to define these properties. example_inputs must be a cell array that specifies the same number and order of inputs as the MATLAB function.
\begin{tabular}{|c|c|}
\hline - coder & Use MATLAB Coder software to compile the MEX file, instead of the default Fixed-Point Designer fiaccel function. This option removes fiaccel restrictions and allows for full code generation support. You must have a MATLAB Coder license to use this option. \\
\hline - config config_object & \begin{tabular}{l}
Specify MEX generation parameters, based on config_object, defined as a MATLAB variable using coder.mexconfig. For example: \\
cfg = coder.mexconfig;
\end{tabular} \\
\hline \multirow[t]{5}{*}{-d out_folder} & Store generated files in the absolute or relative path specified by out_folder. If the folder specified by out_folder does not exist, buildInstrumentedMex creates it for you. \\
\hline & If you do not specify the folder location, buildInstrumentedMex generates files in the default folder: \\
\hline & fiaccel/mex/fcn. \\
\hline & \(f c n\) is the name of the MATLAB function specified at the command line. \\
\hline & The function does not support the following characters in folder names: asterisk (*), questionmark (?), dollar (\$), and pound (\#). \\
\hline - g & Compiles the MEX function in debug mode, with optimization turned off. If not specified, buildinstrumentedMex generates the MEX function in optimized mode. \\
\hline
\end{tabular}

\author{
-global global_values
}
-histogram
-I include_path
-launchreport
-o output_file_name

Specify initial values for global variables in MATLAB file. Use the values in cell array global_values to initialize global variables in the function you compile. The cell array should provide the name and initial value of each global variable. You must initialize global variables before compiling with buildInstrumentedMex. If you do not provide initial values for global variables using the -global option,
buildInstrumentedMex checks for the variable in the MATLAB global workspace. If you do not supply an initial value, buildInstrumentedMex generates an error.

The generated MEX code and MATLAB each have their own copies of global data. To ensure consistency, you must synchronize their global data whenever the two interact. If you do not synchronize the data, their global variables might differ.
Compute the log2 histogram for all named, intermediate and expression values. A histogram column appears in the code generation report table.
Add include_path to the beginning of the code generation path.
buildInstrumentedMex searches the code generation path first when converting MATLAB code to MEX code.
Generate and open a code generation report. If you do not specify this option,
buildInstrumentedMex generates a report only if error or warning messages occur or you specify the - report option.
Generate the MEX function with the base name output_file_name plus a platform-specific extension.
output_file_name can be a file name or include an existing path.

If you do not specify an output file name, the base name is fcn mex, which allows you to run the original MATLAB function and the MEX function and compare the results.
-0 optimization_option
-report

Optimize generated MEX code, based on the value of optimization_option:
- enable:inline - Enable function inlining
- disable:inline - Disable function inlining

If not specified, buildInstrumentedMex uses inlining for optimization.
Generate a code generation report. If you do not specify this option, buildInstrumentedMex generates a report only if error or warning messages occur or you specify the launchreport option.

\section*{Tips}
- You cannot instrument MATLAB functions provided with the software. If your top-level function is such a MATLAB function, nothing is logged. You also cannot instrument scripts.
- Instrumentation results are accumulated every time the instrumented MEX function is called. Use clearInstrumentationResults to clear previous results in the log.
- Some coding patterns pass a significant amount of data, but only use a small portion of that data. In such cases, you may see degraded performance when using buildInstrumentedMex. In the following pattern, subfun only uses one element of input array, A. For normal execution, the amount of time to execute subfun once remains constant regardless of the size of A. The function topfun calls subfun N times, and thus the total time to execute topfun is proportional to N . When instrumented, however, the time to execute subfun once becomes proportional to \(\mathrm{N}^{\wedge} 2\). This change occurs because the minimum and maximum data are calculated over the entire array. When A is large, the calculations can lead to significant performance degradation. Therefore, whenever possible, you should pass only the data that the function actually needs.
```

function A = topfun(A)
N = numel(A);
for i=1:N
A(i) = subfun(A,i);
end
end
function b = subfun(A,i)
b = 0.5 * A(i);
end
function A = topfun(A)
N = numel(A);
for i=1:N
A(i) = subfun(A(i));
end
end
function b = subfun(a)
b = 0.5 * a;
end

```

\section*{Version History}

\section*{Introduced in R2011b}

\section*{R2023a: Change to default buildInstrumentedMex behavior for constant inputs}

When the buildInstrumentedMex function generates a MEX file, it no longer automatically removes constants from the call to the MEX file. With this change, buildInstrumentedMex and codegen MEX generation now have the same default behavior with respect to constant inputs.
```

buildInstrumentedMex myfun -args {x,coder.Constant(c)}

```
myfun_mex (x,c)

To revert to the prior behavior, set the ConstantInputs property of the coder. MexConfig object to 'Remove'.
```

cfg = coder.MexConfig;

```
cfg.ConstantInputs = "Remove";
buildInstrumentedMex myfun -args \{x,coder.Constant(c)\} -config cfg
myfun_mex(x)

\section*{See Also}
fiaccel|clearInstrumentationResults| showInstrumentationResults | NumericTypeScope | codegen | mex

\section*{cast}

Cast variable to different data type

\section*{Syntax}
b = cast(a,'like',p)

\section*{Description}
\(b=\operatorname{cast}(a, ' l i k e ', p)\) converts \(a\) to the same numerictype, complexity (real or complex), and fimath as \(p\). If \(a\) and \(p\) are both real, then \(b\) is also real. Otherwise, \(b\) is complex.

\section*{Examples}

\section*{Convert an int8 Value to Fixed Point}

Define a scalar 8-bit integer.
a = int8(5);
Create a signed fi object with word length of 24 and fraction length of 12.
p = fi([],1,24,12);
Convert a to fixed point with numerictype, complexity (real or complex), and fimath of the specified fi object, p.
```

b = cast(a, 'like', p)
b =
5
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12

```

\section*{Convert an Array to Fixed Point}

Define a 2-by-3 matrix of ones.
\(\mathrm{A}=\operatorname{ones}(2,3)\);
Create a signed fi object with word length of 16 and fraction length of 8.
p = fi([],1,16,8);
Convert A to the same data type and complexity (real or complex) as p .
```

B = cast(A,'like',p)
B =
llll
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 8

```

\section*{Write MATLAB Code That Is Independent of Data Types}

Write a MATLAB algorithm that you can run with different data types without changing the algorithm itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types. You can then test the algorithm with different fixed-point data types and compare the fixed-point behavior to the baseline without making any modifications to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T , which is a structure that defines the data types of the coefficients and the input and output data.
```

function $[y, z]=m y _f i l t e r(b, a, x, z, T)$
\% Cast the coefficients to the coefficient type
b = cast(b,'like',T.coeffs);
a = cast(a,'like',T.coeffs);
\% Create the output using zeros with the data type
y = zeros(size(x),'like',T.data);
for $i=1$:length (x)
$y(i)=b(1) * x(i)+z(1) ;$
$z(1)=b(2) * x(i)+z(2)-a(2) * y(i) ;$
$z(2)=b(3) * x(i) \quad-a(3) * y(i) ;$
end
end

```

Write a MATLAB function, zeros ones cast example, that calls my filter with a floating-point step input and a fixed-point step input, and then compares the results.
```

function zeros_ones_cast_example
% Define coefficients for a filter with specification
% [b,a] = butter(2,0.25)
b = [0.097631072937818 0.195262145875635 0.097631072937818];
a = [1.000000000000000 -0.942809041582063 0.333333333333333];
% Define floating-point types
T float.coeffs = double([]);
T_float.data = double([]);
% Create a step input using ones with the
% floating-point data type
t = 0:20;
x_float = ones(size(t),'like',T_float.data);

```
```

 % Initialize the states using zeros with the
 % floating-point data type
 z float = zeros(1,2,'like',T float.data);
 % Run the floating-point algorithm
 y_float = my_filter(b,a,x_float,z_float,T_float);
 % Define fixed-point types
 T_fixed.coeffs = fi([],true,8,6);
 T}\mathrm{ - fixed.data = fi([],true,8,6);
 % Create a step input using ones with the
 % fixed-point data type
 x_fixed = ones(size(t),'like',T_fixed.data);
 % Initialize the states using zeros with the
 % fixed-point data type
 z_fixed = zeros(1,2,'like',T_fixed.data);
 % Run the fixed-point algorithm
 y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);
 % Compare the results
 coder.extrinsic('clf','subplot','plot','legend')
 clf
 subplot(211)
 plot(t,y_float,'co-',t,y_fixed,'kx-')
 legend('Floating-point output','Fixed-point output')
 title('Step response')
 subplot(212)
 plot(t,y_float - double(y_fixed),'rs-')
 legend('Error')
 figure(gcf)
 end

```

\section*{Input Arguments}

\section*{a - Variable that you want to cast to a different data type}
fi object | numeric variable
Variable, specified as a fi object or numeric variable.
Complex Number Support: Yes

\section*{p - Prototype}
fi object | numeric variable
Prototype, specified as a fi object or numeric variable. To use the prototype to specify a complex object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

Complex Number Support: Yes

\section*{Tips}

Using the \(b=\) cast ( \(a\),' like', \(p\) ) syntax to specify data types separately from algorithm code allows you to:
- Reuse your algorithm code with different data types.
- Keep your algorithm uncluttered with data type specifications and switch statements for different data types.
- Improve readability of your algorithm code.
- Switch between fixed-point and floating-point data types to compare baselines.
- Switch between variations of fixed-point settings without changing the algorithm code.

\section*{Version History \\ Introduced in R2013a}

\section*{See Also}
ones |zeros|cast

\section*{Topics}
"Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types Using cast and zeros"
"Manual Fixed-Point Conversion Workflow"
"Manual Fixed-Point Conversion Best Practices"

\section*{cast64BitFiTolnt}

Cast fi object types that can be exactly represented to a 64-bit integer data type

\section*{Syntax}
y = cast64BitFiToInt(u)

\section*{Description}
\(y=\) cast64BitFiToInt ( \(u\) ) casts the input \(u\) to an equivalent 64-bit integer data type when possible.

If the input \(u\) is a fi object that can be represented exactly by an int64 or uint64 data type, then the output is this built-in data type. If \(u\) is a fi object that cannot be exactly represented by a built-in data type, or if it is already a built-in data type, then the output is the same as the input.

\section*{Examples}

\section*{Cast a fi Object to an Equivalent Integer Type}

Use the castFiToInt and cast64BitFiToInt functions to cast fi objects to equivalent integer data types.

Create a signed fi variable with a 16 -bit word length and zero fraction length. This is equivalent to an int16 data type. Cast the variable to the equivalent integer data type using the castFiToInt function.
```

u = fi(25,1,16,0);
yl = castFiToInt(u)
y1 =
int16
25

```

The cast64BitFiToInt function casts only 64 -bit word length fi objects with zero fraction length to an equivalent integer data type. All other input data types retain their original data type.

In this example, because the input is not a 64 -bit word length \(f i\), the output is the same as the input.
```

y2 = cast64BitFiToInt(u)
y2 =

```

25
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 0

When you pass a fi object with a 64-bit word length and zero fraction length into the cast64BitFiToInt function, the output is an int64.
```

u = fi(25,1,64,0)
y3 = cast64BitFiToInt(u)
y3 =
int64

```
    25

When the input is a fi object with a non-zero fraction length, both functions return the original fi object because the input cannot be represented by an integer data type.
```

u = fi(pi,1,64,32);
y4 = cast64BitFiToInt(u)
y4 =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 32
y5 = castFiToInt(u)
y5 =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 32

```

\section*{Input Arguments}

\section*{u - Numeric input}
scalar | vector \(\mid\) matrix \(\mid\) multidimensional array
Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half|int8|int16|int32|int64|uint8|uint16|uint32| uint64|fi
Complex Number Support: Yes

\section*{Output Arguments}

\section*{y - Numeric output}
scalar | vector \(\mid\) matrix \(\mid\) multidimensional array
Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value and dimensions as the input.

If the input \(u\) is a fi object that can be represented exactly by an int64 or uint64 data type, then the output is this built-in data type. If \(u\) is a fi object that cannot be exactly represented by a built-in data type, or if it is already a built-in data type, then the output is the same as the input.

\section*{Version History}

Introduced in R2020a

\section*{See Also}
cast64BitIntToFi|castFiToInt | castFiToMATLAB|castIntToFi

\section*{cast64BitIntToFi}

Cast 64-bit integer types to an equivalent fi object type

\section*{Syntax}
y = cast64BitIntToFi(u)

\section*{Description}
\(y=\) cast64BitIntToFi(u) casts the input variable \(u\) to an equivalent 64 -bit fi object when the data type of \(u\) is a 64 -bit integer type. Otherwise, the output has the same data type as the input.

\section*{Examples}

\section*{Cast an Integer to a fi Object}

Use the castIntToFi and cast64BitIntToFi functions to cast integer data types in your code to equivalent fi objects.

Create a variable with a signed 16 -bit integer data type. Cast the variable to an equivalent fi object using the castIntToFi function.
u = int16(25);
y1 = castIntToFi(u)
y1 =
25
```

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

```

The output fi object has the same word length and signedness as the input, and zero fraction length.
The cast64BitIntToFi function casts only 64 -bit integer data types to an equivalent fi object. All other input data types retain their data type.

In this example, because the input is not an int64 or uint64 data type, the output remains an int16.
y2 = cast64BitIntToFi(u)
y2 =
int16

When you pass an int64 into the cast64BitIntToFi function, the output is a fi object with a 64bit word length and zero fraction length.
```

u = int64(25);
y3 = castIntToFi(u)
y3 =
25
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 0

```

\section*{Input Arguments}
u - Numeric input
scalar | vector | matrix | multidimensional array
Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half|int8|int16|int32|int64|uint8|uint16|uint32| uint64|fi
Complex Number Support: Yes

\section*{Output Arguments}

\section*{y - Numeric output}
scalar | vector | matrix | multidimensional array
Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value and dimensions as the input.

When the data type of \(u\) is a 64 -bit integer type, the output is a fi object with a 64 -bit word length, fraction length of zero, and the same signedness as the input. Otherwise, the output has the same data type as the input.

\author{
Version History \\ Introduced in R2020a
}

\author{
See Also \\ cast64BitFiToInt|castFiToInt|castFiToMATLAB|castIntToFi
}

\section*{castFiTolnt}

Cast fi object to equivalent integer data type

\section*{Syntax}
\(\mathrm{y}=\) castFiToInt(u)

\section*{Description}
\(\mathrm{y}=\) castFiToInt ( u ) casts the input u to an equivalent MATLAB integer data type when possible.
If the input \(u\) is a fi object type that can be represented exactly by an integer data type, then the output is this integer data type. If \(u\) is a fi object that cannot be exactly represented by a built-in data type, or if it is already a built-in data type, then the output is the same as the input.

\section*{Examples}

\section*{Cast a fi Object to an Equivalent Integer Type}

Use the castFiToInt and cast64BitFiToInt functions to cast fi objects to equivalent integer data types.

Create a signed fi variable with a 16 -bit word length and zero fraction length. This is equivalent to an int16 data type. Cast the variable to the equivalent integer data type using the castFiToInt function.
```

u = fi(25,1,16,0);
yl = castFiToInt(u)
y1 =
int16

```
    25

The cast64BitFiToInt function casts only 64 -bit word length fi objects with zero fraction length to an equivalent integer data type. All other input data types retain their original data type.

In this example, because the input is not a 64 -bit word length \(f i\), the output is the same as the input.
```

y2 = cast64BitFiToInt(u)
y2 =

```

25
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 0

When you pass a fi object with a 64-bit word length and zero fraction length into the cast64BitFiToInt function, the output is an int64.
```

u = fi(25,1,64,0)
y3 = cast64BitFiToInt(u)
y3 =
int64

```
    25

When the input is a fi object with a non-zero fraction length, both functions return the original fi object because the input cannot be represented by an integer data type.
```

u = fi(pi,1,64,32);
y4 = cast64BitFiToInt(u)
y4 =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 32
y5 = castFiToInt(u)
y5 =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 32

```

\section*{Input Arguments}

\section*{u - Numeric input}
scalar | vector | matrix | multidimensional array
Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8|int16|int32|int64|uint8|uint16|uint32| uint64|fi
Complex Number Support: Yes

\section*{Output Arguments}

\section*{y - Numeric output}
scalar | vector | matrix | multidimensional array
Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value and dimensions as the input.

\section*{Version History}

Introduced in R2020a
```

See Also
cast64BitFiToInt| cast64BitIntToFi| castFiToMATLAB| castIntToFi

```

\section*{castFiToMATLAB}

Cast fi object type to an equivalent built-in MATLAB data type

\section*{Syntax}
y = castFiToMATLAB(u)

\section*{Description}
\(\mathrm{y}=\) castFiToMATLAB(u) casts the input u to an equivalent MATLAB built-in data type when possible.

If the input \(u\) is a fi object type that can be represented exactly by a built-in MATLAB data type, then the output is this built-in data type. If \(u\) is a fi object type that cannot be exactly represented by a built-in data type, or if it is already a built-in data type, then the output is the same as the input.

\section*{Examples}

\section*{Cast a fi Object to an Equivalent Built-In MATLAB Type}

Use the castFiToMATLAB function to cast fi objects to equivalent built-in MATLAB data types.
Create a signed fi variable with a 16 -bit word length and zero fraction length. This is equivalent to an int 16 data type. Cast the variable to the equivalent MATLAB data type using the castFiToMATLAB function.
u = fi(25, 1, 16, 0);
\(\mathrm{y} 1=\) castFiToMATLAB(u)
y1 =
int16
25
When the input is a fi object with a non-zero fraction length, the function returns the original fi object because the input cannot be represented by a built-in data type.
\(\mathrm{u}=\mathrm{fi}(\mathrm{pi}, 1,64,32)\);
y2 = castFiToMATLAB(u)
y2 =
3.1416

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 64
FractionLength: 32
When the input is a double-precision fi object, the function returns a double with the same value.
```

T = numerictype('Double');
u = fi(25,T)
u =
2 5
DataTypeMode: Double
y3 = castFiToMATLAB(u)
class(y3)
y3 =
2 5
ans =
'double'

```

\section*{Input Arguments}
u - Numeric input
scalar | vector | matrix | multidimensional array
Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8| int16|int32|int64|uint8|uint16|uint32| uint64|fi
Complex Number Support: Yes

\section*{Output Arguments}

\section*{y - Numeric output}
scalar | vector | matrix | multidimensional array
Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value and dimensions as the input.

If the input \(u\) is a fi object that can be represented exactly by a built-in MATLAB data type, then the output is this built-in data type. If \(u\) is a fi object that cannot be exactly represented by a built-in data type, or if it is already a built-in data type, then the output is the same as the input.

\author{
Version History \\ Introduced in R2020a
}

\section*{See Also \\ cast64BitFiToInt| cast64BitIntToFi| castFiToInt|castIntToFi}

\section*{castIntToFi}

Cast an integer data type to equivalent fi type

\section*{Syntax}
\(\mathrm{y}=\) castIntToFi(u)

\section*{Description}
\(y=\) castIntToFi(u) casts the input variable \(u\) to an equivalent fi object when \(u\) is one of the built-in MATLAB integer data types (int8, uint8, int16, uint16, int32, uint32, int64, uint64).

When u is not one of the built-in integer data types, the output has the same data type as the input.

\section*{Examples}

\section*{Cast an Integer to a fi Object}

Use the castIntToFi and cast64BitIntToFi functions to cast integer data types in your code to equivalent fi objects.

Create a variable with a signed 16 -bit integer data type. Cast the variable to an equivalent fi object using the castIntToFi function.
u = int16(25);
yl = castIntToFi(u)
y1 =
25
```

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 0

```

The output fi object has the same word length and signedness as the input, and zero fraction length.
The cast64BitIntToFi function casts only 64-bit integer data types to an equivalent fi object. All other input data types retain their data type.

In this example, because the input is not an int64 or uint64 data type, the output remains an int16.
```

y2 = cast64BitIntToFi(u)

```
y2 =
int16

When you pass an int64 into the cast64BitIntToFi function, the output is a fi object with a 64bit word length and zero fraction length.
```

u = int64(25);
y3 = castIntToFi(u)
y3 =
2 5
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 0

```

\section*{Input Arguments}
u - Numeric input
scalar | vector | matrix | multidimensional array
Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half|int8| int16|int32|int64|uint8|uint16|uint32| uint64|fi
Complex Number Support: Yes

\section*{Output Arguments}

\section*{y - Fixed-point output}
fi object | scalar | vector | matrix | multidimensional array
Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value and dimensions as the input.

When the data type of \(u\) is an integer type, the output is a fi object with the same word length and signedness as the input, and a fraction length of zero. Otherwise, the output has the same data type as the input.

\author{
Version History \\ Introduced in R2020a
}

\author{
See Also \\ cast64BitFiToInt|cast64BitIntToFi|castFiToInt|castFiToMATLAB
}

\section*{ceil}

Rounds toward positive infinity

\section*{Syntax}
```

y = ceil(a)

```

\section*{Description}
\(y=\operatorname{ceil}(a)\) rounds fi object \(a\) to the nearest integer in the direction of positive infinity and returns the result in fi object \(y\).

\section*{Examples}

\section*{Use ceil on a Signed fi Object}

The following example demonstrates how the ceil function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 3.
```

a = fi(pi,1,8,3)
a =
3.1250
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3
y = ceil(a)
y =
4
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 0

```

The following example demonstrates how the ceil function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 12 .
```

a = fi(0.025,1,8,12)
a =
0.0249
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 12

```
```

y = ceil(a)
y =
1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 2
FractionLength: 0

```

\section*{Compare Rounding Methods}

The functions ceil, fix, and floor differ in the way they round fi objects:
- The ceil function rounds values to the nearest integer toward positive infinity.
- The fix function rounds values to the nearest integer toward zero.
- The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.
```

a = fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]');
y = [a ceil(a) fix(a) floor(a)]
y=

| -2.5000 | -2.0000 | -2.0000 | -3.0000 |
| ---: | ---: | ---: | ---: |
| -1.7500 | -1.0000 | -1.0000 | -2.0000 |
| -1.2500 | -1.0000 | -1.0000 | -2.0000 |
| -0.5000 | 0 | 0 | -1.0000 |
| 0.5000 | 1.0000 | 0 | 0 |
| 1.2500 | 2.0000 | 1.0000 | 1.0000 |
| 1.7500 | 2.0000 | 1.0000 | 1.0000 |
| 2.5000 | 3.0000 | 2.0000 | 2.0000 |

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
 plot(a,y); legend('a','ceil(a)','fix(a)','floor(a)','location','NW');

```


\section*{Input Arguments}
a - Input fi array
scalar | vector | matrix | multidimensional array
Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.
ceil does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is trivial when the slope is an integer power of 2 and the bias is 0 .

Data Types: fi
Complex Number Support: Yes

\section*{Algorithms}
- \(y\) and a have the same fimath object and DataType property.
- When the DataType property of a is single, double, or boolean, the numerictype of y is the same as that of a.
- When the fraction length of a is zero or negative, a is already an integer, and the numerictype of \(y\) is the same as that of \(a\).
- When the fraction length of a is positive, the fraction length of \(y\) is 0 , its sign is the same as that of a, and its word length is the difference between the word length and the fraction length of a, plus one bit. If a is signed, then the minimum word length of \(y\) is 2 . If a is unsigned, then the minimum word length of y is 1 .

\section*{Version History \\ Introduced in R2008a}

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

\section*{See Also}
convergent|fix|floor|nearest|round

\section*{ceilDiv}

Round the result of division toward positive infinity

\section*{Syntax}
\(y=\operatorname{ceil} \operatorname{Div}(x, d)\)
\(y=\operatorname{ceilDiv}(x, d, m)\)

\section*{Description}
\(y=\operatorname{ceilDiv}(x, d)\) returns the result of \(x / d\) rounded to the nearest integer value in the direction of positive infinity.
\(y=\) ceilDiv \((x, d, m)\) returns the result of \(x / d\) rounded to the nearest multiple of \(m\) in the direction of positive infinity.

The datatype of \(y\) is calculated such that the wordlength and fraction length are of a sufficient size to contain both the largest and smallest possible solutions given the data type of \(x\), and the values of \(d\) and m .

\section*{Examples}

\section*{Divide and Round to Ceil}

Perform a division operation and round to the nearest integer value in the direction of positive infinity.
```

ceilDiv(int16(201),10)
ans =
2 1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 13
FractionLength: 0

```

Perform a division operation and round to the nearest multiple of 5 in the direction of positive infinity.
```

ceilDiv(int16(201),10,5)
ans =
25
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 14
FractionLength: 0

```

\section*{Divide and Generate Code}

Define a function that uses ceilDiv.
```

function y = ceilDiv_example(x,d)
y = ceilDiv(x,d);
end

```

Define inputs and execute the function in MATLAB®.
```

x = fi(pi);
d = fi(2);
y = ceilDiv_example(x,d)
y =
1

```
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 2
FractionLength: 0

To generate code for this function, the denominator d must be defined as a constant.
```

codegen ceilDiv_example -args {x, coder.Constant(d)}
Code generation successful.

```

Alternatively, you can define the denominator, d , as constant in the body of the code.
```

function y = ceilDiv10(x)
y = ceilDiv(x,10);
end
x = fi(5*pi);
y = ceilDiv10(x)
y =
1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 2
FractionLength: 0
codegen ceilDiv10 -args {x}
Code generation successful.

```

\section*{Input Arguments}

\section*{x - Dividend}
scalar
Dividend, specified as a scalar.
Data Types: single | double | int8 | int16|int32 | int64|uint8|uint16|uint32|uint64| logical|fi

\section*{d - Divisor}
scalar
Divisor, specified as a scalar.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical|fi

\section*{\(m\) - Value to round to nearest multiple of}

1 (default) | scalar
Value to round to nearest multiple of, specified as a scalar.
```

Data Types: single | double | int8| int16| int32 | int64 | uint8 | uint16|uint32 | uint64 |
logical|fi

```

\section*{Output Arguments}
\(y\) - Result of division and round to ceiling
scalar
Result of division and round to ceiling, returned as a scalar.
The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to contain both the largest and smallest possible solutions given the data type of \(x\), and the values of \(d\) and m .

\section*{Version History}

Introduced in R2021a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
Slope-bias representation is not supported for fixed-point data types.
To generate code, the denominator d must be declared as constant.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\text {TM }}\).
Slope-bias representation is not supported for fixed-point data types.

\section*{See Also}
fixDiv|floorDiv|nearestDiv

\section*{clearInstrumentationResults}

Clear results logged by instrumented, compiled C code function

\section*{Syntax}
clearInstrumentationResults('mex_fcn')
clearInstrumentationResults mex_fcn
clearInstrumentationResults all

\section*{Description}
clearInstrumentationResults('mex_fcn') clears the results logged from calling the instrumented MEX function, mex_fcn.
clearInstrumentationResults mex_fcn is an alternative syntax for clearing the log.
clearInstrumentationResults all clears the results from all instrumented MEX functions.

\section*{Examples}

\section*{Create Instrumented MEX Function}

This example shows how to create an instrumented MEX function, run a test bench, then view logged results.

Define prototype input arguments.
n = 128;
\(\mathrm{x}=\) complex(zeros(n,1));
w = fi_radix2twiddles(n);
Generate an instrumented MEX function. Use the - o option to specify the MEX function name. Use the -histogram option to compute histograms.

If you have a MATLAB® Coder \({ }^{\text {TM }}\) license, you can also add the - coder option. In this case,
buildInstrumentedMex testfft -o testfft_instrumented -args \{x, coder. Constant(w)\} -histogram
If you have a MATLAB® \({ }^{8}\) Coder \({ }^{\mathrm{TM}}\) license, you can also add the - coder option. For example,
buildInstrumentedMex testfft -coder -o testfft_instrumented -args \(\{x, w\}\)
Like the fiaccel function, the buildInstrumentedMex function generates a MEX function. To generate C code, use the MATLAB® \({ }^{\circledR}\) Coder \(^{\text {TM }}\) codegen function.

Run a test file to record instrumentation results. Use the showInstrumentedMex function to open the report. To view the simulation minimum and maximum values and whole number status, pause over a variable in the report. You can also see proposed data types for double precision numbers in the table.


Close the histogram display, then use the clearInstrumentationResults function to clear the results log.
clearInstrumentationResults testfft_instrumented
Run a different test bench, then view the new instrumentation results.
```

for i=1:20
y = testfft_instrumented(cast(rand(size(x))-0.5,'like',x),w);
end
showInstrumentationResults testfft_instrumented

```


To view the histogram for a variable, click the histogram icon in the Variables tab.


Close the histogram display, then use the clearInstrumentationResults function to clear the results log.
clearInstrumentationResults testfft_instrumented
Clear the MEX function.
clear testfft_instrumented

\section*{Input Arguments}
mex_fen - Instrumented MEX function
instrumented MEX function
Instrumented MEX function created using buildInstrumentedMex.

\section*{Version History}

Introduced in R2011b

\author{
See Also \\ fiaccel| showInstrumentationResults | buildInstrumentedMex|codegen | mex
}

\section*{coder.approximation}

Create function replacement configuration object

\section*{Syntax}
\(\mathrm{q}=\) coder.approximation(function_name)
\(\mathrm{q}=\) coder.approximation('Function',function_name,Name,Value)

\section*{Description}
\(\mathrm{q}=\) coder.approximation(function_name) creates a function replacement configuration object for use during code generation or fixed-point conversion. The configuration object specifies how to create a lookup table approximation for the MATLAB function specified by function_name. To associate this approximation with a coder. FixptConfig object for use with thefiaccel function, use the coder. FixptConfig configuration object addApproximation method.

Use this syntax only for the functions that coder.approximation can replace automatically. These functions are listed in the function_name argument description.
\(\mathrm{q}=\) coder.approximation('Function',function_name, Name, Value) creates a function replacement configuration object using additional options specified by one or more name-value pair arguments.

\section*{Examples}

\section*{Replace log Function with Default Lookup Table}

Create a function replacement configuration object using the default settings. The resulting lookup table in the generated code uses 1000 points.
```

logAppx = coder.approximation('log');

```

\section*{Replace log Function with Uniform Lookup Table}

Create a function replacement configuration object. Specify the input range and prefix to add to the replacement function name. The resulting lookup table in the generated code uses 1000 points.
logAppx = coder.approximation('Function','log','InputRange',[0.1,1000],...
'FunctionNamePrefix','log_replace_');

\section*{Replace log Function with Optimized Lookup Table}

Create a function replacement configuration object using the 'OptimizeLUTSize' option to specify to replace the log function with an optimized lookup table. The resulting lookup table in the generated code uses less than the default number of points.
```

 logAppx = coder.approximation('Function','log','OptimizeLUTSize', true,..
 'InputRange',[0.1,1000],'InterpolationDegree',1,'ErrorThreshold',1e-3,...
'FunctionNamePrefix','log optim ','OptimizeIterations',25);

```

\section*{Replace Custom Function with Optimized Lookup Table}

Create a function replacement configuration object that specifies to replace the custom function, saturateExp, with an optimized lookup table.

Create a custom function, saturateExp.
saturateExp = @(x) 1/(1+exp(-x));
Create a function replacement configuration object that specifies to replace the saturateExp function with an optimized lookup table. Because the saturateExp function is not listed as a function for which coder. approximation can generate an approximation automatically, you must specify the CandidateFunction property.
```

saturateExp = @(x) 1/(1+exp(-x));
custAppx = coder.approximation('Function','saturateExp',...
'CandidateFunction', saturateExp,...
'NumberOfPoints',50,'InputRange',[0,10]);

```

\section*{Input Arguments}
```

function_name - Name of the function to replace

```
```

'acos'| 'acosd'| 'acosh'| 'acoth'| 'asin'| 'asind'| 'asinh'|'atan'|'atand'|
'atanh'|'cos'| 'cosd'| 'cosh'|'erf '|'erfc'|'exp'|'log'| 'normcdf'|'reallog'
|'realsqrt'|'reciprocal'|'rsqrt'|'sin'| 'sinc'|'sind'|'sinh'|'sqrt'|'tan'|
'tand'

```

Name of function to replace, specified as a string. The function must be one of the listed functions.
Example: 'sqrt'
Data Types: char

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

\section*{Example: 'Function', 'log'}

\section*{Architecture - Architecture of lookup table approximation}
'LookupTable' (default)|'Flat'
Architecture of the lookup table approximation, specified as the comma-separated pair consisting of 'Architecture ' and a string. Use this argument when you want to specify the architecture for the lookup table. The Flat architecture does not use interpolation.
Data Types: char

\section*{CandidateFunction - Function handle of the replacement function \\ function handle | string}

Function handle of the replacement function, specified as the comma-separated pair consisting of 'CandidateFunction' and a function handle or string referring to a function handle. Use this argument when the function that you want to replace is not listed under function_name. Specify the function handle or string referring to a function handle of the function that you want to replace. You can define the function in a file or as an anonymous function.

If you do not specify a candidate function, then the function you chose to replace using the Function property is set as the CandidateFunction.
```

Example: 'CandidateFunction', @(x) (1./(1+x))

```

Data Types: function_handle|char

\section*{ErrorThreshold - Error threshold value used to calculate optimal lookup table size \\ 0.001 (default) | nonnegative scalar}

Error threshold value used to calculate optimal lookup table size, specified as the comma-separated pair consisting of 'ErrorThreshold ' and a nonnegative scalar. If 'OptimizeLUTSize' is true, this argument is required.

\section*{Function - Name of function to replace with a lookup table approximation \\ function_name}

Name of function to replace with a lookup table approximation, specified as the comma-separated pair consisting of 'Function' and a string. The function must be continuous and stateless. If you specify one of the functions that is listed under function_name, the conversion process automatically provides a replacement function. Otherwise, you must also specify the
'CandidateFunction' argument for the function that you want to replace.
Example: 'Function','log'
Example: 'Function', 'my_log','CandidateFunction',@my_log
Data Types: char

\section*{FunctionNamePrefix - Prefix for generated fixed-point function names}
'replacement_' (default) | string
Prefix for generated fixed-point function names, specified as the comma-separated pair consisting of ' FunctionNamePrefix' and a string. The name of a generated function consists of this prefix, followed by the original MATLAB function name.

\section*{Example: 'log_replace_'}

\section*{InputRange - Range over which to replace the function \\ [ ] (default) \(\mid 2 \mathrm{x} 1\) row vector \(\mid 2 \mathrm{xN}\) matrix}

Range over which to replace the function, specified as the comma-separated pair consisting of 'InputRange' and a 2 -by- 1 row vector or a 2 -by- \(N\) matrix.

\section*{Example: [-1 1]}

\section*{InterpolationDegree - Interpolation degree}

1 (default) | 0 | 2 | 3

Interpolation degree, specified as the comma-separated pair consisting of 'InterpolationDegree' and1 (linear), 0 (none), 2 (quadratic), or 3 (cubic).

\section*{NumberOfPoints - Number of points in lookup table \\ 1000 (default) | positive integer}

Number of points in lookup table, specified as the comma-separated pair consisting of
'NumberOfPoints ' and a positive integer.

\section*{OptimizeIterations - Number of iterations}

25 (default) | positive integer
Number of iterations to run when optimizing the size of the lookup table, specified as the commaseparated pair consisting of ' OptimizeIterations ' and a positive integer.

\section*{OptimizeLUTSize - Optimize lookup table size}
false (default)|true
Optimize lookup table size, specified as the comma-separated pair consisting of 'OptimizeLUTSize' and a logical value. Setting this property to true generates an area-optimal lookup table, that is, the lookup table with the minimum possible number of points. This lookup table is optimized for size, but might not be speed efficient.

\section*{PipelinedArchitecture - Option to enable pipelining}
false (default) | true
Option to enable pipelining, specified as the comma-separated pair consisting of ' PipelinedArchitecture' and a logical value.

\section*{Output Arguments}

\section*{\(q\) - Function replacement configuration object, returned as a coder.mathfcngenerator. LookupTable or a coder.mathfcngenerator. Flat configuration object}
coder.mathfcngenerator. LookupTable configuration object |
coder.mathfcngenerator. Flat configuration object
Function replacement configuration object that specifies how to create an approximation for a MATLAB function. Use the coder. FixptConfig configuration object addApproximation method to associate this configuration object with a coder. FixptConfig object. Then use the fiaccel function - float2fixed option with coder. FixptConfig to convert floating-point MATLAB code to fixed-point MATLAB code.
\begin{tabular}{|l|l|}
\hline Property & Default Value \\
\hline Auto-replace function & \('^{\prime}\) \\
\hline InputRange & {\([\) ] } \\
\hline FunctionNamePrefix & ' replacement_' \(^{\text {Architecture }}\) \\
\hline NumberOfPoints & 1000 \\
\hline InterpolationDegree & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Property & Default Value \\
\hline ErrorThreshold & 0.001 \\
\hline OptimizeLUTSize & false \\
\hline OptimizeIterations & 25 \\
\hline
\end{tabular}

\section*{Version History}

\author{
Introduced in R2014b
}

\section*{See Also}

\section*{Classes}
coder.FixPtConfig

\section*{Functions}
fiaccel

\section*{Topics}
"Replace the exp Function with a Lookup Table" "Replace a Custom Function with a Lookup Table"
"Replacing Functions Using Lookup Table Approximations"

\section*{coder.allowpcode}

Package: coder
Control code generation from P-code files

\section*{Syntax}
coder.allowpcode('plain')

\section*{Description}
coder.allowpcode('plain') allows you to generate P-code files that you can then compile into optimized MEX functions or embeddable C/C++ code. This function does not obfuscate the generated MEX functions or embeddable C/C++ code.

With this capability, you can distribute algorithms as P-code files that provide code generation optimizations.

Call this function in the top-level function before control-flow statements, such as if, while, switch, and function calls.

MATLAB functions can call P-code. When the .m and .p versions of a file exist in the same folder, the \(P\)-code file takes precedence.
coder.allowpcode is ignored outside of code generation.

\section*{Examples}

\section*{Generate optimized embeddable code from P-code file}

Write a function p_abs that returns the absolute value of its input:
```

function out = p_abs(in) %\#codegen
% The directive %\#codegen indicates that the function
% is intended for code generation
coder.allowpcode('plain');
out = abs(in);

```

Generate P-code file. In the MATLAB Command Window, enter:
pcode p_abs
The P-code file, p_abs.p, appears in the current folder.
Generate a MEX function for p_abs.p, using the -args option to specify the size, class, and complexity of the input parameter (requires a MATLAB Coder license).
```

codegen p_abs -args { int32(0) }

```
codegen generates a MEX function in the current folder.

If you have MATLAB Coder, generate embeddable \(C\) code for p_abs.p.
codegen p_abs -config:lib -args \{ int32(0) \};
codegen generates \(C\) library code in the codegen \(\backslash\) lib \(\backslash p \_a b s\) folder.
Version History
Introduced in R2011a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder \(^{\text {TM }}\).
GPU Code Generation
Generate CUDA® code for NVIDIA \({ }^{\circledR}\) GPUs using GPU Coder \({ }^{\text {TM }}\).

\section*{See Also}
pcode | codegen

\title{
coder.ArrayType class
}

Package: coder
Superclasses: coder. Type
Represent set of MATLAB arrays acceptable for input specification

\section*{Description}

Objects of the coder. ArrayType class specify array types that the generated code accepts. Use objects of this class only with the -args option of the fiaccel function. Do not pass as an input to a generated MEX function.

\section*{Creation}

Note You can create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor".
coder.ArrayType is an abstract class. You cannot create instances of this class directly. You can create coder.EnumType, coder. FiType, coder. PrimitiveType, and coder.StructType objects that derive from this class.

\section*{Properties}

\section*{ClassName - Value class name \\ coder.EnumType |coder. FiType | coder. PrimitiveType | coder.StructType}

Value class name, specified as one of these class object names.
- coder.EnumType
- coder.FiType
- coder.PrimitiveType
- coder.StructType

\section*{SizeVector - Upper bound on array size}
positive integer
Upper bound on array size, specified as a positive integer.

\section*{VariableDims - Option to specify variable-size}

1 | 0
Option to specify whether each dimension of the array has a variable size specified as a boolean vector. A value of 1 indicates that the dimension has variable-size. A value of 0 indicates that the dimension has fixed-size

\section*{Version History}

Introduced in R2011a

\section*{See Also}
coder.ClassType | coder.Type | coder.EnumType | coder. FiType | coder.PrimitiveType |
coder.StructType|coder.CellType|coder.newtype|coder.typeof|coder.resize|
fiaccel

\section*{Topics}
"Create and Edit Input Types by Using the Coder Type Editor"

\section*{coder.config}

Create configuration object for fixed-point or single-precision conversion

\section*{Syntax}
```

config_obj = coder.config('fixpt')

```
config_obj = coder.config('single')

\section*{Description}
config_obj = coder.config('fixpt') creates a coder. FixptConfig configuration object. Use this object with the fiaccel function when converting floating-point MATLAB code to fixedpoint MATLAB code.
config_obj = coder.config('single') creates a coder.SingleConfig configuration object for use with the convertToSingle function when generating single-precision MATLAB code from double-precision MATLAB code.

\section*{Examples}

\section*{Convert Floating-Point MATLAB Code to Fixed Point}

Create a coder. FixptConfig object, fixptcfg, with default settings.
fixptcfg = coder.config('fixpt');
Set the test bench name. In this example, the test bench function name is dti_test.
```

fixptcfg.TestBenchName = 'dti_test';

```

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB function name is dti.
```

fiaccel -float2fixed fixptcfg dti

```

\section*{Convert Double-Precision MATLAB Code to Single-Precision MATLAB Code}

Create a coder.SingleConfig object, scfg.
scfg = coder.config('single');
Set the test bench name. In this example, the test bench function name is myfun_test. Enable numerics testing and data logging for comparison plotting of input and output variables.
```

scfg.TestBenchName = 'myfun_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

```

Convert the double-precision MATLAB code to single-precision MATLAB code. In this example, the MATLAB function name is myfun.
convertToSingle -config scfg myfun

\section*{Version History}

Introduced in R2014b

\section*{See Also}
coder.FixPtConfig|fiaccel|coder. SingleConfig|convertToSingle

\section*{coder.const}

Fold expressions into constants in generated code

\section*{Syntax}
out = coder.const(expression)
[out1,...,outN] = coder.const(handle,arg1,...,argN)

\section*{Description}
out \(=\) coder.const(expression) evaluates expression and replaces out with the result of the evaluation in generated code.
[out1,...,outN] = coder.const(handle,arg1,..., argN) evaluates the multi-output function having handle handle. It then replaces out1, ... , outN with the results of the evaluation in the generated code.

\section*{Examples}

\section*{Specify Constants in Generated Code}

This example shows how to specify constants in generated code using coder. const.
Write a function AddShift that takes an input Shift and adds it to the elements of a vector. The vector consists of the square of the first 10 natural numbers. AddShift generates this vector.
```

function y = AddShift(Shift) %\#codegen
y = (1:10).^2+Shift;

```

Generate code for AddShift using the codegen command. Open the Code Generation Report.
```

codegen -config:lib -launchreport AddShift -args 0

```

The code generator produces code for creating the vector. It adds Shift to each element of the vector during vector creation. The definition of AddShift in generated code looks as follows:
```

void AddShift(double Shift, double y[10])
{
int k;
for (k = 0; k < 10; k++) {
y[k] = (double)((1 + k) * (1 + k)) + Shift;
}
}

```

Replace the expression (1:10).^2 with coder.const((1:10).^2), and then generate code for AddShift again using the codegen command. Open the Code Generation Report.
```

codegen -config:lib -launchreport AddShift -args 0

```

The code generator creates the vector containing the squares of the first 10 natural numbers. In the generated code, it adds Shift to each element of this vector. The definition of AddShift in generated code looks as follows:
```

void AddShift(double Shift, double y[10])
{
int i;
static const signed char iv[10] = { 1, 4, 9, 16, 25, 36,
49, 64, 81, 100 };
for (i = 0; i < 10; i++) {
y[i] = (double)iv[i] + Shift;
}
}

```

\section*{Create Lookup Table in Generated Code}

This example shows how to fold a user-written function into a constant in generated code.
Write a function getsine that takes an input index and returns the element referred to by index from a lookup table of sines. The function getsine creates the lookup table using another function gettable.
function \(y=\) getsine(index) \%\#codegen
```

 assert(isa(index, 'int32'));
    ```
    persistent tbl;
    if isempty(tbl)
                    tbl = gettable(1024);
    end
    y = tbl(index);
function \(y=\) gettable(n)
            \(y=z e r o s(1, n) ;\)
            for \(i=1: n\)
            \(y(i)=\sin \left((i-1) /\left(2 *\right.\right.\) pi*n \(\left.\left.^{*}\right)\right) ;\)
            end

Generate code for getsine using an argument of type int32. Open the Code Generation Report.
```

codegen -config:lib -launchreport getsine -args int32(0)

```

The generated code contains instructions for creating the lookup table.
Replace the statement:
```

tbl = gettable(1024);

```
with:
```

tbl = coder.const(gettable(1024));

```

Generate code for getsine using an argument of type int32. Open the Code Generation Report.

The generated code contains the lookup table itself. coder. const forces the expression gettable(1024) to be evaluated during code generation. The generated code does not contain instructions for the evaluation. The generated code contains the result of the evaluation itself.

\section*{Specify Constants in Generated Code Using Multi-Output Function}

This example shows how to specify constants in generated code using a multi-output function in a coder. const statement.

Write a function MultiplyConst that takes an input factor and multiplies every element of two vectors vec1 and vec2 with factor. The function generates vec1 and vec2 using another function EvalConsts.
```

function [y1,y2] = MultiplyConst(factor) %\#codegen
[vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);
y1=vec1.*factor;
y2=vec2.*factor;
function [f1,f2]=EvalConsts(z,n)
f1=z.^(2*n)/factorial(2*n);
f2=z.^(2*n+1)/factorial(2*n+1);

```

Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.
```

codegen -config:lib -launchreport MultiplyConst -args 0

```

The code generator produces code for creating the vectors.
Replace the statement
```

[vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);

```
with
```

[vec1,vec2]=coder.const(@EvalConsts,pi.*(1./2.^(1:10)),2);

```

Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.
```

codegen -config:lib -launchreport MultiplyConst -args 0

```

The code generator does not generate code for creating the vectors. Instead, it calculates the vectors and specifies the calculated vectors in generated code.

\section*{Read Constants by Processing XML File}

This example shows how to call an extrinsic function using coder. const.
Write an XML file MyParams.xml containing the following statements:
```

<params>
 <param name="hello" value="17"/>
 <param name="world" value="42"/>
</params>
```

Save MyParams .xml in the current folder.
Write a MATLAB function xml2struct that reads an XML file. The function identifies the XML tag param inside another tag params.

After identifying param, the function assigns the value of its attribute name to the field name of a structure s . The function also assigns the value of attribute value to the value of the field.
```

function s = xml2struct(file)
s = struct();
doc = xmlread(file);
els = doc.getElementsByTagName('params');
for i = 0:els.getLength-1
it = els.item(i);
ps = it.getElementsByTagName('param');
for j = 0:ps.getLength-1
param = ps.item(j);
paramName = char(param.getAttribute('name'));
paramValue = char(param.getAttribute('value'));
paramValue = evalin('base', paramValue);
s.(paramName) = paramValue;
end
end

```

Save xml2struct in the current folder.
Write a MATLAB function MyFunc that reads the XML file MyParams.xml into a structure s using the function xml2struct. Declare xml2struct as extrinsic using coder.extrinsic and call it in a coder.const statement.
```

function y = MyFunc(u) %\#codegen
assert(isa(u, 'double'));
coder.extrinsic('xml2struct');
s = coder.const(xml2struct('MyParams.xml'));
y = s.hello + s.world + u;

```

Generate code for MyFunc using the codegen command. Open the Code Generation Report.
```

codegen -config:dll -launchreport MyFunc -args 0

```

The code generator executes the call to xml2struct during code generation. It replaces the structure fields s.hello and s.world with the values 17 and 42 in generated code.

\section*{Input Arguments}

\section*{expression - MATLAB expression or user-written function}
expression with constants | single-output function with constant arguments
MATLAB expression or user-defined single-output function.
The expression must have compile-time constants only. The function must take constant arguments only. For instance, the following code leads to a code generation error, because x is not a compiletime constant.
```

function y=func(x)
y=coder.const(log10(x));

```

To fix the error, assign \(x\) to a constant in the MATLAB code. Alternatively, during code generation, you can use coder. Constant to define input type as follows:
codegen -config:lib func -args coder. Constant(10)
Example: 2*pi, factorial(10)

\section*{handle - Function handle}
function handle
Handle to built-in or user-written function.
Example: @log, @sin
Data Types: function_handle
\(\arg 1, \ldots, \operatorname{argN}-\) Arguments to the function with handle handle
function arguments that are constants
Arguments to the function with handle handle.
The arguments must be compile-time constants. For instance, the following code leads to a code generation error, because x and y are not compile-time constants.
```

function y=func(x,y)
y=coder.const(@nchoosek, x,y);

```

To fix the error, assign \(x\) and \(y\) to constants in the MATLAB code. Alternatively, during code generation, you can use coder. Constant to define input type as follows:
codegen -config:lib func -args \{coder. Constant(10), coder.Constant(2)\}

\section*{Output Arguments}
out - Value of expression
value of the evaluated expression
Value of expression. In the generated code, MATLAB Coder replaces occurrences of out with the value of expression.
out1, . . , outN - Outputs of the function with handle handle
values of the outputs of the function with handle handle
Outputs of the function with handle handle. MATLAB Coder evaluates the function and replaces occurrences of out1, ... outN with constants in the generated code.

\section*{Tips}
- When possible, the code generator constant-folds expressions automatically. Typically, automatic constant-folding occurs for expressions with scalars only. Use coder. const when the code generator does not constant-fold expressions on its own.
- When constant-folding computationally intensive function calls, to reduce code generation time, make the function call extrinsic. The extrinsic function call causes evaluation of the function call by MATLAB instead of by the code generator. For example:
```

function j = fcn(z)
zTable = coder.const(0:0.01:100);
jTable = coder.const(feval('besselj',3,zTable));
j = interp1(zTable,jTable,z);
end

```

See "Use coder.const with Extrinsic Function Calls" (MATLAB Coder).
- If coder. const is unable to constant-fold a function call, try to force constant-folding by making the function call extrinsic. The extrinsic function call causes evaluation of the function call by MATLAB instead of by the code generator. For example:
```

function yi = fcn(xi)
y = coder.const(feval('rand',1,100));
yi = interpl(y,xi);
end

```

See "Use coder.const with Extrinsic Function Calls" (MATLAB Coder).

\section*{Version History}

Introduced in R2013b

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using MATLAB® Coder \({ }^{\mathrm{TM}}\).

\section*{GPU Code Generation}

Generate CUDA® code for NVIDIA \({ }^{\circledR}\) GPUs using GPU Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

\section*{Topics}
"Fold Function Calls into Constants" (MATLAB Coder)
"Use coder.const with Extrinsic Function Calls" (MATLAB Coder)

\section*{coder.Constant class}

Package: coder
Superclasses: coder. Type
Specification of constant value for code generation

\section*{Description}

Use a coder. Constant object to define input values that are constant during code generation. Use this object with the fiaccel -args and -globals options to specify the properties of the input arguments and the global variables, respectively. Do not pass it as an input to a generated MEX function.

You can use a coder. Constant object in place of a coder. Type object to specify a given constant value in an entry-point input or global variable.

\section*{Creation}
```

const_type = coder.Constant(v) creates a coder.Constant type from the value v.
const_type = coder.newtype('constant', v) creates a coder.Constant type from the
value v.

```

Note After you have created a coder. Constant object, you can create a constant global variable \(g\) that has the value \(v\) by using the codegen command: codegen -globals \{'g', coder.Constant(v)\}.

\section*{Properties}

\section*{Value - Actual value of constant \\ constant}

The actual value of the constant. Also indicates the input argument value \(v\) that is used to construct the input argument type.

Here, in the first example, when \(k\) is passed in codegen with value \(v\) as 42 , the corresponding input type is inferred as double. Similarly, in the second example, when k is passed in codegen with value v as 42 , the corresponding input type is inferred as uint8.
Example: \(k=\) coder.Constant(42);
Example: \(\mathrm{k}=\) coder.Constant(uint8(42));

\section*{Examples}

\section*{Create a Constant with Value 42 \\ \(\mathrm{k}=\) coder.Constant(42);}

Create a new constant type for use in code generation
k = coder.newtype('constant', 42);

\section*{Limitations}
- You cannot use coder. Constant on sparse matrices, or on structures, cell arrays, or classes that contain sparse matrices.

\section*{Version History}

Introduced in R2011a

\section*{See Also \\ coder.Type|coder.newtype|fiaccel}

\section*{coder.EnumType class}

Package: coder
Superclasses: coder.ArrayType
Represent set of MATLAB enumerations acceptable for input specification

\section*{Description}

Objects of the coder. EnumType class specify the MATLAB enumerations that the generated code accepts. Use objects of this class only with the - args option of the fiaccel command. Do not pass as an input to a generated MEX function.

\section*{Creation}
\(\mathrm{t}=\) coder.typeof(enumValue) creates a coder. EnumType object that represents a set of enumeration values of class enumValue.
\(\mathrm{t}=\) coder.typeof(enumValue,sz,variableDims) creates a coder. EnumType type object with upper bound sizes \(s z\) and variable dimensions indicated in variableDims. If sz specifies inf for a dimension, then the size of the dimension is unbounded and the dimension has a variable size. When \(s z\) is [ ], the upper bound sizes of \(v\) do not change. If you do not specify variableDims, the bounded dimensions of the type are fixed and the unbounded dimensions have a variable size. When variableDims is a scalar, the function applies this value to bounded dimensions that are not 1 or 0 , which are fixed.
\(\mathrm{t}=\) coder. newtype(enumName, sz, variableDims) creates a coder. EnumType object that has a variable size with upper bound sizes \(s z\) and variable dimensions variableDims. If sz specifies inf for a dimension, then the size of the dimension is unbounded and the dimension has a variable size. If you do not specify variableDims, the bounded dimensions of the type are fixed. When variableDims is a scalar, the function applies this value to bounded dimensions that are not 1 or 0 , which are fixed.

\section*{Input Arguments}

\section*{enumValue - Enumeration value}
enumeration object
Enumeration value defined on the MATLAB path, specified as an enumeration object.

\section*{sz - Dimensions of type object}
[1 1] for coder. newtype (default)| integer vector | integer
Dimension of type object, specified as a vector of positive integers or scalar positive integer.

\section*{variableDims - Option to specify variable size \\ boolean vector}

Option to specify whether each dimension has a variable size, specified as a boolean vector. If you specify an element of this vector as 1 , the corresponding dimension has a variable size. Otherwise, the dimension has a fixed size.

\section*{enumName - Name of enumeration}
string scalar | character vector
Name of enumeration defined on the MATLAB path, specified as a string scalar or character vector.

\section*{Properties}

\section*{ClassName - Class of values}
string scalar | character vector
Class of values in the set, returned as a string scalar or character vector.

\section*{SizeVector - Upper bound size of arrays}
integer vector
Upper bound size of the arrays in the set, specified as a vector of integers.

\section*{VariableDims - Indication of whether dimensions have variable size}
boolean vector
Indication of whether each dimension of the array has fixed or variable size. If a vector element is 1 , the corresponding dimension has variable size. Otherwise, the dimension has a fixed-size.

\section*{Examples}

\section*{Create Enumeration Type Object}

On the MATLAB® path, define an enumeration named MyColors.
```

type MyColors.m
classdef MyColors < int32
enumeration
green(1),
red(2),
end
end

```

Create a coder.EnumType object from this enumeration by using coder.typeof.
```

t = coder.newtype('MyColors')

```
\(\mathrm{t}=\)
coder.EnumType
    1×1 MyColors
    Edit Type Object

\section*{Version History Introduced in R2011a}

\section*{See Also}
coder.ClassType | coder. Type | coder. ArrayType | coder.typeof | coder. newtype | coder. resize|fiaccel

Topics
"Enumerations"
"Create and Edit Input Types by Using the Coder Type Editor"

\section*{coder.extrinsic}

Declare a function as extrinsic and execute it in MATLAB

\section*{Syntax}
```

coder.extrinsic(function)
coder.extrinsic(function1, ... ,functionN)
coder.extrinsic('-sync:on', function1, ... ,functionN)
coder.extrinsic('-sync:off', function1, ... ,functionN)

```

\section*{Description}
coder.extrinsic(function) declares function as an extrinsic function. The code generator does not produce code for the body of the extrinsic function and instead uses the MATLAB engine to execute the call. This functionality is available only when the MATLAB engine is available during execution. Examples of situations where the MATLAB engine is available include execution of MEX functions, Simulink simulations, or function calls at the time of code generation (also known as compile time).

During standalone code generation, the code generator attempts to determine whether an extrinsic function only has a side effect (for example, by displaying a plot) or whether it affects the output of the function in which it is called (for example, by returning a value to an output variable). If there is no change to the output, the code generator proceeds with code generation, but excludes the extrinsic function from the generated code. Otherwise, the code generator produces a compilation error.

You cannot use coder.ceval on functions that you declare as extrinsic by using coder.extrinsic. Also, the coder.extrinsic directive is ignored outside of code generation.

See "Use MATLAB Engine to Execute a Function Call in Generated Code".

Note The code generator automatically treats many common MATLAB visualization functions, such as plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic functions by using coder.extrinsic.
coder.extrinsic(function1, ... ,functionN) declares function1 through functionN as extrinsic functions.
coder.extrinsic('-sync:on', function1, ... ,functionN) enables synchronization of global data between MATLAB execution and generated code execution or Simulink simulation before and after calls to the extrinsic functions function1 through functionN. If only a few extrinsic calls use or modify global data, turn off synchronization before and after all extrinsic function calls by setting the global synchronization mode to At MEX-function entry and exit. Use the ' sync: on ' option to turn on synchronization for only the extrinsic calls that do modify global data.

If you use MATLAB Coder to generate a MEX function, the '-sync: on' option enables verification of consistency of constant global data between MATLAB and MEX functions after calls to the extrinsic functions.

See "Generate Code for Global Data" (MATLAB Coder).
coder.extrinsic('-sync:off', function1, ... ,functionN) disables synchronization of global data between MATLAB execution and generated code execution before and after calls to the extrinsic functions function1 through functionN. If most extrinsic calls use or modify global data, but a few do not, use the '-sync:off' option to turn off synchronization for the extrinsic calls that do not modify global data.

If you use MATLAB Coder to generate a MEX function, the ' - sync: off ' option disables verification of consistency of constant global data between MATLAB and MEX functions after calls to the extrinsic functions.

See "Generate Code for Global Data" (MATLAB Coder).

\section*{Examples}

\section*{Declare a Function as Extrinsic}

The MATLAB function str2num is not supported for code generation. This example shows how you can still use the functionality of str2num in your generated MEX function by declaring str2num as extrinsic in your MATLAB function.

This MATLAB code declares str2num as extrinsic in the local function convertStringToNumber. By declaring str2num as extrinsic, you instruct the code generator not to produce code for str2num. Instead, the code generator dispatches str2num to MATLAB for execution.
```

function n = convertStringToNumber(c)
%\#codegen
coder.extrinsic('str2num');
n = str2num(c);
end

```

Generate a MEX function for convertStringToNumber.
```

codegen convertStringToNumber -args {coder.typeof('c', [1 Inf])} -report

```

In the report, you can view the generated code.
```

/* Function Definitions */
static const mXArray *str2num(const emlrtStack *sp,
const mxArray *m1,emlrtMCInfo *location)
{
const mxArray *m;
const mxArray *pArray;
pArray = ml;
return emlrtCallMATLABR2012b((emlrtConstCTX)sp, 1, \&m, 1,
\&pArray, "str2num", true, location);
}

```

\section*{Return Output of Extrinsic Function to MATLAB at Run Time}

The output that an extrinsic function returns at run time is an mxArray, also known as a MATLAB array. The only valid operations for an mxArray are storing it in a variable, passing it to another
extrinsic function, or returning it to MATLAB. To perform any other opeation on an mxArray value, such as using it in an expression in your code, you must convert the mxArray to a known type at run time. To perform this action, assign the mxArray to a variable whose type is already defined by a prior assignment.

This example shows how to return an mxArray output from an extrinsic function directly to MATLAB. The next example shows how to convert the same mxArray output to a known type, and then use it in an expression inside your MATLAB function.

\section*{Define Entry-Point Function}

Define a MATLAB function return_extrinsic_output that accepts source and target node indices for a directed graph as inputs and determines if the graph is acyclic by using the hascycles function. The hascycles function is not supported for code generation and is declared as extrinsic.
```

type return_extrinsic_output.m
function hasCycles = return_extrinsic_output(source,target)
coder.extrinsic('hascycles');
assert(numel(source) == numel(target))
G = digraph(source,target);
hasCycles = hascycles(G);
end

```

\section*{Generate and Call MEX Function}

Generate MEX code for return_extrinsic_output. Specify the inputs to be unbounded vectors of type double.
```

codegen return_extrinsic_output -args {coder.typeof(0,[1 Inf]),coder.typeof(0,[1 Inf])} -report
Code generation successful: To view the report, open('codegen\mex\return_extrinsic_output\html\r

```

Call the generated MEX function return_extrinsic_output_mex with suitable inputs:
```

return_extrinsic_output([1 2 2 4 4],[2 3 3 1])
ans = logical
0

```

To visually inspect if the directed graph has cycles, plot the directed graph in MATLAB.
```

plot(digraph([1 2 4 4],[2 3 3 1]))

```


\section*{Use Output of Extrinsic Function in an Expression at Run Time}

The output that an extrinsic function returns is an mxArray, also known as a MATLAB array. The only valid operations for an mxArray are storing it in a variable, passing it to another extrinsic function, or returning it to MATLAB. To perform any other operation on an mxArray value, such as using it in an expression in your code, convert the mxArray to a known type at run time. To perform this action, assign the mxArray to a variable whose type is already defined by a prior assignment.

This example shows how to convert the mxArray output of an extrinsic function to a known type, and then use the output in an expression inside your MATLAB function.

\section*{Define Entry-Point Function}

Define a MATLAB function use_extrinsic_output that accepts source and target node indices for a directed graph as inputs and determines if the graph is acyclic by using the hascycles function. The hascycles function is not supported for code generation and is declared as extrinsic. The entrypoint function displays a message based on the output of the hascycles function.
```

type use_extrinsic_output
function use_extrinsic_output(source,target) %\#codegen
assert(numel(source) == numel(target))
G = digraph(source,target);
coder.extrinsic('hascycles');

```
```

hasCycles = true;
hasCycles = hascycles(G);
if hasCycles == true
disp('The graph has cycles')
else
disp('The graph does not have cycles')
end
end

```

The local variable hasCycles is first preassigned the Boolean value true before the assignment hasCycles = hascycles(G) occurs. This preassignment enables the code generator to convert the mxArray that the extrinsic function hascycles returns to a Bsoolean before assigning it to the hasCycles variable. This conversion in turn enables you to compare hasCycles with the Boolean true in the condition of the if statement.

\section*{Generate and Call MEX Function}

Generate MEX code for use_extrinsic_output. Specify the inputs to be unbounded vectors of type double.
```

codegen use_extrinsic_output -args {coder.typeof(0,[1 Inf]),coder.typeof(0,[1 Inf])} -report
Code generation successful: To view the report, open('codegen\mex\use_extrinsic_output\html\repo

```

Call the generated MEX function use_extrinsic_output_mex with suitable inputs:
use_extrinsic_output_mex([lllll 12243\(\left.],\left[\begin{array}{llll}2 & 3 & 3 & 1\end{array}\right]\right)\)
The graph does not have cycles
To see if the directed graph has cycles, plot the graph in MATLAB.
```

plot(digraph([1 2 4 4],[2 3 3 1]))

```


\section*{Evaluate Extrinsic Function Call at Compile Time by Using coder. const}

This example shows how to call an extrinsic function at the time of code generation (also known as compile time) by using coder. const. Because the MATLAB engine is always available during the evaluation of the expression inside coder. const, you can use this coding pattern when generating either MEX or standalone code. Unlike the previous two examples that show run-time execution, you do not need to explicitly convert the output of the extrinsic function to a known type if its evaluation happens at compile time.

In this example, the entry-point function rotate_complex invokes another function xml2struct that uses the MATLAB API for XML processing. Because code generation does not support the MATLAB API for XML processing, the xml2struct function is declared as extrinsic in the body of the entry-point function. Also, the call to xml2struct inside the entry-point function returns a compiletime constant. So, this output is constant-folded by placing the function call inside the coder. const directive.

\section*{Inspect XML File Containing Parameters}

The supporting file complex.xml contains the values of real and imaginary parts of a complex number.
type complex.xml
<params>
<param name="real" value="3"/>
```

 <param name="imaginary" value="4"/>
 </params>

```

\section*{Define xml2struct Function}

The MATLAB function \(x m l 2 s t r u c t\) reads an XML file that uses the format of complex.xml to store parameter names and values, stores this information as structure fields, and returns this structure.
```

type xml2struct.m
function s = xml2struct(file)
s = struct();
import matlab.io.xml.dom.*
doc = parseFile(Parser,file);
els = doc.getElementsByTagName("params");
for i = 0:els.getLength-1
it = els.item(i);
ps = it.getElementsByTagName("param");
for j = 0:ps.getLength-1
param = ps.item(j);
paramName = char(param.getAttribute("name"));
paramValue = char(param.getAttribute("value"));
paramValue = evalin("base", paramValue);
s.(paramName) = paramValue;
end
end

```

\section*{Define Entry-Point Function}

Your MATLAB entry-point function rotate_complex first calls xml2struct to read the file complex.xml. It then rotates the complex number by an angle that is equal to the input argument theta in degrees and returns the resulting complex number.
```

type rotate_complex.m
function y = rotate_complex(theta) %\#codegen
coder.extrinsic("xml2struct");
s = coder.const(xml2struct("complex.xml"));
comp = s.real + 1i * s.imaginary;
magnitude = abs(comp);
phase = angle(comp) + deg2rad(theta);
y = magnitude * cos(phase) + li * sin(phase);
end

```

The xml2struct function is declared as extrinsic and its output is constant-folded by placing the function inside the coder. const directive.

\section*{Generate and Inspect Static Library}

Generate a static library for read_complex by using the codegen (MATLAB Coder) command. Specify the input type to be a scalar double.
```

codegen -config:lib rotate_complex -args {0} -report
Warning: Code generation is using a coder.EmbeddedCodeConfig object. Because
Embedded Coder is not installed, this might cause some Embedded Coder features

```
```

to fail.
Code generation successful (with warnings): To view the report, open('codegen\lib\rotate_complex
Inspect the generated C++ file rotate_complex.c. Observe that the output of the xml2struct
function is hardcoded in the generated code.
type codegen/lib/rotate_complex/rotate_complex.c
/*
* File: rotate complex.c
* MATLAB Coder version : 5.6
* C/C++ source code generated on : 03-Mar-2023 07:28:32
*/
/* Include Files */
\#include "rotate_complex.h"
\#include <math.h>
/* Function Definitions */
/*
* Arguments : double theta
* Return Type : creal_T
*/
creal_T rotate_complex(double theta)
{
creal_T y;
double
y_tmp = \overline{0}.017453292519943295 * theta + 0.92729521800161219;
y.re = 5.0 * cos(y_tmp);
y.im = sin(y_tmp);
return y;
}
/*
* File trailer for rotate complex.c
*
* [EOF]
*/

```

\section*{Input Arguments}

\section*{function - MATLAB function name}
character vector
Name of the MATLAB function that is declared as extrinsic.
Example: coder.extrinsic('patch')
Data Types: char

\section*{Limitations}
- Extrinsic function calls have some overhead that can affect performance. Input data that is passed in an extrinsic function call must be provided to MATLAB, which requires making a copy of the
data. If the function has any output data, this data must be transferred back into the MEX function environment, which also requires a copy.
- The code generator does not support the use of coder. extrinsic to call functions that are located in a private folder.
- The code generator does not support the use of coder. extrinsic to call local functions.

\section*{Tips}
- The code generator automatically treats many common MATLAB visualization functions, such as plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic functions by using coder.extrinsic.
- Use the coder. screener function to detect which functions you must declare as extrinsic. This function runs the Code Generation Readiness Tool that screens the MATLAB code for features and functions that are not supported for code generation.

\section*{Version History}

Introduced in R2011a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{Tm}}\).

\section*{GPU Code Generation}

Generate CUDA® code for NVIDIA® GPUs using GPU Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
coder.screener

\section*{Topics}
"Use MATLAB Engine to Execute a Function Call in Generated Code"
"Generate Code for Global Data" (MATLAB Coder)
"Resolution of Function Calls for Code Generation"

\section*{coder. FiType class}

\author{
Package: coder \\ Superclasses: coder.ArrayType
}

Represent set of MATLAB fixed-point arrays acceptable for input specification

\section*{Description}

Objects of coder.FiType specify the fixed-point array values that the generated code accepts. Use objects of this class only with the -args options of the fiaccel command. Do not pass as an input to the generated MEX function.

\section*{Creation}
\(t=\) coder.typeof(v) creates a coder. FiType object representing a set of fixed-point values whose properties are the same as the fixed-point input \(v\).
\(\mathrm{t}=\) coder.typeof(v,sz, variableDims) creates a coder. FiType object with upper bound sizes specified by sz and variable dimensions indicated in variableDims. If sz specifies Inf for a dimension, then the size of the dimension is unbounded and variable size. When sz is [ ], the upper bound sizes of \(v\) do not change. If you do not specify the variableDims, the bounded dimensions of the type are fixed. When variableDims is a scalar, this function applies this value to the bounded dimensions that are not 1 or 0 , which are fixed.
t = coder.newtype('embedded.fi', numerictype,sz,variableDims) creates a coder. FiType object representing a set of fixed-point values with numerictype and upper bound sizes \(s z\) and variable dimensions indicated in variableDims. If sz specifies Inf for a dimension, then the size of the dimension is unbounded and the dimension is variable size. If you do not specify the variableDims, the bounded dimensions of the type are fixed. When variableDims is a scalar, this function applies this value to the bounded dimensions that are not 1 or 0 , which are fixed.
t = coder.newtype('embedded.fi', numerictype,sz,variableDims,Name=Value) creates a coder. FiType object representing a set of fixed-point values with additional options specified by one or more name-value pair arguments. Name is a property name and Value is the corresponding value. You can specify several name-value arguments in any order as Namel=Value1, ..., NameN=ValueN.

Note You can create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor".

\section*{Input Arguments}

\section*{v - Input variable}
fixed-point numeric value
Input variable, specified as a fixed-point numeric value.

\section*{sz - Size of type object dimensions}

\section*{integer vector}

Size of type object dimensions, specified as a vector of integers.

\section*{variableDims - Option to specify variable size}
boolean vector
Option to specify whether each dimension has a variable size, specified as a boolean vector. If you specify an element of this vector as 1 , the corresponding dimension has a variable size. Otherwise, the dimension has a fixed size.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

\section*{complex - Option to represent complex values}
falseor 0 (default) | trueor 1
Option to create a coder. FiType object that can represent complex values, specified as a numeric or logical 1 (true) or 0 (false).

\section*{fimath - Fixed-point math option \\ fimath object}

Fixed-point math option, specified as a fimath object. If you do not specify this input, the coder.FiType object uses a fimath with default property values.

\section*{Properties}

\section*{ClassName - Value class name \\ string scalar | character vector}

Value class name, returned as a string scalar.

\section*{Complex - Indication of whether fixed-point arrays are complex 0 | 1}

Indication of whether the fixed-point arrays in the set are real or complex.

\section*{Fimath - Fixed-point math option}
fimath object
Fixed-point math option that the fixed-point arrays in the set use, returned as a fimath object.

\section*{NumericType - Fixed-point representation option}
numerictype object
Fixed-point representation option that the fixed-point arrays in the set use, returned as a numerictype object.

\section*{SizeVector - Upper bound size of arrays \\ integer vector}

Upper-bound size of the arrays in the set, returned as vector of integers.

\section*{VariableDims - Option to specify variable-size \\ boolean vector}

Option to specify whether each dimension of the array has a fixed or variable size. A value of 1 indicates that the corresponding element has a variable size. A value of 0 indicates that the corresponding element has a fixed size.

\section*{Examples}

\section*{Create Fixed-Point Type Object}

Create the fixed-point type t .
```

t = coder.typeof(fi(1))
t =
coder.FiType
1×1 embedded.fi
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 14
Edit Type Object

```

Create a fixed-point type for use in code generation. The fixed-point type uses the default fimath object.
```

t = coder.newtype('embedded.fi',numerictype(1, 16, 15), [1 2])
t =
coder.FiType
1\times2 embedded.fi
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
Edit Type Object

```

\section*{See Also}
coder.ClassType | coder. Type | coder. ArrayType | coder.typeof | coder. resize | coder.newtype|fiaccel

Topics
"Create and Edit Input Types by Using the Coder Type Editor"

\section*{coder.FixPtConfig class}

Package: coder
Floating-point to fixed-point conversion configuration object

\section*{Description}

A coder.FixPtConfig object contains the configuration parameters that the fiaccel function requires to convert floating-point MATLAB code to fixed-point MATLAB code. Use the -float2fixed option to pass this object to the fiaccel function.

\section*{Creation}
fixptcfg = coder.config('fixpt') creates a coder.FixPtConfig object for floating-point to fixed-point conversion.

\section*{Properties}

ComputeDerivedRanges - Enable derived range analysis
false (default) | true
Enable derived range analysis, specified as true or false.

\section*{ComputeSimulationRanges - Enable collection and reporting of simulation range data} true (default) | false

Enable collection and reporting of simulation range data, specified as true or false. If you need to run a long simulation to cover the complete dynamic range of your design, consider disabling simulation range collection and running derived range analysis instead.

\section*{DefaultFractionLength - Default fixed-point fraction length \\ 4 (default) | positive integer}

Default fixed-point fraction length, specified as a positive integer.

\section*{DefaultSignedness - Default signedness of variables in the generated code}
'Automatic' (default) | 'Signed ' | 'Unsigned '
Default signedness of variables in the generated code, specified as 'Automatic', 'Signed', or 'Unsigned'.

DefaultWordLength - Default fixed-point word length
14 (default) | positive integer
Default fixed-point word length, specified as a positive integer.
DetectFixptOverflows - Enable detection of overflows using scaled doubles
false (default) |true
Enable detection of overflows using scaled doubles, specified as true or false.

\section*{fimath - fimath properties to use for conversion}
fimath('RoundingMethod', 'Floor','OverflowAction', 'Wrap', 'ProductMode', 'FullPr ecision','SumMode','FullPrecision') (default)|fimath object
fimath properties to use for conversion, specified as a fimath object.

\section*{FixPtFileNameSuffix - Suffix for fixed-point file names}
'_fixpt' (default)|string
Suffix for fixed-point file names, specified as a string.

\section*{LaunchNumericTypesReport - View the numeric types report after the software has proposed fixed-point types \\ true (default) | false}

View the numeric types report after the software has proposed fixed-point types, specified as true or false.

\section*{LogIOForComparisonPlotting - Enable simulation data logging to plot the data differences introduced by fixed-point conversion}
true (default) | false
Enable simulation data logging to plot the data differences introduced by fixed-point conversion, specified as true or false.

OptimizeWholeNumber - Optimize the word lengths of variables that are always whole numbers
true (default) | false
Optimize the word lengths of variables whose simulation \(\min / \max\) logs indicate that they are always whole numbers, specified as true or false.

\section*{PlotFunction - Name of function to use for comparison plots \\ ' ' (default)| string}

Name of function to use for comparison plots.
LogIOForComparisonPlotting must be set to true to enable comparison plotting. This option takes precedence over PlotWithSimulationDataInspector.

The plot function should accept three inputs:
- A structure that holds the name of the variable and the function that uses it.
- A cell array to hold the logged floating-point values for the variable.
- A cell array to hold the logged values for the variable after fixed-point conversion.

\section*{PlotWithSimulationDataInspector - Use the Simulation Data Inspector for comparison plots \\ ```
false (default) | true
```}

Use the Simulation Data Inspector for comparison plots, specified as true or false.
LogIOForComparisonPlotting must be set to true to enable comparison plotting. The PlotFunction option takes precedence over PlotWithSimulationDataInspector.

\section*{ProposeFractionLengthsForDefaultWordLength - Propose fixed-point types based on DefaultWordLength \\ true (default) | false}

Propose fixed-point types based on DefaultWordLength, specified as true or false.
ProposeTargetContainerTypes - Whether to propose target container types
false (default)|true
By default (false), propose data types with the minimum word length needed to represent the value. When set to true, propose data type with the smallest word length that can represent the range and is suitable for \(C\) code generation (\(8,16,32,64, \ldots\)). For example, for a variable with range [0..7], propose a word length of 8 rather than 3 .

ProposeWordLengthsForDefaultFractionLength - Propose fixed-point types based on DefaultFractionLength
false (default) |true
Propose fixed-point types based on DefaultFractionLength, specified as true or false.
ProposeTypesUsing - Propose data types based on simulation range data, derived ranges, or both
'BothSimulationAndDerivedRanges' (default)|'SimulationRanges'|'DerivedRanges'
Propose data types based on simulation range data, derived ranges, or both, specified as
'BothSimulationAndDerivedRanges', 'SimulationRanges', or 'DerivedRanges'.
SafetyMargin - Safety margin percentage by which to increase the simulation range when proposing fixed-point types
0 (default) | real number greater than - 100
Safety margin percentage by which to increase the simulation range when proposing fixed-point types, specified as a real number greater than - 100 .
Data Types: double

\section*{StaticAnalysisQuickMode - Perform faster static analysis \\ false (default) | true}

Perform faster static analysis, specified as true or false.

\section*{StaticAnalysisTimeoutMinutes - Abort analysis if timeout is reached \\ ' ' (default) | positive integer}

Abort analysis if timeout is reached, specified as a positive integer.

\section*{TestBenchName - Test bench function name or names}
' ' (default) | string | cell array of strings
Test bench function name or names, specified as a string or cell array of strings. You must specify at least one test bench. If you do not explicitly specify input parameter data types, the conversion uses the first test bench function to infer these data types.
Data Types: string | cell

\section*{TestNumerics - Enable numerics testing}
false (default) |true
Enable numerics testing, specified as true or false.

\section*{Examples}

\section*{Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation Ranges}

Create a coder. FixPtConfig object, fixptcfg, with default settings.
```

fixptcfg = coder.config('fixpt');

```

Set the test bench name. In this example, the test bench function name is dti_test. The conversion process uses the test bench to infer input data types and collect simulation range data.
fixptcfg.TestBenchName = 'dti_test';
Select to propose data types based on simulation ranges only. By default, proposed types are based on both simulation and derived ranges.
```

fixptcfg.ProposeTypesUsing = 'SimulationRanges';

```

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB function name is dti.
```

fiaccel -float2fixed fixptcfg dti

```

\section*{Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation and Derived Ranges}

Create a coder. FixPtConfig object, fixptcfg, with default settings.
```

fixptcfg = coder.config('fixpt');

```

Set the name of the test bench to use to infer input data types. In this example, the test bench function name is dti_test. The conversion process uses the test bench to infer input data types.
fixptcfg. TestBenchName = 'dti_test';
Select to propose data types based on derived ranges.
```

fixptcfg.ProposeTypesUsing = 'DerivedRanges';
fixptcfg.ComputeDerivedRanges = true;

```

Add design ranges. In this example, the dti function has one scalar double input, u_in. Set the design minimum value for \(u_{-}\)in to -1 and the design maximum to 1 .
```

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);

```

Convert the floating-point MATLAB function, dti, to fixed-point MATLAB code.
```

fiaccel -float2fixed fixptcfg dti

```

\section*{Enable Overflow Detection}

When you select to detect potential overflows, fiaccel generates a scaled double version of the generated fixed-point MEX function. Scaled doubles store their data in double-precision floatingpoint, so they carry out arithmetic in full range. They also retain their fixed-point settings, so they are able to report when a computation goes out of the range of the fixed-point type.

Create a coder. FixPtConfig object, fixptcfg, with default settings.
```

fixptcfg = coder.config('fixpt');

```

Set the test bench name. In this example, the test bench function name is dti_test.
```

fixptcfg.TestBenchName = 'dti_test';

```

Enable numerics testing with overflow detection.
```

fixptcfg.TestNumerics = true;
fixptcfg.DetectFixpt0verflows = true;

```

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB function name is dti.
fiaccel -float2fixed fixptcfg dti

\section*{Alternatives}

You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point Converter app. Open the app using one of these methods:
- On the Apps tab, in the Code Generation section, select Fixed-Point Converter.
- Use the fixedPointConverter command.

\section*{Version History \\ Introduced in R2014b}

\section*{See Also}
fiaccel | coder.mexconfig

\section*{Topics}
"Propose Data Types Based on Simulation Ranges"
"Propose Data Types Based on Derived Ranges"
"Detect Overflows"

\section*{coder.ignoreConst}

Prevent use of constant value of expression for function specializations

\section*{Syntax}
```

coder.ignoreConst(expression)

```

\section*{Description}
coder.ignoreConst(expression) prevents the code generator from using the constant value of expression to create function specializations on page 4-161. coder.ignoreConst (expression) returns the value of expression.

\section*{Examples}

\section*{Prevent Function Specializations Based on Constant Input Values}

Use coder.ignoreConst to prevent function specializations for a function that is called with constant values.

Write the function call_myfn, which calls myfen.
```

function [x, y] = call_myfcn(n)
%\#codegen
x = myfcn(n, 'mode1');
y = myfcn(n, 'mode2');
end
function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'model')
y = n;
else
y = -n;
end
end

```

Generate standalone C code. For example, generate a static library. Enable the code generation report.
```

codegen -config:lib call_myfcn -args {1} -report

```

In the code generation report, you see two function specializations for call_myfcn.
Functions
Call myfon
call myfcn > myfcn > 1
call myfen \(>\) myfen \(>2\)

The code generator creates call_myfcn>myfcn>1 for mode with a value of 'mode1'. It creates call_myfcn>myfen>2 for mode with a value of 'mode2'.

In the generated C code, you see the specializations my_fcn and b_my_fcn.
```

static double b_myfcn(double n)
{
return -n;
}
static double myfcn(double n)
{
return n;
}

```

To prevent the function specializations, instruct the code generator to ignore that values of the mode argument are constant.
```

function [x, y] = call_myfcn(n)
%\#codegen
x = myfcn(n, coder.ignoreConst('mode1'));
y = myfcn(n, coder.ignoreConst('mode2'));
end
function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'model')
y = n;
else
y = -n;
end
end
Generate the C code.

```
```

codegen -config:lib call_myfcn -args {1} -report

```

In the code generation report, you do not see multiple function specializations.
```

|}\mathrm{ Functions

```
 call myfen
 call myfcn > myfen

In the generated C code, you see one function for my_fcn.

\section*{Input Arguments}

\section*{expression - Expression whose value is to be treated as a nonconstant \\ MATLAB expression}

Expression whose value is to be treated as a nonconstant, specified as a MATLAB expression.

\section*{More About}

\section*{Function Specialization}

Version of a function in which an input type, size, complexity, or value is customized for a particular invocation of the function.

Function specialization produces efficient \(C\) code at the expense of code duplication. The code generation report shows all MATLAB function specializations that the code generator creates. However, the specializations might not appear in the generated \(\mathrm{C} / \mathrm{C}++\) code due to later transformations or optimizations.

\section*{Tips}
- For some recursive function calls, you can use coder.ignoreConst to force run-time recursion. See "Force Code Generator to Use Run-Time Recursion".
- coder.ignoreConst(expression) prevents the code generator from using the constant value of expression to create function specializations. It does not prevent other uses of the constant value during code generation.

\section*{Version History}

Introduced in R2017a

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using MATLAB® \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
coder.inline

\section*{Topics}
"Force Code Generator to Use Run-Time Recursion"
"Compile-Time Recursion Limit Reached"

\section*{coder.inline}

Package: coder
Control inlining of a specific function in generated code

\section*{Syntax}
coder.inline('always')
coder.inline('never')
coder.inline('default')

\section*{Description}
coder.inline('always') forces inlining on page 4-163 of the current function in the generated code. Place the coder.inline directive inside the function that you want to inline. The code generator does not inline entry-point functions and recursive functions. Also, the code generator does not inline functions into parfor loops, or inline functions called from parfor loops.
coder.inline('never') prevents inlining of the current function in the generated code. Prevent inlining when you want to simplify the mapping between the MATLAB source code and the generated code.

Note If you use the codegen or the fiaccel command, you can disable inlining for all functions by using the - 0 disable:inline option.

If you generate C/C++ code by using the codegen command or the MATLAB Coder app, you might have different speed and readability requirements for the code generated for functions that you write and the code generated for MathWorks \({ }^{\circledR}\) functions. Certain additional global settings enable you to separately control the inlining behavior for these two parts of the generated code base and at the boundary between them. See "Control Inlining to Fine-Tune Performance and Readability of Generated Code" (MATLAB Coder).

In cases where the code generator does not prevent inlining of a function in the generated code even if it contains the coder.inline('never') directive, use the coder.ignoreConst function on an input at the function call site in your MATLAB code. For more information, see "Resolve Issue: coder.inline('never') Does Not Prevent Inlining of Function" (MATLAB Coder).
coder.inline('default') instructs the code generator to use internal heuristics to determine whether to inline the current function. Usually, the heuristics produce highly optimized code. Use coder.inline explicitly in your MATLAB functions only when you need to fine-tune these optimizations.

\section*{Examples}

\section*{Prevent Function Inlining}

In this example, function foo is not inlined in the generated code:
```

function y = foo(x)
coder.inline('never');
y = x;
end

```

\section*{Use coder.inline in Control Flow Statements}

You can use coder.inline in control flow code. If the software detects contradictory coder.inline directives, the generated code uses the default inlining heuristic and issues a warning.

Suppose that you want to generate code for a division function that runs on a system with limited memory. To optimize memory use in the generated code, the inline_division function manually controls inlining based on whether it performs scalar division or vector division:
```

function y = inline_division(dividend, divisor)
% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) \&\& isscalar(divisor)
coder.inline('always');
else
% Vector division produces a for-loop.
% Prohibit inlining to reduce code size.
coder.inline('never');
end
if any(divisor == 0)
error('Cannot divide by 0');
end
y = dividend / divisor;

```

\section*{More About}

\section*{Inlining}

Technique that replaces a function call with the contents (body) of that function. Inlining eliminates the overhead of a function call, but can produce larger \(\mathrm{C} / \mathrm{C}++\) code. Inlining can create opportunities for further optimization of the generated \(\mathrm{C} / \mathrm{C}++\) code.

\section*{Version History}

Introduced in R2011a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{GPU Code Generation}

Generate CUDA® code for NVIDIA \({ }^{\circledR}\) GPUs using GPU Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
fiaccel

\section*{Topics}
"Resolve Issue: coder.inline('never') Does Not Prevent Inlining of Function" (MATLAB Coder)

\section*{coder.load}

Load compile-time constants from MAT-file or ASCII file

\section*{Syntax}
```

S = coder.load(filename)
S = coder.load(filename,var1,...,varN)
S = coder.load(filename,'-regexp',expr1,...,exprN)
S = coder.load(filename,'-ascii')
S = coder.load(filename,'-mat')
S = coder.load(filename,'-mat',var1,...,varN)
S = coder.load(filename,'-mat','-regexp', expr1,...,exprN)

```

\section*{Description}

S = coder. load(filename) loads compile-time constants from filename.
- If filename is a MAT-file, then coder. load loads variables from the MAT-file into a structure array.
- If filename is an ASCII file, then coder. load loads data into a double-precision array.
coder. load loads data at code generation time, also referred to as compile time. If you change the content of filename after you generate code, the change is not reflected in the behavior of the generated code.

S = coder.load(filename, var1,..., varN) loads only the specified variables from the MAT-file filename.

S = coder.load(filename,' - regexp',expr1,...,exprN) loads only the variables that match the specified regular expressions.

S = coder.load(filename,'-ascii') treats filename as an ASCII file, regardless of the file extension.
\(S=\) coder.load(filename,' - mat') treats filename as a MAT-file, regardless of the file extension.

S = coder.load(filename,'-mat',var1,...,varN) treats filename as a MAT-file and loads only the specified variables from the file.

S = coder.load(filename,'-mat','-regexp', expr1,...,exprN) treats filename as a MAT-file and loads only the variables that match the specified regular expressions.

\section*{Examples}

\section*{Load compile-time constants from MAT-file}

Generate code for a function edgeDetect1 which given a normalized image, returns an image where the edges are detected with respect to the threshold value. edgeDetect1 uses coder. load to load the edge detection kernel from a MAT-file at compile time.

Save the Sobel edge-detection kernel in a MAT-file.
```

k = [1 2 1; 0 0 0; -1 -2 -1];
save sobel.mat k

```

Write the function edgeDetect1.
```

function edgeImage = edgeDetect1(originalImage, threshold) %\#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));
S = coder.load('sobel.mat','k');
H = conv2(double(originalImage),S.k, 'same');
V = conv2(double(originalImage),S.k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

```

Create a code generation configuration object for a static library.
```

cfg = coder.config('lib');

```

Generate a static library for edgeDetect1.
```

codegen -report -config cfg edgeDetect1

```
codegen generates C code in the codegen \(\backslash\) lib \(\backslash\) edgeDetect 1 folder.

\section*{Load compile-time constants from ASCII file}

Generate code for a function edgeDetect 2 which given a normalized image, returns an image where the edges are detected with respect to the threshold value. edgeDetect2 uses coder. load to load the edge detection kernel from an ASCII file at compile time.

Save the Sobel edge-detection kernel in an ASCII file.
```

k = [1 2 1; 0 0 0; -1 -2 -1];
save sobel.dat k -ascii

```

Write the function edgeDetect2.
```

function edgeImage = edgeDetect2(originalImage, threshold) %\#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));
k = coder.load('sobel.dat');
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage), k','same');

```
```

E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

```

Create a code generation configuration object for a static library.
cfg = coder.config('lib');
Generate a static library for edgeDetect2.
```

codegen -report -config cfg edgeDetect2

```
codegen generates \(C\) code in the codegen \(\backslash\) lib \(\backslash\) edgeDetect 2 folder.

\section*{Input Arguments}

\section*{filename - Name of file}
character vector | string scalar
Name of file. filename must be a compile-time constant.
filename can include a file extension and a full or partial path. If filename has no extension, load looks for a file named filename.mat. If filename has an extension other than .mat, load treats the file as ASCII data.

ASCII files must contain a rectangular table of numbers, with an equal number of elements in each row. The file delimiter (the character between elements in each row) can be a blank, comma, semicolon, or tab character. The file can contain MATLAB comments (lines that begin with a percent sign, \%).

\section*{Example: 'myFile.mat'}

\section*{var1, .. . , varN - Names of variables to load}
character vector | string scalar
Names of variables, specified as one or more character vectors or string scalars. Each variable name must be a compile-time constant. Use the \(*\) wildcard to match patterns.
Example: coder. load('myFile.mat', 'A*') loads all variables in the file whose names start with A.
expr1, ..., exprN - Regular expressions indicating which variables to load
character vector | string scalar
Regular expressions indicating which variables to load specified as one or more character vectors or string scalars. Each regular expression must be a compile-time constant.
Example: coder.load('myFile.mat', '-regexp', '^A') loads only variables whose names begin with A.

\section*{Output Arguments}

\section*{S - Loaded variables or data}
structure array | m-by-n array
If filename is a MAT-file, S is a structure array.

If filename is an ASCII file, S is an m-by-n array of type double. m is the number of lines in the file and \(n\) is the number of values on a line.

\section*{Limitations}
- Arguments to coder. load must be compile-time constants.
- The output S must be the name of a structure or array without any subscripting. For example, S(i) = coder.load('myFile.mat') is not allowed.
- You cannot use save to save workspace data to a file inside a function intended for code generation. The code generator does not support the save function. Furthermore, you cannot use coder.extrinsic with save. Prior to generating code, you can use save to save workspace data to a file.

\section*{Tips}
- coder. load(filename) loads data at compile time, not at run time. If you change the content of filename after you generate code, the change is not reflected in the behavior of the generated code. If you are generating MEX code or code for Simulink simulation, you can use the MATLAB function load to load run-time values.
- If the MAT-file contains unsupported constructs, use coder. load(filename, var1, ..., varN) to load only the supported constructs.
- If you generate code in a MATLAB Coder project, the code generator practices incremental code generation for the coder. load function. When the MAT-file or ASCII file used by coder. load changes, the software rebuilds the code.

\section*{Version History}

Introduced in R2013a

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{GPU Code Generation}

Generate CUDA® code for NVIDIA \({ }^{\circledR}\) GPUs using GPU Coder \({ }^{T M}\).

\section*{See Also}
matfile| regexp|save
Topics
"Regular Expressions"

\section*{coder.newtype}

Package: coder
Create coder. Type object to represent type of an entry-point function input

\section*{Syntax}
```

t = coder.newtype(numeric class,sz,variable dims)
t = coder.newtype(numeric_class,sz,variable_dims, Name,Value)
t = coder.newtype('constant',value)
t = coder.newtype('struct',struct_fields,sz,variable_dims)
t = coder.newtype('cell',cells,sz,variable_dims)
t = coder.newtype('embedded.fi',numerictype,sz,variable_dims, Name,Value)
t = coder.newtype(enum_value,sz,variable_dims)
t = coder.newtype('class_name')
t = coder.newtype('string')

```

\section*{Description}

The coder. newtype function is an advanced function that you can use to control the coder. Type object. Consider using coder. typeof instead of coder. newtype. The function coder.typeof creates a type from a MATLAB example. By default, \(\mathrm{t}=\) coder. newtype('class_name') does not assign any properties of the class, class_name to the object t .

Note You can also create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor".
t = coder.newtype(numeric_class,sz,variable_dims) creates a coder. Type object representing values of class numeric_class, sizes sz (upper bound), and variable dimensions variable_dims. If sz specifies inf for a dimension, then the size of the dimension is unbounded and the dimension is variable-size. When variable_dims is not specified, the dimensions of the type are fixed except for those that are unbounded. When variable_dims is a scalar, it is applied to type dimensions that are not 1 or 0 , which are fixed.
t = coder.newtype(numeric_class,sz,variable_dims, Name,Value) creates a coder. Type object by using additional options specified as one or more Name, Value pair arguments.
t = coder. newtype('constant', value) creates a coder. Constant object representing a single value. Use this type to specify a value that must be treated as a constant in the generated code.
t = coder.newtype('struct',struct_fields,sz,variable_dims) creates a coder. StructType object for an array of structures that has the same fields as the scalar structure struct_fields. The structure array type has the size specified by sz and variable-size dimensions specified by variable_dims.
t = coder.newtype('cell', cells,sz,variable_dims) creates a coder. CellType object for a cell array that has the cells and cell types specified by cells. The cell array type has the size
specified by sz and variable-size dimensions specified by variable_dims. You cannot change the number of cells or specify variable-size dimensions for a heterogeneous cell array.
t = coder.newtype('embedded.fi', numerictype,sz,variable_dims, Name,Value) creates a coder. FiType object representing a set of fixed-point values that have numerictype and additional options specified by one or more Name, Value pair arguments.
t = coder. newtype(enum_value,sz,variable_dims) creates a coder. Type object representing a set of enumeration values of class enum_value.
\(t=\) coder. newtype('class name') creates a coder.ClassType object for an object of the class class name. The new object does not have any properties of the class class_name.
t = coder.newtype('string') creates a coder.StringType object for a string scalar. A string scalar contains one piece of text represented as a character vector. To specify the size of the character vector and whether the second dimension is variable-size, set the StringLength property to the required size and set VariableStringLength to true. For example, t.StringLength = 10 and \(t\).VariableStringLength \(=\) true specifies that the string scalar is variable-size with an upper bound of 10 .

\section*{Examples}

\section*{Create Type for a Matrix}

Create a type for a variable-size matrix of doubles.
```

t = coder.newtype('double',[2 3 4],[1 1 0])
t =
coder.PrimitiveType
:2x:3\times4 double
% ':' indicates variable-size dimensions

```

Create a type for a matrix of doubles, first dimension unbounded, and second dimension with fixed size.
```

t = coder.newtype('double',[inf,3])
t =
coder.PrimitiveType
:infx3 double
t = coder.newtype('double',[inf,3],[1 0])
% also returns
t =
coder.PrimitiveType
:infx3 double
% ':' indicates variable-size dimensions

```

Create a type for a matrix of doubles, first dimension unbounded, and second dimension with variable-size that has an upper bound of 3 .
```

t = coder.newtype('double',[inf,3],[0 1])
t =
coder.PrimitiveType
:infx:3 double
% ':' indicates variable-size dimensions

```

\section*{Create Type for a Structure}

Create a type for a structure with a variable-size field.
```

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('double',[1 2],[1 1]);
t = coder.newtype('struct',struct('a',ta,'b',tb),[1 1],[1 1])
t =
coder.StructType
:1x:1 struct
a: 1\times1 int8
b: :1x:2 double
% ':' indicates variable-size dimensions

```

\section*{Create Type for a Cell Array}

Create a type for a heterogeneous cell array.
```

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('double',[1 2],[1 1]);
t = coder.newtype('cell',{ta, tb})
t =
coder.CellType
1\times2 heterogeneous cell
f1: 1\times1 int8
f2: :1x:2 double
% ':' indicates variable-size dimensions

```

Create a type for a homogeneous cell array.
```

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('int8',[1 2],[1 1]);
t = coder.newtype('cell',{ta, tb},[1,1],[1,1])
t =
coder.CellType
:1x:1 homogeneous cell
base: :1x:2 int8
% ':' indicates variable-size dimensions

```

\section*{Create Type for a Constant}

Create a new constant type to use in code generation.
t = coder. newtype('constant', 42)
\(\mathrm{t}=\)
coder. Constant
42

\section*{Create a coder. EnumType Object}

Create a coder. EnumType object by using the name of an existing MATLAB enumeration.
1. Define an enumeration MyColors. On the MATLAB path, create a file named MyColors containing:
```

classdef MyColors < int32
enumeration
green(1),
red(2),
end
end
2. Create a coder. EnumType object from this enumeration.

```
```

t = coder.newtype('MyColors')

```
t = coder.newtype('MyColors')
t =
coder.EnumType
 1\times1 MyColors
```


## Create a Fixed-Point Type

Create a fixed-point type for use in code generation.
The fixed-point type uses default fimath values.

```
t = coder.newtype('embedded.fi',numerictype(1, 16, 15),[1 2])
t =
coder.FiType
 1\times2 embedded.fi
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15
```


## Create a Type for an Object

Create a type for an object to use in code generation.

1. Create this value class:
```
classdef mySquare
 properties
 side;
 end
 methods
 function obj = mySquare(val)
 if nargin > 0
 obj.side = val;
 end
 end
 function a = calcarea(obj)
 a = obj.side * obj.side;
 end
 end
end
```

2. Create a type for an object that has the same properties as mySquare.
```
t = coder.newtype('mySquare');
```

3. The previous step creates a coder. ClassType type for t , but does not assign any properties of mySquare to it. To ensure $t$ has all the properties of mySquare, change the type of the property side by using $t$. Properties.
t.Properties.side = coder.typeof(int8(3))
$t=$
coder.ClassType
$1 \times 1$ mySquare
side: $1 \times 1$ int 8

## Create Type for a String Scalar

Create a type for a string scalar to use in code generation.

1. Create the string scalar type.
t = coder.newtype('string');
2. Specify the size.
t.StringLength = 10;
3. Make the string variable-size.
t.VariableStringLength = true;
4. To make the string variable-size with no upper bound, set StringLength to Inf.
t.StringLength = Inf;

Note Setting StringLength to Inf implicitly sets VariableStringLength to true.

## Input Arguments

numeric_class - Class of values of type object
numeric (default)
Class of the set of values represented by the type object.
Example: coder.newtype('double',[6,3]);
Data Types: half|single |double | int8| int16|int32|int64|uint8|uint16|uint32|
uint64|logical|char|string|struct|table|cell|function_handle|categorical|
datetime | duration | calendarDuration | fi
Complex Number Support: Yes
struct_fields - Indicates fields in a new structure type
struct (default)
Scalar structure used to specify the fields in a new structure type.
Example: coder.newtype('struct',struct('a',ta,'b',tb));
Data Types: struct
cells - Specify types of cells in a new cell array type
cell array (default)
Cell array of coder. Type objects that specify the types of the cells in a new cell array type.
Example: coder.newtype('cell', \{ta,tb\});
Data Types: cell

## sz - Dimension of type object

row vector of integer values
Size vector specifying each dimension of type object. The sz dimension cannot change the number of cells for a heterogeneous cell array.
Example: coder.newtype('int8',[1 2]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8|uint16|uint32|uint64 Complex Number Support: Yes

```
'class_name' - Name of the class
character vector | string scalar
```

Name of the class from which the coder.ClassType is created. Specify as a character vector or string scalar. class_name must be the name of a value class.
Example: coder.newtype('mySquare')
Data Types: char \| string
variable_dims - Variable- or fixed-dimension
row vector of logical values

The value of variable_dims is true for dimensions for which sz specifies an upper bound of inf; false for all other dimensions.

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false). You cannot specify variable-size dimensions for a heterogeneous cell array.
Example: coder.newtype('char', [1, 10], [0, 1]);
Data Types: logical

## value - Value of the constant

constant value (default)
Specifies the actual value of the constant.
Example: coder.newtype('constant',41);
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64|
logical|char|string|struct|table|cell
enum_value - Enumeration values of class
enum (default)
Enumeration values of a class.
Example: coder.newtype('MyColors');
Data Types: single | double | int8| int16| int32| int64|uint8|uint16|uint32|uint64|
logical|char|string|struct|table|cell|function_handle|categorical|datetime | duration | calendarDuration|fi
Complex Number Support: Yes

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: t = coder.newtype('double',[10 20],sparse = true)

## complex - Type representing complex values

## false (default) | true

Set complex to true to create a coder. Type object that can represent complex values. The type must support complex data.

## fimath - Type representing fimath values

fimath object with default property settings | fimath object
Specify local fimath. If you do not specify fimath, the code generator uses default fimath values.
Use this option only when you create a coder. FiType object.

## sparse - Type representing sparse data

false (default) | true

Set sparse to true to create a coder. Type object representing sparse data. The type must support sparse data.

This option is not supported when:

- You create a coder. FiType object.
- You set the gpu option to true.
gpu - Type representing GPU inputs
false (default) | true
Set gpu to true to create a coder. Type object that can represent the GPU input type. This option requires GPU Coder ${ }^{\mathrm{TM}}$.


## Output Arguments

## t - New type object

coder.Type object
A new coder. Type object.

## Limitations

- For sparse matrices, coder . newtype drops upper bounds for variable-size dimensions.
- For GPU input types, only bounded numeric and logical base types are supported. Scalar GPU arrays, structures, cell-arrays, classes, enumerated types, character, half-precision and fixed-point data types are not supported.
- When using coder. newtype to represent GPU inputs, the memory allocation (malloc) mode property of the GPU code configuration object to 'discrete'.


## Tips

- The coder. newtype function fixes the size of a singleton dimension unless the variable_dims argument explicitly specifies that the singleton dimension has a variable size.

For example, this code specifies a 1-by-:10 double. The first dimension (the singleton dimension) has a fixed size. The second dimension has a variable size.
t = coder.newtype('double',[1 10],1)
By contrast, this code specifies a :1-by-:10 double. Both dimensions have a variable size.

```
t = coder.newtype('double',[1 10],[1 1])
```

- For a MATLAB Function block, singleton dimensions of input or output signals cannot have a variable size.


## Alternatives

coder.typeof

## Version History

Introduced in R2011a

## See Also

coder. resize | coder. Type | coder.ArrayType | coder.EnumType | coder.FiType |
coder.PrimitiveType|coder.StructType|coder.CellType|fiaccel|
coder.OutputType

## Topics

"Create and Edit Input Types by Using the Coder Type Editor"

## coder.nullcopy

Package: coder
Declare uninitialized variables in code generation

## Syntax

X = coder.nullcopy(A)

## Description

$X=$ coder.nullcopy (A) copies type, size, and complexity of A to $X$, but does not copy element values. The function preallocates memory for $X$ without incurring the overhead of initializing memory. In code generation, the coder. nullcopy function declares uninitialized variables. In MATLAB, coder. nullcopy returns the input such that X is equal to A .

If X is a structure or a class containing variable-sized arrays, then you must assign the size of each array. coder.nullcopy does not copy sizes of arrays or nested arrays from its argument to its result.

Note Before you use X in a function or a program, ensure that the data in X is completely initialized. Declaring a variable through coder. nullcopy without assigning all the elements of the variable results in nondeterministic program behavior. For more information, see "How to Eliminate Redundant Copies by Defining Uninitialized Variables".

## Examples

## Declare a Variable Without Initialization

This example shows how to declare an array type variable without initializing any value in the array.
To generate code for the following function, you must fully declare the output variable outp as a $n$ -by-n array of real doubles before subscripting into outp. To perform this declaration without initializing all the values in the array, use coder.nullcopy.

```
function outp = foo(n) %#codegen
outp = coder.nullcopy(ones(n));
for idx = 1:n*n
 if mod(idx,2) == 0
 outp(idx) = idx;
 else
 outp(idx) = idx + 1;
 end
end
```

Run this codegen command to generate code and launch report.

```
codegen -config:lib -c foo -args {0} -launchreport
```

In the code generation report, click Trace Code to see the mapping between the MATLAB code and the generated code. To use the code traceability feature, you must have Embedded Coder ${ }^{\circledR}$.

The following figures show the comparison between the code generated with and without coder.nullcopy. Using coder.nullcopy with ones can specify the size of array outp without initializing each element to one.
function out = foo(inp)
function out = foo(inp)
function out = foo(inp)
function out = foo(inp)
out = coder.nullcopy(ones(inp));
out = coder.nullcopy(ones(inp));
out = coder.nullcopy(ones(inp));
out = coder.nullcopy(ones(inp));
for idx = 1:inp*inp
for idx = 1:inp*inp
for idx = 1:inp*inp
for idx = 1:inp*inp
if mod(idx,2)==0
if mod(idx,2)==0
if mod(idx,2)==0
if mod(idx,2)==0
out(idx) = idx;
out(idx) = idx;
out(idx) = idx;
out(idx) = idx;
else
else
else
else
out(idx) = idx + 1;
end
void foo(double inp, emxArray_real_T *out)
void foo(double inp, emxArray_real_T *out)
{
{
double *out_data;
double *out_data;
int i;
int i;
int idx;
int idx;
i = out->size[0] * out->size[1];
i = out->size[0] * out->size[1];
out->size[0] = (int)inp;
out->size[0] = (int)inp;
out->size[0] = (int)inp;
out->size[0] = (int)inp;
emxEnsureCapacity_real_T(out, i);
emxEnsureCapacity_real_T(out, i);
out data = out->data;
out data = out->data;
lol
lol
for (idx = 0; idx < i; idx++) {
for (idx = 0; idx < i; idx++) {
if (fmod((double)idx + 1.0, 2.0) == 0.0) {
if (fmod((double)idx + 1.0, 2.0) == 0.0) {
out_data[idx] = (unsigned int)idx + 1U;
out_data[idx] = (unsigned int)idx + 1U;
} else {
} else {
out_data[idx] = (unsigned int)idx + 2U;
out_data[idx] = (unsigned int)idx + 2U;
}
}
}
}
\}

If you do not use coder. nullcopy, the generated code explicitly initializes every element in outp to one (see lines 32 to 35 ).
1 function out = foo(inp)
1 function out = foo(inp)
out = ones(inp);
out = ones(inp);
for idx = 1:inp*inp
for idx = 1:inp*inp
if mod(idx,2)==0
if mod(idx,2)==0
out(idx) = idx;
out(idx) = idx;
else
else
out(idx) = idx + 1;
out(idx) = idx + 1;
end
end
end
end
end
end
void foo(double inp, emxArray_real_T *out)
void foo(double inp, emxArray_real_T *out)
{
{
double *out_data;
double *out_data;
int i;
int i;
int loop_ub;
int loop_ub;
i = out->size[0] * out->size[1];
i = out->size[0] * out->size[1];
out->size[0] = (int)inp;
out->size[0] = (int)inp;
out->size[1] = (int)inp;
out->size[1] = (int)inp;
emxEnsureCapacity_real_T(out, i);
emxEnsureCapacity_real_T(out, i);
out_data = out->data;
out_data = out->data;
loop_ub = (int)inp * (int)inp;
loop_ub = (int)inp * (int)inp;
for (i = 0; i < loop_ub; i++) {
for (i = 0; i < loop_ub; i++) {
out_data[i] = 1.0;
out_data[i] = 1.0;
}
}
i = (int)(inp * inp);
i = (int)(inp * inp);
for (loop_ub = 0; loop_ub < i; loop_ub++) {
for (loop_ub = 0; loop_ub < i; loop_ub++) {
if (fmod((double)loop_ub + 1.0, 2.0) == 0.0) {
if (fmod((double)loop_ub + 1.0, 2.0) == 0.0) {
out_data[loop_ub] = (unsigned int)loop_ub + 1U;
out_data[loop_ub] = (unsigned int)loop_ub + 1U;
} else {
} else {
out_data[loop_ub] = (unsigned int)loop_ub + 2U;
out_data[loop_ub] = (unsigned int)loop_ub + 2U;
}
}
}
}
\}

Note In some situations, the code generator automatically performs the optimization corresponding to coder. nullcopy, even if you do not explicitly include the coder. nullcopy directive in your MATLAB code.

## Input Arguments

A - Variable to copy
scalar | vector $\mid$ matrix $\mid$ class $\mid$ multidimensional array
Variable to copy, specified as a scalar, vector, matrix, or multidimensional array.

Example: coder.nullcopy(A);
Data Types: single | double | int8| int16| int32| int64|uint8|uint16|uint32|uint64|
logical|char|string|class
Complex Number Support: Yes

## Limitations

- You cannot use coder. nullcopy on sparse matrices.
- You cannot use coder. nullcopy with classes that support overloaded parentheses or require indexing methods to access their data, such as table.


## Version History

Introduced in R2011a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
GPU Code Generation
Generate CUDA® code for NVIDIA ${ }^{\circledR}$ GPUs using GPU Coder ${ }^{\text {TM }}$.

## See Also

## Topics

"Eliminate Redundant Copies of Variables in Generated Code"

## coder.read

Package: coder
Read data files at run time in generated code

## Syntax

```
dataFromFile = coder.read(fileName)
dataFromFile = coder.read(fileName,TypeHeaderFrom=typeHeaderFilename)
```

[dataFromFile,errID] = coder.read( $\qquad$ )

## Description

dataFromFile = coder.read(fileName) reads from the fileName.coderdata storage file and returns the data stored within the file. This syntax works for a constant fileName input only. Use this function in your MATLAB code for which you want to generate C/C++ code. The generated code performs the data read at run time.

To store your workspace variables in a . coderdata file, use the coder.write function in MATLAB.
dataFromFile = coder. read(fileName,TypeHeaderFrom=typeHeaderFilename) uses the information contained in typeHeaderFilename to determine the type and size of the data to be read from fileName. Both fileName and typeHeaderFilename must be .coderdata files. The typeHeaderFilename argument must be a compile-time constant and the file that this name represents must exist in your current directory during code generation.

Each . coderdata file contains a type header that specifies the type and size of the data stored in the file. The code generated for the coder. read function can read any . coderdata file at run-time, while the file type and size is consistent with the type and size information that you supply using the typeHeaderFilename file during code generation.

To create a . coderdatafile to use with the TypeHeaderFrom argument, use the coder.write function in MATLAB.
[dataFromFile,errID] = coder. read ( __ ) suppresses run-time errors during a read operation. errID is a coder.ReadStatus enumeration object. If any errors occur, coder. read returns the first error through errID and dataFromFile returns unusable content. Use this option to test the generated code for targets for which run-time errors are disabled.

## Examples

## Read Data from a Fixed . coderdata File at Run Time

In this example, you use coder.write to create a .coderdata file that stores a single array from your MATLAB workspace. You then generate code for a coder. read function call that reads this file at run time.

Create a 20 -by-20 array of double type in your workspace.
c = rand(20);
Store this variable in a file named exampleData. coderdata in your current directory.

```
coder.write("exampleData.coderdata",c);
```

To read from a . coderdata file with the constant file name exampleData, use the coder. read function as shown in your MATLAB entry-point function.

```
function data = readSingleFile %#codegen
data = coder.read("exampleData.coderdata");
end
```

Generate a MEX function for readSingleFile.
codegen readSingleFile -report
Read the data stored in exampleData. coderdata at run time by running the generated MEX.

```
readSingleFile_mex
```


## Read Data from Multiple . coderdata Files at Run Time

This example shows how to generate code for a coder. read command that can read multiple. coderdata files at run time. These files contain array data that have the same type, but different sizes. To enable a single coder. read call to read all these files, pass a type header file that is consistent with all your individual data files to the coder. read function call.

To start, create a storage file that you want the generated code to read. The following coder. write command creates the storage file file_a. coderdata, which contains two variables with array data of type double. Variables $a$ and $b$ are of different sizes.

```
a = rand(10,20);
b = rand(5,30);
coder.write("file_a.coderdata",a);
```

A coder. Type object that is consistent with both variables $a$ and $b$ must have variable-size dimensions. The upper bounds of the two array dimensions must be at least 10 and 30 respectively. Create a coder. Type object that represents a variable-size double type with these bounds.

```
t = coder.typeof(a,[10 30],[1 1])
t =
coder.PrimitiveType
 :10x:30 double
```

You can modify the header information of file_a. coderdata and use the modified file as the source of the type header information.

```
coder.write("file_a.coderdata",a,TypeHeader=t);
```

You can also create the file_b. coderdata file with the required type header information by running this command.

```
coder.write("file_b.coderdata",b,TypeHeader=t);
```

Create a MATLAB entry-point function, readMultipleFiles, that can read file_a.coderdata and file_b.coderdata.

```
function data = readMultipleFiles(filename) %#codegen
data = coder.read(filename,TypeHeaderFrom="file_b.coderdata");
end
```

Generate a MEX for readMultipleFiles. Specify the input argument type as an unbounded variable-size character vector.

```
codegen readMultipleFiles -args {coder.typeof('a',[1 inf])} -report
```

Run the generated MEX with inputs 'file_a.coderdata' and 'file_b.coderdata'.

```
readMultipleFiles_mex('file_a.coderdata')
readMultipleFiles_mex('file_b.coderdata')
```


## Input Arguments

## fileName - Name of . coderdata storage file <br> string scalar (default) | character vector

Name of the . coderdata storage file from which you want to read data, specified as a string scalar or character vector.

To store your workspace variables in a . coderdata file, use the coder. write function in MATLAB.

## typeHeaderFilename - Constant name of . coderdata file that stores type and size information <br> string scalar | character vector

Constant file name of a . coderdata file that stores type and size information about the files to read at run time, specified as a string scalar or character vector.

Each . coderdata file contains a type header that specifies the type and size of the data stored in the file. The code generated for the coder. read function can read any . coderdata file at run time while the file type and size is consistent with the type and size information that you supply using the typeHeaderFilename file during code generation. This file is also referred to as the type header file.

To create a type header file, use the coder .write function in MATLAB.

## Output Arguments

## dataFromFile - Data read from .coderdata storage file

array | structure | cell array | enumeration | categorical | sparse array
Data read from the .coderdata storage file, returned as an array or multiple arrays stored within a structure or cell array.
Data Types: single | double | int8 | int16|int32 | int64 |uint8|uint16|uint32|uint64 | logical|char|string|struct | cell|categorical| sparse

## errID - Read error enumeration object

coder.ReadStatus object

Read error enumeration object, specified as one of these values.

Enumeration Member	Enumeration Value	Error Reference
Success	0	Read operation success.
CoderReadCouldNotOpen	1	Unable to open specified .coderdata file.
CoderReadProblemReading	2	Issue while reading . coderdata file.
CoderReadUnexpectedValue	3	Unexpected value in . coderdata file.
CoderReadWrongHeader	4	. coderdata file does not contain expected metadata. The input file might be corrupted or is not a . coderdata file. Use coder.write to create . coderdata files.
CoderReadWrongVersion	5	. coderdata file is not compatible with this release of MATLAB Coder. Create a new .coderdata file with this version of the product to generate a compatible file.
CoderReadStructArray	6	Expected to read a scalar structure, but .coderdata file contains a structure array. Use a compatible TypeHeader to read this file or a constant file name.
MATFile	7	coder. read cannot read MAT file. Convert your MAT file to a . coderdata files by running these commands in the command window:   s = load('MATFileName'); coder.write('fileName.coderd   Read the new . coderdata file by using coder. read.
WrongType	8	The type information of the . coderdata file does not match the type information in the specified by the TypeHeaderFrom argument.

## Version History

## Introduced in R2023a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## See Also

coder.write |coder.load|fread|fwrite |fscanf|fprintf

## Topics

"Data Read and Write Considerations" (MATLAB Coder)

## coder.write

Package: coder
Create data files that the generated code reads at run time

## Syntax

coder.write(fileName,data)
coder.write(fileName,data,Name=Value)

## Description

coder.write(fileName, data) stores the argument data in a file with the name fileName. coderdata in your current directory. Use this function in MATLAB execution only and not the MATLAB code you intend to use for C/C++ code generation.

Use the coder. read function to read data from a .coderdata file in MATLAB and in the generated code.

A . coderdata file contains a type header that specifies the type and size of the data stored in the file. The code generated for the coder. read function can read any . coderdata file at run-time, whose type and size is consistent with the type and size information that you supply to coder. read during code generation.
coder.write(fileName,data,Name=Value) creates a type header file, which is a .coderdata file that you use to specify the type and size of data to the coder. read function. Use the name-value arguments to:

- Specify a custom type header for the .coderdata file that is consistent with the variable data.
- Omit the actual data and create a . coderdata file with a type header only.


## Examples

## Store Variable in .coderdata File

This example shows how to create a storage file for a single variable. This storage file can be read at run-time by using the coder. read function.

Create a 20 -by-20 array of double type in your workspace.
$\mathrm{c}=$ rand(20);
Store this variable in a file named storageFile. coderdata in your current directory.

```
coder.write("storageFile.coderdata",c);
```


## Store Multiple Variables in .coderdata File

This example shows how to create a storage file for multiple variables.
Create two arrays of double type in your workspace. Array $a$ is of size 10 -by- 10 and array $b$ is $20-$ by-20.

```
a = rand(10);
b = rand(20);
```

Create structure s that contains arrays a and b in its fields.

```
s = struct('a',a,'b',b);
```

Store the structure s in a . coderdata file.

```
coder.write("storageFile.coderdata",s);
```

Alternatively, you can use a cell array to store multiple variables in a . coderdata file.

## Create Type Header File Compatible with Multiple Data Files

In this example, you generate code for a coder. read command that can read multiple .coderdata files at run time. These files contain array data that have the same type, but different sizes. To generate code, you must pass a type header file that is consistent with all your individual data files to the coder. read function call.

Create the storage file file_a.coderdata, which contains two variables with array data of type double. Variables $a$ and $b$ are of different sizes.

```
a = rand(10,20);
b = rand(5,30);
coder.write("file_a.coderdata",a);
```

A coder. Type object that is consistent with both variables a and b must have variable-size dimensions. The upper bounds of the two array dimensions must be at least 10 and 30 respectively. Create a coder. Type object that represents a variable-size double type with these bounds.

```
t = coder.typeof(a,[10 30],[1 1])
t =
coder.PrimitiveType
 :10x:30 double
```

You can modify the header information of file_a.coderdata and use the modified file as the source of the type header information.

```
coder.write("file_a.coderdata",a,TypeHeader=t);
```

You can also create the file_b.coderdata file with the required type header information by running this command.

```
coder.write("file_b.coderdata",b,TypeHeader=t);
```

Alternatively, you can create a separate type header file, myTypeHeader.coderdata, that contains only the type header compatible with all the existing storage files and does not contain any actual data.
coder.write("file_b.coderdata", b,TypeHeader=t,TypeHeaderOnly=true);
Such a type header file is useful if you are working with large data files, and want to use the generated file as a type header file only.

## Input Arguments

fileName - Name or full file path of new or existing storage file
string scalar | character vector
Name or full file path of a new or existing storage file, specified as a string scalar or character vector. The generated storage file has the name fileName.coderdata, or just fileName if the value you supplied already has the extension.

## data - Data source to save in storage file

array | structure | cell array | enumeration | categorical \| sparse array
Data source to save in the storage file, specified as an array or multiple arrays stored within a structure or cell array.
Data Types: single | double | int8 | int16| int32 | int64 | uint8|uint16|uint32 | uint64 |
logical| char|string|struct|cell|categorical|sparse
Complex Number Support: Yes

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: coder.write('example.coderdata', rand(1000), TypeHeader=coder.typeof(1,
[1000 1000], 1 1]), TypeHeader0nly=true)
TypeHeader - Type information for storage data
coder.typeof(data) (default)| coder. Type object
Type information for storage data, specified as a coder. Type object. This type object must be compatible with the input argument data.

To create a type object, use the coder. typeof or coder. newtype function. You can also create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor" (MATLAB Coder).
Example: coder.write('example.coderdata' , rand(10), TypeHeader=coder.typeof(1, [10 10],1 1]))

TypeHeaderOnly - Whether to create . coderdata file with type header only
false (default) | true

Option to specify whether to omit the data and create a . coderdata file with the type header only, specified as true or false. If data is a large array and you want to use the . coderdata file as a type header file only, set this argument to true.
Example: coder.write('example.coderdata', rand(1000), TypeHeader0nly=true)

## Verbose - Whether to report when writing a file <br> true (default) | false

Option to specify whether to report when writing a. coderdata file at the MATLAB command line, specified as true or false.

## Version History

Introduced in R2023a

## See Also

coder. read |coder.load|fread|fwrite|fscanf|fprintf
Topics
"Data Read and Write Considerations" (MATLAB Coder)

## coder.PrimitiveType class

Package: coder
Superclasses: coder.ArrayType
Represent set of logical, numeric, or character arrays acceptable for input specification

## Description

Objects of coder.PrimitiveType specify logical, numeric, or character values that the generated code accepts. Supported types are half, double, single, int8, uint8, int16, uint16, int32, uint32, int64, uint64, char, and logical. Use objects of this class only with the -args option of the fiaccel command. Do not pass as an input to a generated MEX function.

## Creation

$t=$ coder.typeof(v) creates a coder. PrimitiveType object denoting the smallest nonconstant type that contains v . v must be a MATLAB numeric, logical or character.
t = coder.typeof(v,sz,variableDims) creates a coder. PrimitiveType object with upper bound sizes specified by sz and variable dimensions indicated in variableDims. If sz specifies Inf for a dimension, then the size of the dimension is unbounded and variable sized. When sz is [ ], the upper bound sizes of $v$ remain unchanged. If you do not specify the variableDims, the bounded dimensions of the type are fixed. When variableDims is a scalar, this function applies this value to the bounded dimensions that are not 1 or 0 , which are fixed.
$\mathrm{t}=$ coder. newtype(numericClass,sz, variableDims) creates a coder. PrimitiveType object representing values of class numericClass with upper bound sizes sz and variable dimensions indicated in variableDims. If sz specifies Inf for a dimension, then the size of the dimension is unbounded and variable sized. If you do not specify the variableDims, the bounded dimensions of the type are fixed. When variableDims is a scalar, this function applies this value to the bounded dimensions that are not 1 or 0 , which are fixed.
$\mathrm{t}=$ coder.newtype(numericClass,sz,variableDims,Name=Value) creates a coder. PrimitiveType object with additional options specified by one or more name,-value arguments. Name is a property name and Value is the corresponding value. Specify Name as character vector or string scalar. You can specify several name-value arguments in any order as Name1=Value1, ..., NameN=ValueN.

Note You can create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor".

## Input Arguments

v - Input variable
numeric | logical | character
Input variable, specified as a numeric, logical, or character value.

## sz - Size of type object dimensions

## integer vector

Size of type object dimensions, specified as a vector of integers.

## variableDims - Option to specify variable size

boolean vector
Option to specify whether each dimension has a variable size, specified as a boolean vector. If you specify an element of this vector as 1 , the corresponding dimension has a variable size. Otherwise, the dimension has a fixed size.

## numericClass - Primitive class type

string scalar | character vector
Primitive class type, specified as a string scalar or character vector.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

## complex - Option to represent complex values <br> falseor 0 (default) | trueor 1

Option to create a coder. PrimitiveType object that can represent complex values, specified as a numeric or logical 1 (true) or 0 (false).

## sparse - Option to represent sparse data

falseor $0 \mid$ true or 1
Option to create a coder. PrimitiveType object that can represent sparse values, specified as a numeric or logical 1 (true) or 0 (false).

## gpu - Option to represent GPU data

falseor $0 \mid$ true or 1
Option to create a coder. PrimitiveType object that can represent GPU data values, specified as a numeric or logical 1 (true) or 0 (false).

## Properties

## complex - Option to represent complex values <br> 1 (default) | 0

Option to represent complex values, specified as a 0 or 1 . The type must support complex data. Character arrays do not support complex data.

```
sparse - Option to represent sparse data
1|}
```

Option to represent sparse data, specified as a 0 or 1 . The type must support sparse data. Character and half-precision data types do not support sparse data.

## gpu - Option to represent GPU data

1 | 0
Option to represent the GPU input type, specified as a 0 or 1 . This option requires a GPU Coder license. The type must support GPU data. Character and half-precision data types do not support GPU arrays.

## Examples

## Create Primitive Type Object

Use coder.typeof and specify the input variable, dimensions, and variable-size flag.

```
z = coder.typeof(0,[2 3 4],[1 1 0])
z =
coder.PrimitiveType
 :2x:3\times4 double
 Edit Type Object
```


## Use Primitive Type Object for Code Generation

Create a coder. PrimitiveType object.
z = coder.typeof(0,[2 3 4],[11 1 0])
Generate a C library for a MATLAB function that has one input parameter of type $z$.
codegen -config:lib fcn -args \{z\}

## Version History

Introduced in R2011a

## See Also

coder.ClassType | coder. Type | coder.ArrayType | coder.newtype | coder.typeof |
coder. resize|fiaccel
Topics
"Create and Edit Input Types by Using the Coder Type Editor"

## coder.resize

Package: coder

Resize coder. Type object

## Syntax

t_out = coder.resize(t,sz)
t_out = coder. resize(t,sz,variable_dims)
t_out = coder.resize(t,[],variable_dims)
t_out = coder. resize(t,sz, variable_dims, Name, Value)
t_out = coder. resize(t,'sizelimits',limits)

## Description

$t \_o u t=$ coder. resize( $\left.t, s z\right)$ resizes $t$ to have size sz.
t_out = coder. resize(t,sz, variable_dims) returns a modified copy of coder. Type $t$ with (upper-bound) size sz and variable dimensions variable_dims. If variable_dims or sz are scalars, the function applies the scalars to all dimensions of $t$. By default, variable_dims does not apply to dimensions where sz is 0 or 1 , which are fixed. Use the 'uniform' option to override this special case. The coder. resize function ignores variable_dims for dimensions with size inf. These dimensions are variable size. $t$ can be a cell array of types, in which case, coder. resize resizes all elements of the cell array.
t_out = coder. resize(t, [], variable_dims) changes to have variable dimensions variable_dims while leaving the size unchanged.
t_out = coder. resize(t,sz,variable_dims,Name,Value) resizes t by using additional options specified by one or more Name, Value pair arguments.
t_out = coder. resize(t,'sizelimits', limits) resizes the individual dimensions of $t$ based on the threshold values in the limits vector. The limits vector is a row vector containing two positive integer elements. Each dimension of $t$ is individually resized according to the thresholds in the limits vector.

- When the size S of a dimension is lesser than both thresholds defined in limits, the dimension remains the same.
- When the size $S$ of a dimension is greater than or equal to the first threshold and less than the second threshold defined in limits, the dimension becomes variable size with upper bound $S$.
- However, when the size $S$ of a dimension is also greater than or equal to the second threshold defined in limits, the dimension becomes an unbounded variable size.

If the value of limits is scalar, the threshold gets scalar-expanded to represent both thresholds. For example, if limits is defined as 4 , it is interpreted as [4 4].

The 'sizelimits' option allows you to dynamically allocate memory to large arrays in your generated code.

## Examples

## Change Fixed-Size Array to an Unbounded, Variable-Size Array

Change a fixed-size array to an unbounded, variable-size array.

```
t = coder.typeof(ones(3,3))
t =
coder.PrimitiveType
 3\times3 double
coder.resize(t,inf)
ans =
coder.PrimitiveType
 :infx:inf double
% ':' indicates variable-size dimensions
```


## Change Fixed-Size Array to a Bounded, Variable-Size Array

Change a fixed-size array to a bounded, variable-size array.

```
t = coder.typeof(ones(3,3))
```

$t=$
coder.PrimitiveType
$3 \times 3$ double
coder.resize(t,[4 5],1)
ans $=$
coder. PrimitiveType
:4×:5 double
\% ':' indicates variable-size dimensions

## Resize Structure Field

Resize a structure field.

```
ts = coder.typeof(struct('a',ones(3, 3)))
ts =
coder.StructType
 1\times1 struct
 a: 3\times3 double
coder.resize(ts,[5, 5],'recursive',1)
```

```
ans =
coder.StructType
 5\times5 struct
 a: 5\times5 double
```


## Resize Cell Array

Resize a cell array.

```
tc = coder.typeof({\begin{array}{lll}{1}&{2}&{3}\end{array}})
tc =
coder.CellType
 1\times3 homogeneous cell
 base: 1×1 double
coder.resize(tc,[5, 5],'recursive',1)
ans =
coder.CellType
 5\times5 homogeneous cell
 base: 1\times1 double
```


## Change Fixed-Sized Array to Variable-Size Based on Bounded and Unbounded Thresholds

Change a fixed-sized array to a variable size based on bounded and unbounded thresholds.

```
t = coder.typeof(ones(100,200))
```

$\mathrm{t}=$
coder. PrimitiveType
$100 \times 200$ double
coder. resize(t,'sizelimits',[99 199])
ans =
coder. PrimitiveType
:100x:inf double
\% ':' indicates variable-size dimensions

## Input Arguments

## limits - Vector that defines the threshold

row vector of integer values
A row vector of variable-size thresholds. If the value of limits is scalar, the threshold gets scalarexpanded. If the size $s z$ of a dimension of $t$ is greater than or equal to the first threshold and less than the second threshold defined in limits, the dimension becomes variable size with upper bound
$s z$. If the size $s z$ of a dimension of $t$ is also greater than or equal to the second threshold, the dimension becomes an unbounded variable size.

However, if the size $s z$ is lesser than both thresholds, the dimension remains the same.
Example: coder.resize(t,'sizelimits',[99 199]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 |uint64

## sz - New size for object type

row vector of integer values
New size for coder. Type object, t_out
Example: coder.resize(t,[3,4]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 |uint64
t - coder. Type object that you want to resize
coder.Type object
If $t$ is a coder. CellType object, the coder. CellType object must be homogeneous.
Example: coder.resize(t,inf);
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical|char|string|struct|table|cell|function_handle|categorical|datetime | duration | calendarDuration | fi
Complex Number Support: Yes

## variable_dims - Variable or fixed dimension

row vector of logical values
Specify whether each dimension of $t$ _out is fixed size or variable size.
Example: coder.resize(t,[4 5],1);
Data Types: logical

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: coder.resize(t,[5, 5],'recursive', 1);

## recursive - Resize $\mathbf{t}$ and all types contained within it

false (default) | true
Setting recursive to true resizes $t$ and all types contained within it.
Data Types: logical
uniform - Resize $t$ by applying the heuristic for dimensions of size one
false (default) | true
Setting uniform to true resizes $t$ and applies the heuristic for dimensions of size one.

The heuristic works in the following manner:

- If variable_dims is a scalar true, all dimensions are resized to upper bound variable sizes specified in $\overline{s z}$. This includes dimensions of size one. For example:

```
t = coder.typeof(1, [1 5]);
tResize = coder.resize(t,[1 7],true,'uniform',true);
```

This generates an object tResize as shown:

```
tResize =
coder.PrimitiveType
 :1x:7 double
 Edit Type Object
```

- If you set uniform to true with the 'sizelimits ' option, the dimensions of size one are also resized to variable size, according to the 'sizelimits' heuristics. For example:

```
t = coder.typeof(1, [1 5]);
tResize = coder.resize(t,[],'sizelimits',[0 6],'uniform',true);
```

These commands generate an object tResize as shown:

```
tResize =
coder.PrimitiveType
 :1x:5 double
 Edit Type Object
```

- If variable_dims is specified as a non-scalar logical, the uniform setting has no effect. However, if variable_dims is scalar and uniform is set to false, only dimensions of size greater than one are resized.

Data Types: logical

## sizelimits - Resize individual dimensions of $t$ according to thresholds provided in the limits vector

limits (default)
Using the sizelimits options with limits vector resizes individual dimensions of $t$.

```
t = coder.typeof(1, [1 5]);
tResize = coder.resize(t,[],'sizelimits',[0 6],'uniform',true);
Data Types: single|double | int8| int16| int32 | int64| uint8|uint16|uint32|uint64
```


## Output Arguments

t_out - Resized type object
coder.Type object
Resized coder. Type object
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|char|string|struct|table|cell|function_handle|categorical|datetime | duration | calendarDuration|fi

Complex Number Support: Yes

## Limitations

- For sparse matrices, coder . resize drops the upper bounds for variable-size dimensions.


## Version History

Introduced in R2011a

## See Also

coder.typeof | coder.newtype | fiaccel

## coder.screener

Package: coder
Determine if function is suitable for code generation

## Syntax

```
coder.screener(fcn)
coder.screener(fcn,'-gpu')
coder.screener(fcn_1,...,fcn_n)
info = coder.screen̄er(
```

$\qquad$

## Description

coder.screener(fcn) analyzes the entry-point MATLAB function fcn to identify unsupported functions and language features as code generation compliance issues. The code generation compliance issues are displayed in the readiness report.

If fen calls other functions directly or indirectly that are not MathWorks functions (MATLAB built-in functions and toolbox functions), coder. screener analyzes these functions. It does not analyze the MathWorks functions.

It is possible that coder. screener does not detect all code generation issues. Under certain circumstances, it is possible that coder. screener reports false errors.

To avoid undetected code generation issues and false errors, before generating code, verify that your MATLAB code is suitable for code generation by performing these additional checks:

- Before using coder.screener, fix issues that the Code Analyzer identifies.
- After using coder. screener, and before generating C/C++ code, verify that your MATLAB code is suitable for code generation by generating and verifying a MEX function.

The coder. screener function does not report functions that the code generator treats as extrinsic. Examples of such functions are plot, disp, and figure. See "Use MATLAB Engine to Execute a Function Call in Generated Code".
coder.screener(fcn, '-gpu') analyzes the entry-point MATLAB function fcn to identify unsupported functions and language features for GPU code generation.
coder.screener(fcn_1,...,fcn_n) analyzes multiple entry-point MATLAB functions.
info $=$ coder.screener (__ ) returns a coder.ScreenerInfo object. The properties of this object contain the code generation readiness analysis results. Use info to access the code generation readiness results programmatically. For a list of properties, see coder.ScreenerInfo Properties.

## Examples

## Identify Unsupported Functions

The coder.screener function identifies calls to functions that are not supported for code generation. It checks the entry-point function, foo1, and the function, foo2, that fool calls.

Write the function foo2 and save it in the file foo2.m.

```
function [tf1,tf2] = foo2(source,target)
G = digraph(source,target);
tf1 = hascycles(G);
tf2 = isdag(G);
end
```

Write the function fool that calls foo2. Save fool in the file fool.m.

```
function [tf1,tf2] = fool(source,target)
assert(numel(source)==numel(target))
[tf1,tf2] = foo2(source,target);
end
Analyze fool.
coder.screener('fool')
```

The Code Generation Readiness report displays a summary of the unsupported MATLAB function calls. The report Issues tab indicates that foo2.m contains one call to the isdag function and one call to the hascycles, which are not supported for code generation.


2 Code generation readiness issues - Code might require changes \begin{tabular}{l}
Language C/C ++ (MATLAB Coder) <br>
2 Unsupported functions <br>
2 Files analyzed

$\quad .$

Refresh Edit <br>
\hline
\end{tabular}$l$

2 Unsupported functions
2 Files analyzed

| Issues Files | Group by: Issue |
| :--- | :--- | :--- |
| - © Unsupported function: hascycles (1) |  |
| - Unsupported function: isdag (1) |  |

Unsupported function: hascycles

```
foo2.m
function [tf1,tf2] = foo2(source,target)
G = digraph(source, target);
tf1 = hascycles(G);
tf2 = isdag(G);
end
```

The function foo 2 calls two unsupported MATLAB functions. To generate a MEX function, modify the code to make the calls to hascycles and isdag extrinsic by using the coder.extrinsic directive, and then rerun the code generation readiness tool.

```
function [tf1,tf2] = foo2(source,target)
coder.extrinsic('hascycles','isdag');
G = digraph(source,target);
tf1 = hascycles(G);
tf2 = isdag(G);
end
```

Rerun coder.screener on the entry-point function fool.
coder.screener('fool')

The report no longer flags that code generation does not support the hascycles and isdag functions. When you generate a MEX function for fool, the code generator dispatches these two functions to MATLAB for execution.

## Access Code Generation Readiness Results Programmatically

You can call the coder. screener function with an optional output argument. If you use this syntax, the coder.screener function returns a coder. ScreenerInfo object that contains the results of
the code generation readiness analysis for your MATLAB code base. See coder.ScreenerInfo Properties.

This example uses the files fool.m and foo2.m defined in the previous example. Call the coder.screener function:

```
info = coder.screener('fool.m')
```

info =
ScreenerInfo with properties:
Files: [2×1 coder.CodeFile]
Messages: [ $2 \times 1$ coder.Message]
UnsupportedCalls: [2×1 coder.CallSite]
View Screener Report

To access information about the first unsupported call, index into the UnsupportedCalls property,

```
firstCall = info.UnsupportedCalls(1)
firstCall =
 CallSite with properties:
 CalleeName: 'hascycles'
 File: [1×1 coder.CodeFile]
 StartIndex: 78
 EndIndex: 86
```

View the text of the file that contains this unsupported call to hascycles.

```
firstCall.File.Text
ans =
 'function [tf1,tf2] = foo2(source,target)
 G = digraph(source,target);
 tf1 = hascycles(G);
 tf2 = isdag(G);
 end
```

To export the entire code generation readiness report to a MATLAB string, use the textReport function.

```
reportString = textReport(info)
reportString =
 'Code Generation Readiness (Text Report)
 ==
 2 Code generation readiness issues
 2 \text { Unsupported functions}
 2 Files analyzed
 Configuration
```

```
Language: C/C++ (MATLAB Coder)
Code Generation Issues
========================
Unsupported function: digraph (2)
 - foo2.m (Line 3)
 - foo2.m (Line 4)
```


## Identify Unsupported Data Types

The coder. screener function identifies MATLAB data types that code generation does not support.
Write the function myfun1 that contains a MATLAB calendar duration array data type.

```
function out = myfun1(A)
out = calyears(A);
end
```

Analyze myfun1.

```
coder.screener('myfun1');
```

The code generation readiness report indicates that the calyears data type is not supported for code generation. Before generating code, fix the reported issue.

## Input Arguments

## fcn - Name of entry-point function

character vector | string scalar
Name of entry-point MATLAB function for analysis. Specify as a character vector or a string scalar.
Example: coder.screener('myfun');
Data Types: char | string

## fcn_1, ..., fcn_n - List of entry-point function names character vector $\mid$ string scalar

Comma-separated list of entry-point MATLAB function names for analysis. Specify as character vectors or string scalars.
Example: coder.screener('myfun1','myfun2');
Data Types: char \| string

## Alternatives

- "Run the Code Generation Readiness Tool From the Current Folder Browser"


## Version History

Introduced in R2012b

## See Also

coder.extrinsic|fiaccel

## Topics

"Functions Supported for Code Acceleration or C Code Generation"
"Code Generation Readiness Tool"

## coder.StructType class

Package: coder
Superclasses: coder.ArrayType
Represent set of MATLAB structure arrays acceptable for input specification

## Description

Objects of coder. StructType specify the structure arrays that the generated code should accept. Use objects of this class only with the -args option of the fiaccel command. Do not pass as an input to a generated MEX function.

## Creation

$t=$ coder.typeof(structV) creates a coder. StructType object for a structure with the same fields as the scalar structure struct_v.
t = coder.typeof(structV,sz,variableDims) creates a coder.StructType with upper bound sizes specified by $s z$ and variable dimensions indicated by variableDims. If sz specifies Inf for a dimension, then the size of the dimension unbounded and variable size. When sz is [], the upper bound sizes of structV remain unchanged. If you do not specify the variableDims, the bounded dimensions of the type are fixed. When variableDims is a scalar, this function applies this value to the bounded dimensions that are not 1 or 0 , which are fixed.
t = coder.newtype('struct',structV,sz, variableDims) creates a coder. StructType object for an array of structures with the same fields as the scalar structure structV and upper bound size sz and variable dimensions indicated in variableDims. If sz specifies Inf for a dimension, then the size of the dimension is assumed to be unbounded and the dimension is assumed to be variable sized. If you do not specify the variableDims, the bounded dimensions of the type are fixed. When variableDims is a scalar, this function applies this value to the bounded dimensions that are not 1 or 0 , which are fixed.

Note You can create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor".

## Input Arguments

## structV - Input structure variable

## scalar structure

Input structure variable that specifies the fields in a new structure type, specified as a scalar structure.
sz - Size of type object dimensions
integer vector
Size of type object dimensions, specified as a vector of integers.

## variableDims - Option to specify variable size <br> boolean vector

Option to specify whether each dimension has a variable size, specified as a boolean vector. If you specify an element of this vector as 1 , the corresponding dimension has a variable size. Otherwise, the dimension has a fixed size.

## Properties

## Alignment - Run-time memory alignment

- 1 | power of 2 no greater than 128

The run-time memory alignment of structures of this type in bytes.
If you have an Embedded Coder license and use code replacement libraries (CRLs), you can align data objects that are specified as inputs to a replacement function to a specified boundary. Use this capability to take advantage of target-specific function implementations that require data to be aligned. By default, the class does not align the structure to a specific boundary, which means that CRL functions that require alignment do not match the default structure.

## ClassName - Value class name <br> character vector | string scalar

Value class name, returned as a string scalar.

## Extern - Indication of whether structure is defined externally <br> 1 | 0

Indication of whether structure is defined externally, returned as a 1 or 0 . A value of 1 indicates that the structure is defined externally. A value of 0 indicates that the structure is defined internally.

## Fields - Field types

scalar structure
Types of fields in the structure, specified as a structure.

## HeaderFile - External header file name

character vector
External header file name, returned as a nonempty character vector or string scalar. If the structure type is externally defined, name of the header file that contains the external definition of the structure, for example, "mystruct.h".

By default, the generated code contains \#include statements for custom header files after the standard header files. If a standard header file refers to the custom structure type, then the compilation fails. By specifying the HeaderFile property, MATLAB Coder includes the header file in the required location.

## SizeVector - Upper bound of type object <br> integer vector | integer scalar

Upper bound of type object, specified as a vector of integer or scalar integer.

## VariableDims - Option to specify variable-size <br> boolean vector

Option to specify whether each dimension of the array has a fixed or variable size. A value of 1 indicates that the corresponding element has a variable size. A value of 0 indicates that the corresponding element has a fixed size.

## Examples

## Create coder.StructType Type Object

This example shows how to create a type for a structure with a variable-size field.
Create a type object by using coder. typeof.

```
x.a = coder.typeof(0,[3 5],1);
x.b = magic(3);
t = coder.typeof(x)
t =
coder.StructType
 1\times1 struct
 a: :3x:5 double
 b: 3\times3 double
 Edit Type Object
```


## Create Externally Defined Structure Type

Create an externally defined structure type.

```
S.a = coder.typeof(double(0));
S.b = coder.typeof(single(0));
T = coder.typeof(S);
T = coder.cstructname(T,'mytype','extern',HeaderFile='myheader.h');
```

View the types of the structure fields.

```
T.Fields
ans = struct with fields:
 a: [1x1 coder.PrimitiveType]
 b: [1x1 coder.PrimitiveType]
```


## Specify coder.StructType Object to Generate Code

Create a structure type.

```
ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('double',[1 2],[1 1]);
z = coder.newtype('struct',struct('a',ta,'b',tb))
coder.StructType
 1x1 struct
 a: 1x1 int8
 b: :1x:2 double
```

Generate a C library for a MATLAB function $\mathrm{fcn} . \mathrm{m}$ that has one input parameter of this type.
codegen -config:lib fcn -args \{z\}

## Version History

Introduced in R2011a

## See Also

coder.ClassType | coder. Type |coder. PrimitiveType | coder.EnumType | coder.FiType |
coder.Constant |coder.ArrayType|coder.newtype|coder.typeof|coder.resize|
fiaccel

## Topics

"Create and Edit Input Types by Using the Coder Type Editor"

## coder.target

Determine if code generation target is specified target

## Syntax

```
tf = coder.target(target)
```


## Description

$\mathrm{tf}=$ coder.target(target) returns true (1) if the code generation target is target. Otherwise, it returns false (0).

If you generate code for MATLAB classes, MATLAB computes class initial values at class loading time before code generation. If you use coder. target in MATLAB class property initialization, coder.target('MATLAB') returns true.

## Examples

## Use coder.target to Parametrize a MATLAB Function

Parametrize a MATLAB function so that it works in MATLAB or in generated code. When the function runs in MATLAB, it calls the MATLAB function myabsval. The generated code, however, calls a C library function myabsval.

Write a MATLAB function myabsval.

```
function y = myabsval(u)
%#codegen
y = abs(u);
```

Generate a C static library for myabsval, using the -args option to specify the size, type, and complexity of the input parameter.

```
codegen -config:lib myabsval -args {0.0}
```

The codegen function creates the library file myabsval. lib and header file myabsval. h in the folder \codegen \lib\myabsval. (The library file extension can change depending on your platform.) It generates the functions myabsval_initialize and myabsval_terminate in the same folder.

Write a MATLAB function to call the generated C library function using coder. ceval.

```
function y = callmyabsval(y)
%#codegen
% Check the target. Do not use coder.ceval if callmyabsval is
% executing in MATLAB
if coder.target('MATLAB')
 % Executing in MATLAB, call function myabsval
 y = myabsval(y);
else
```

```
 % add the required include statements to generated function code
 coder.updateBuildInfo('addIncludePaths','$(START_DIR)\codegen\lib\myabsval');
 coder.cinclude('myabsval initialize.h');
 coder.cinclude('myabsval.h');
 coder.cinclude('myabsval_terminate.h');
 % Executing in the generated code.
 % Call the initialize function before calling the
 % C function for the first time
 coder.ceval('myabsval_initialize');
 % Call the generated C library function myabsval
 y = coder.ceval('myabsval',y);
 % Call the terminate function after
 % calling the C function for the last time
 coder.ceval('myabsval_terminate');
end
```

Generate the MEX function callmyabsval_mex. Provide the generated library file at the command line.

```
codegen -config:mex callmyabsval codegen\lib\myabsval\myabsval.lib -args {-2.75}
```

Rather than providing the library at the command line, you can use coder. updateBuildInfo to specify the library within the function. Use this option to preconfigure the build. Add this line to the else block:

```
coder.updateBuildInfo('addLinkObjects','myabsval.lib','$(START_DIR)\codegen\lib\myabsval',100,tr
```

Note The START_DIR macro is only supported for generating code with MATLAB Coder.

Run the MEX function callmyabsval_mex which calls the library function myabsval.

```
callmyabsval_mex(-2.75)
```

ans =
2.7500

Call the MATLAB function callmyabsval.
callmyabsval(-2.75)
ans =
2.7500

The callmyabsval function exhibits the desired behavior for execution in MATLAB and in code generation.

## Input Arguments

```
target - code generation target
'MATLAB' | 'C' | 'C++' | 'CUDA'| 'OpenCL'| 'SystemC' | 'SystemVerilog' | 'Verilog'|
'VHDL'|'MEX'| 'Sfun'|'Rtw'|'HDL '|'Custom'
```

Code generation target, specified as a character vector or a string scalar. Specify one of these targets.

```
'MATLAB ' Running in MATLAB (not generating code)
'C', 'C++', 'CUDA', Supported target languages for code generation
'OpenCL' 'SystemC',
'SystemVerilog',
'Verilog','VHDL'
'MEX'
'Sfun'
'Rtw'
'HDL' Generating an HDL target
'Custom' Generating a custom target
Example: tf = coder.target('MATLAB')
Example: tf = coder.target("MATLAB")
```

Note In case of CUDA or SystemC code generation, coder.target('C++') is always true.

## Version History

Introduced in R2011a

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\text {TM }}$.

## coder.Type class

Package: coder
Represent set of MATLAB values acceptable for input specification

## Description

Objects of coder. Type specify the values that the generated code accepts. Use objects of this class only with the -args option of the fiaccel command. Do not pass as an input to a generated MEX function.

## Creation

Note You can create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor".
coder. Type is an abstract class. To create objects of this class, use the coder.typeof and coder. newtype functions.

These classes are the instances of the coder. Type class.

- coder.CellType
- coder.ClassType
- coder.Constant
- coder.EnumType
- coder.FiType
- coder.OutputType
- coder. PrimitiveType
- coder.StructType


## Properties

## ClassName - Value class name

```
coder.CellType | coder.ClassType | coder.Constant | coder.EnumType | coder.FiType |
coder.OutputType| coder.PrimitiveType| coder.StructType
```

Value class name, returned as an object of one of these classes.

- coder.CellType
- coder.ClassType
- coder.Constant
- coder.EnumType
- coder.FiType
- coder.OutputType
- coder.PrimitiveType
- coder.StructType


## Version History

Introduced in R2011a

## See Also

fiaccel

## Topics

"Create and Edit Input Types by Using the Coder Type Editor"

## coderTypeEditor

Launch the Coder Type Editor dialog

## Syntax

coderTypeEditor
coderTypeEditor varl ... varN
coderTypeEditor -all
coderTypeEditor -close

## Description

coderTypeEditor opens an empty Coder Type Editor dialog. If a dialog is already open, this command brings it to the front of the screen.

You can use the Coder Type Editor to create and edit coder. Type objects interactively. See "Create and Edit Input Types by Using the Coder Type Editor".
coderTypeEditor var1 ... varN opens a Coder Type Editor dialog pre-populated with coder. Type objects corresponding to the workspace variables varl through varN. For a variable var, the name of the generated coder. Type object is varType.
coderTypeEditor -all opens a Coder Type Editor dialog pre-populated with coder. Type objects corresponding to all compatible variables in the current workspace.
coderTypeEditor - close closes an open Coder Type Editor dialog.

## Examples

## Open Coder Type Editor Populated with Types for Existing Variables

In your MATLAB workspace, define variables var1, var2, and var3.

```
myArray = magic(4);
myCharVector = 'Hello, World!';
myStruct = struct('a',5,'b','mystring');
```

Open the type editor pre-populated with types for var1, var2, and var3.
coderTypeEditor myArray myCharVector myStruct
The Coder Type Editor dialog opens. The Type Browser pane displays the name, class (data type), and size for coder. Type objects myArrayType, myCharVectorType, and myStructType for the three workspace variables.

Inspect the created types and check that they are consistent with the variables in the workspace.

- myArrayType represents a 4-by-4 array of type double.
- myCharVectorType represents a 1-by-13 character row vector.
- myStructType represents a scalar of type struct. Expand the tree corresponding to myStructType in the Type Browser. The field a represents a scalar double. The field b represents a 1-by-8 character vector.

To save these types in the base workspace, in the Coder Type Editor toolstrip, click Save. The variables myArrayType, myCharVectorType, and myStructType appear in the base workspace.

## Input Arguments

```
var1 ... varN - Workspace variables whose types you intend to view in the type editor
value belonging to a fundamental MATLAB class that supports code generation | value object | handle
object | coder.Type object
```

Workspace variables whose types you intend to view in the type editors. They can store any value that is compatible with code generation.

The value can also be a coder. Type object. In that case, the coder. Type object itself opens in the type editor.
Data Types: single | double | int8 | int16| int32 | int64 | uint8|uint16|uint32|uint64 |
logical|char|string|struct|table|cell|categorical|datetime|duration|
timetable|fi|value object|coder. Type object
Complex Number Support: Yes

## Version History

Introduced in R2020a

## See Also

coder.typeof | coder.newtype

## Topics

"Create and Edit Input Types by Using the Coder Type Editor"

## coder.typeof

Package: coder
Create coder. Type object to represent the type of an entry-point function input

## Syntax

type_obj = coder.typeof(v)
type_obj = coder.typeof(v,sz,variable_dims)
type_obj = coder.typeof(v,'Gpu', true)
type_obj = coder.typeof(type_obj)

## Description

Note You can also create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor".
type_obj = coder.typeof(v) creates an object that is derived from coder. Type to represent the type of $v$ for code generation. Use coder. typeof to specify only input parameter types. For example, use it with the fiaccel function - args option. Do not use it in MATLAB code from which you intend to generate a MEX function.
type_obj = coder.typeof(v,sz,variable_dims) returns a modified copy of type_obj = coder.typeof( v ) with upper bound size specified by sz and variable dimensions specified by variable_dims.
type_obj = coder.typeof(v,'Gpu', true) creates an object that is derived from coder. Type to represent $v$ as a GPU input type for code generation. This option requires a valid GPU Coder license.
type_obj = coder.typeof(type_obj) returns type_obj itself.

## Examples

## Create Type for a Matrix

Create a type for a simple fixed-size $5 \times 6$ matrix of doubles.

```
coder.typeof(ones(5,6))
ans =
coder.PrimitiveType
 5\times6 double
coder.typeof(0,[5 6])
ans =
```

```
coder.PrimitiveType
 5x6 double
```

Create a type for a variable-size matrix of doubles.

```
coder.typeof(ones(3,3),[],1)
ans =
coder.PrimitiveType
 :3x:3 double
% ':' indicates variable-size dimensions
```

Create a type for a matrix with fixed-size and variable-size dimensions.

```
coder.typeof(0,[2,3,4],[1 0 1])
```

ans =
coder. PrimitiveType
:2×3x:4 double
coder.typeof(10,[15],1)
ans =
coder. PrimitiveType
$1 \times: 5$ double
\% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with fixed size.

```
coder.typeof(10,[inf,3])
```

ans =
coder.PrimitiveType
:infx3 double
\% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with variable size that has an upper bound of 3 .

```
coder.typeof(10,[inf,3],[0 1])
ans =
coder.PrimitiveType
 :infx:3 double
```

Convert a fixed-size matrix to a variable-size matrix.

```
coder.typeof(ones(5,5),[],1)
 ans =
coder.PrimitiveType
```

```
 :5x:5 double
% ':' indicates variable-size dimensions
```


## Create Type for a Structure

Create a type for a structure with a variable-size field.

```
x.a = coder.typeof(0,[3 5],1);
x.b = magic(3);
coder.typeof(x)
ans =
coder.StructType
 1\times1 struct
 a: :3x:5 double
 b: 3\times3 double
% ':' indicates variable-size dimensions
```

Create a nested structure (a structure as a field of another structure).

```
S = struct('a',double(0),'b',single(0));
SuperS.x = coder.typeof(S);
SuperS.y = single(0);
coder.typeof(SuperS)
ans =
coder.StructType
 1\times1 struct
 x: 1\times1 struct
 a: 1\times1 double
 b: 1\times1 single
 y: 1\times1 single
```

Create a structure containing a variable-size array of structures as a field.

```
S = struct('a',double(0),'b',single(0));
SuperS.x = coder.typeof(S,[1 inf],[0 1]);
SuperS.y = single(0);
coder.typeof(SuperS)
ans =
coder.StructType
 1\times1 struct
 x: 1x:inf struct
 a: 1\times1 double
 b: 1\times1 single
 y: 1xl single
% ':' indicates variable-size dimensions
```


## Create Type for a Cell Array

Create a type for a homogeneous cell array with a variable-size field.

```
a = coder.typeof(0,[3 5],1);
b = magic(3);
coder.typeof({a b})
ans =
coder.CellType
 1\times2 homogeneous cell
 base: :3x:5 double
% ':' indicates variable-size dimensions
```

Create a type for a heterogeneous cell array.

```
a = coder.typeof('a');
b = coder.typeof(1);
coder.typeof({a b})
ans =
coder.CellType
 1\times2 heterogeneous cell
 f1: 1\times1 char
 f2: 1\times1 double
```

Create a variable-size homogeneous cell array type from a cell array that has the same class but different sizes.

1. Create a type for a cell array that contains two character vectors with different sizes. The cell array type is heterogeneous.
```
coder.typeof({'aa','bbb'})
ans =
coder.CellType
 1\times2 heterogeneous cell
 f1: 1\times2 char
 f2: 1\times3 char
```

2. Create a type by using the same cell array input. This time, specify that the cell array type has variable-size dimensions. The cell array type is homogeneous.
```
coder.typeof({'aa','bbb'},[1,10],[0,1])
ans =
coder.CellType
 1x:10 locked homogeneous cell
 base: 1\times:3 char
% ':' indicates variable-size dimensions
```


## Create Type for a Value Class Object

Change a fixed-size array to a bounded, variable-size array.
Create a type for a value class object.

1. Create this value class:
```
classdef mySquare
 properties
 side;
 end
 methods
 function obj = mySquare(val)
 if nargin > 0
 obj.side = val;
 end
 end
 function a = calcarea(obj)
 a = obj.side * obj.side;
 end
 end
end
2. Create an object of mySquare.
```

```
sq_obj = coder.typeof(mySquare(4))
```

sq_obj = coder.typeof(mySquare(4))
sq_obj =
sq_obj =
coder.ClassType
coder.ClassType
1\times1 mySquare
1\times1 mySquare
side: 1\times1 double

```
 side: 1\times1 double
```

3. Create a type for an object that has the same properties as sq _obj.
```
t = coder.typeof(sq_obj)
t =
coder.ClassType
 1\times1 mySquare
 side: 1\times1 double
```

Alternatively, you can create the type from the class definition:

```
t = coder.typeof(mySquare(4))
t =
coder.ClassType
 1\times1 mySquare
 side: 1\times1 double
```


## Create Type for a String Scalar

Define a string scalar. For example:

```
s = "mystring";
```

Create a type from s.
t = coder.typeof(s);

Assign the StringLength property of the type object the upper bound of the string length and set VariableStringLength to true. Specify that type object $t$ is variable-size with an upper bound of 10.
t.StringLength = 10;
t.VariableStringLength = true;

To specify that t is variable-size without an upper bound:
t.StringLength = Inf;

This automatically sets the VariableStringLength property to true.
Pass the type to codegen by using the -args option.
codegen myFunction -args \{t\}

## Input Arguments

## v - Set of values representing input parameter types

numeric array | character vector | string | struct | cell array
v can be a MATLAB numeric, logical, char, enumeration, or fixed-point array. v can also be a cell array, structure, or value class that contains the previous types.

When $v$ is a cell array whose elements have the same classes but different sizes, if you specify variable-size dimensions, coder.typeof creates a homogeneous cell array type. If the elements have different classes, coder. typeof reports an error.
Example: coder.typeof(ones (5, 6));
Data Types: half|single| double|int8|int16|int32|int64|uint8|uint16|uint32| uint64| logical|char|string|struct|table|cell|function_handle|categorical| datetime|duration | calendarDuration|fi
Complex Number Support: Yes

## sz - Dimension of type object

row vector of integer values
Size vector specifying each dimension of type object.
If $s z$ specifies inf for a dimension, then the size of the dimension is unbounded and the dimension is variable size. When $s z$ is [], the upper bounds of $v$ do not change.

If size is not specified, $s z$ takes the default dimension of $v$.
Example: coder.typeof(0, [5,6]);
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64
variable_dims - Variable or fixed dimension
row vector of logical values
Logical vector that specifies whether each dimension is variable size (true) or fixed size (false). For a cell array, if the elements have different classes, you cannot specify variable-size dimensions.

If you do not specify the variable_dims input parameter, the bounded dimensions of the type are fixed.

A scalar variable_dims applies to all dimensions. However, if variable_dims is 1 , the size of a singleton dimension remains fixed.

Example: coder.typeof(0,[2,3,4],[1 0 1]);
Data Types: logical

## type_obj - Type object

coder.Type object
coder. Type object to represent the type of $v$ for code generation.
Example: type_obj = coder.typeof(ones(5,6));
Data Types: single | double | int8|int16|int32| int64|uint8|uint16|uint32|uint64| logical|char|string|struct|table|cell|function_handle|categorical|datetime | duration | calendarDuration | fi
Complex Number Support: Yes

## Output Arguments

## type_obj - Type object

coder. Type object
coder. Type object to represent the type of $v$ for code generation.
Example: type_obj = coder.typeof(ones (5,6));
Data Types: single| double | int8| int16|int32|int64|uint8|uint16|uint32|uint64|
logical|char|string|struct|table|cell|function_handle|categorical|datetime | duration | calendarDuration|fi
Complex Number Support: Yes

## Limitations

- For sparse matrices, coder.typeof drops upper bounds for variable-size dimensions.
- For representing GPU arrays, only bounded numeric and logical base types are supported. Scalar GPU arrays, structures, cell-arrays, classes, enumerated types, character, half-precision and fixedpoint data types are not supported.
- When using coder.typeof to represent GPU arrays, the memory allocation (malloc) mode property of the GPU code configuration object must be set to be 'discrete'.


## Tips

- coder.typeof fixes the size of a singleton dimension unless the variable_dims argument explicitly specifies that the singleton dimension has a variable size.

For example, the following code specifies a 1-by-:10 double. The first dimension (the singleton dimension) has a fixed size. The second dimension has a variable size.

```
t = coder.typeof(5,[1 10],1)
```

By contrast, this code specifies a :1-by-:10 double. Both dimensions have a variable size.

```
t = coder.typeof(5,[1 10],[1 1])
```

Note For a MATLAB Function block, singleton dimensions of input or output signals cannot have a variable size.

- If you are already specifying the type of an input variable by using a type function, do not use coder. typeof unless you also want to specify the size. For instance, instead of coder.typeof(single(0)), use the syntax single(0).
- For cell array types, coder.typeof determines whether the cell array type is homogeneous or heterogeneous.

If the cell array elements have the same class and size, coder. typeof returns a homogeneous cell array type.

If the elements have different classes, coder. typeof returns a heterogeneous cell array type.
For some cell arrays, classification as homogeneous or heterogeneous is ambiguous. For example, the type for $\{1[23]\}$ can be a $1 \times 2$ heterogeneous type where the first element is double and the second element is $1 \times 2$ double. The type can also be a 1x3 homogeneous type in which the elements have class double and size 1x:2. For these ambiguous cases, coder. typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want a different classification, use the coder.CellType makeHomogeneous or makeHeterogeneous methods to make a type with the classification that you want. The makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification as heterogeneous and homogeneous. You cannot later use one of these methods to create a copy that has a different classification.

- During code generation with GPU array types, if one input to the entry-point function is of the GPU array type, then the output variables are all GPU array types, provided they are supported for GPU code generation. For example. if the entry-point function returns a struct and because struct is not supported, the generated code returns a CPU output. However, if a supported matrix type is returned, then the generated code returns a GPU output.


## Version History

Introduced in R2011a

## See Also

coder.newtype | coder. resize | coder. Type | coder. ArrayType | coder.EnumType | coder.FiType|coder. PrimitiveType | coder.StructType|coder.CellType|fiaccel| coder.OutputType

## Topics

"Define Input Properties by Example at the Command Line"
"Specify Cell Array Inputs at the Command Line"
"Specify Objects as Inputs"
"Define String Scalar Inputs"
"Create and Edit Input Types by Using the Coder Type Editor"

## coder.unroll

Unroll for-loop by making a copy of the loop body for each loop iteration

## Syntax

coder.unroll()
coder.unroll(flag)

## Description

coder. unroll() unrolls a for-loop. The coder. unroll call must be on a line by itself immediately preceding the for-loop that it unrolls.

Instead of producing a for-loop in the generated code, loop unrolling produces a copy of the forloop body for each loop iteration. In each iteration, the loop index becomes constant. To unroll a loop, the code generator must be able to determine the bounds of the for-loop.

For small, tight loops, unrolling can improve performance. However, for large loops, unrolling can increase code generation time significantly and generate inefficient code.
coder. unroll is ignored outside of code generation.
coder.unroll(flag) unrolls a for-loop if flag is true. flag is evaluated at code generation time. The coder. unroll call must be on a line by itself immediately preceding the for-loop that it unrolls.

## Examples

## Unroll a for-loop

To produce copies of a for-loop body in the generated code, use coder. unroll.
In one file, write the entry-point function call_getrand and a local function getrand. getrand unrolls a for-loop that assigns random numbers to an n-by-1 array. call_getrand calls getrand with the value 3 .

```
function z = call_getrand
%#codegen
z = getrand(3);
end
function y = getrand(n)
coder.inline('never');
y = zeros(n, 1);
coder.unroll();
for i = 1:n
 y(i) = rand();
end
end
```

Generate a static library.

```
codegen -config:lib call_getrand -report
```

In the generated code, the code generator produces a copy of the for-loop body for each of the three loop iterations.

```
static void getrand(double y[3])
{
 y[0] = b_rand();
 y[1] = b_rand();
 y[2] = b_rand();
}
```


## Control for-loop Unrolling with Flag

Control loop unrolling by using coder. unroll with the flag argument.
In one file, write the entry-point function call_getrand_unrollflag and a local function getrand_unrollflag. When the number of loop iterations is less than 10, getrand_unrollflag unrolls the for-loop. call_getrand calls getrand with the value 50.

```
function z = call_getrand_unrollflag
%#codegen
z = getrand_unrollflag(50);
end
function y = getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
coder.unroll(unrollflag)
for i = 1:n
 y(i) = rand();
end
end
```

Generate a static library.

```
codegen -config:lib call_getrand_unrollflag -report
static void getrand_unrollflag(double y[50])
{
 int i;
 for (i = 0; i < 50; i++) {
 y[i] = b_rand();
 }
}
```

The number of iterations is not less than 10. Therefore, the code generator does not unroll the forloop. It produces a for-loop in the generated code.

## Use Legacy Syntax to Unroll for-Loop

- function $z=$ call_getrand
\%\#codegen
z = getrand(3);
end
function $y=$ getrand(n)
coder.inline('never');
$y=z e r o s(n, 1)$;
for $i=$ coder.unroll(1:n)
$y(i)=r a n d() ;$
end
end


## Use Legacy Syntax to Control for-Loop Unrolling

- function z = call_getrand_unrollflag
\%\#codegen
$z=$ getrand_unrollflag(50);
end
function $y=$ getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
for $i=\operatorname{coder} . u n r o l l(1: n$, unrollflag) $y(i)=r a n d() ;$
end
end


## Input Arguments

## flag - Indicates whether to unroll the for-loop

## true (default) | false

When $f l a g$ is true, the code generator unrolls the for-loop. When flag is false, the code generator produces a for-loop in the generated code. flag is evaluated at code generation time.

## Tips

- Sometimes, the code generator unrolls a for-loop even though you do not use coder. unroll. For example, if a for-loop indexes into a heterogeneous cell array or into varargin or varargout, the code generator unrolls the loop. By unrolling the loop, the code generator can determine the value of the index for each loop iteration. The code generator uses heuristics to determine when to unroll a for-loop. If the heuristics fail to identify that unrolling is warranted, or if the number of loop iterations exceeds a limit, code generation fails. In these cases, you can force loop unrolling by using coder. unroll. See "Nonconstant Index into varargin or varargout in a for-Loop".


## Version History

## Introduced in R2011a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\text {™ }}$.

## See Also

coder.inline
Topics
"Nonconstant Index into varargin or varargout in a for-Loop"

## coder.varsize

Package: coder
Declare variable-size data

## Syntax

coder.varsize(varName1,..., varNameN)
coder.varsize(varName1, ..., varNameN, ubounds)
coder.varsize(varName1, ..., varNameN, ubounds, dims)

## Description

coder.varsize(varName1,..., varNameN) declares that the variables named varName1, . . . , varNameN have a variable size. The declaration instructs the code generator to allow the variables to change size during execution of the generated code. With this syntax, you do not specify the upper bounds of the dimensions of the variables or which dimensions can change size. The code generator computes the upper bounds. All dimensions, except singleton dimensions on page 4-233, are allowed to change size.

Use coder.varsize according to these restrictions and guidelines:

- Use coder.varsize inside a MATLAB function intended for code generation.
- The coder.varsize declaration must precede the first use of a variable. For example:

```
x = 1;
coder.varsize('x');
disp(size(x));
```

- Use coder.varsize to declare that an output argument has a variable size or to address size mismatch errors. Otherwise, to define variable-size data, use the methods described in "Define Variable-Size Data for Code Generation".

Note For MATLAB Function blocks, to declare variable-size output variables, use the Symbols pane and Property Inspector. See "Declare Variable-Size MATLAB Function Block Variables". If you provide upper bounds in a coder. varsize declaration, the upper bounds must match the upper bounds in the Property Inspector.

For more restrictions and guidelines, see "Limitations" on page 4-232 and "Tips" on page 4-233. coder.varsize(varName1, ... , varNameN, ubounds) also specifies an upper bound for each dimension of the variables. All variables must have the same number of dimensions. All dimensions, except singleton dimensions on page 4-233, are allowed to change size.
coder.varsize(varName1, ... ,varNameN, ubounds,dims) also specifies an upper bound for each dimension of the variables and whether each dimension has a fixed size or a variable size. If a dimension has a fixed size, then the corresponding ubound element specifies the fixed size of the dimension. All variables have the same fixed-size dimensions and the same variable-size dimensions.

The code generator uses a colon prefix to denote a variable-size dimension. For example, if the size of an array $A$ is denoted as $3 x: 5 x$ :Inf, then:

- The first dimension has a fixed size 3
- The second dimension is variable-size with an upper bound 5
- The third dimension is variable-size and unbounded


## Examples

## Address Size Mismatch Error by Using coder. varsize

After a variable is used (read), changing the size of the variable can cause a size mismatch error. Use coder.varsize to specify that the size of the variable can change.

Code generation for the following function produces a size mismatch error because $x=1$ :10 changes the size of the second dimension of $x$ after the line $y=\operatorname{size}(x)$ that uses $x$.

```
function [x,y] = usevarsize(n)
%#codegen
x = 1;
y = size(x);
if n > 10
 x = 1:10;
end
```

To declare that $x$ can change size, use coder. varsize.

```
function [x,y] = usevarsize(n)
%#codegen
x = 1;
coder.varsize('x');
y = size(x);
if n > 10
 x = 1:10;
end
```

If you remove the line $y=\operatorname{size}(x)$, you no longer need the coder. varsize declaration because $x$ is not used before its size changes.

## Declare Variable-Size Array with Upper Bounds

Specify that $A$ is a row vector of size $1 x: 20$. This denotes that the second dimension of $A$ has a variable size with an upper bound of 20 .

```
function fcn()
coder.varsize('A',[1 20]);
end
```

When you do not provide dims, all dimensions, except singleton dimensions, have a variable size.

## Declare Variable-Size Array with a Mix of Fixed and Variable Dimensions

Specify that A is an array with size $3 x: 20$. This denotes that the first dimension has a fixed size of three and whose second dimension has a variable size with an upper bound of 20 .

```
function fcn()
coder.varsize('A',[3 20], [0 1]);
end
```


## Declare Variable-Size Structure Fields

In this function, the statement coder.varsize('data.values') declares that the field values inside each element of data has a variable size.

```
function y = varsize_field()
%#codegen
d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data.values');
for i = 1:numel(data)
 data(i).color = rand-0.5;
 data(i).values = 1:i;
end
y = 0;
for i = 1:numel(data)
 if data(i).color > 0
 y = y + sum(data(i).values);
 end
end
```


## Declare Variable-Size Cell Array

Specify that cell array C has a fixed-size first dimension and variable-size second dimension with an upper bound of three. The coder. varsize declaration must precede the first use of C .

```
C = {1 [1 2]};
coder.varsize('C', [1 3], [0 1]);
y = C{1};
end
end
```

Without the coder.varsize declaration, C is a heterogeneous cell array whose elements have the same class and different sizes. With the coder.varsize declaration, C is a homogeneous cell array whose elements have the same class and maximum size.

- The cell array C is of size $1 x: 3$. The colon denotes that the second dimension of $C$ is variable-size with an upper bound of 3 .
- Each element of C is a $1 \mathrm{x}: 2$ array.


## Declare That a Cell Array Has Variable-Size Elements

Specify that the elements of cell array C are $1 x: 5$ vectors. This denotes that the elements each have a fixed-size first dimension and variable-size second dimension with an upper bound of 5 .
$C=\left\{\begin{array}{lll}1 & 2 & 3\end{array}\right\}$
coder.varsize('C\{:\}', [1 5], [0 1]);
$C=\{1,1: 5,2: 3\} ;$
...
You can also specify a specific element of a cell array to be variable-size. For example, in a 1-by-3 cell array $x$, declare the first element $x\{1\}$ to be a $1 x$ : 10 row vector.
$x=\{1,2,3\}$;
coder.varsize('x\{1\}', [1 10]);

## Input Arguments

## varName1, . . . , varNameN - Names of variables to declare as having a variable size character vectors | string scalars

Names of variables to declare as having a variable size, specified as one or more character vectors or string scalars.

```
Example: coder.varsize('x','y')
```


## ubounds - Upper bounds for array dimensions

[] (default) | vector of integer constants
Upper bounds for array dimensions, specified as a vector of integer constants.
When you do not specify ubounds, the code generator computes the upper bound for each variable. If the ubounds element corresponds to a fixed-size dimension, the value is the fixed size of the dimension.
Example: coder.varsize('x','y',[12])

## dims - Indication of whether each dimension has a fixed size or a variable size logical vector

Indication of whether each dimension has a fixed size or a variable size, specified as a logical vector. Dimensions that correspond to 0 or false in dims have a fixed size. Dimensions that correspond to 1 or true have a variable size.

When you do not specify dims, the dimensions have a variable size, except for the singleton dimensions.

Example: coder.varsize('x','y',[1 2], [0 1])

## Limitations

- The coder.varsize declaration instructs the code generator to allow the size of a variable to change. It does not change the size of the variable. Consider this code:

$$
x=7 ;
$$

coder.varsize('x', [1,5]);
disp(size(x));

After the coder. varsize declaration, x is still a 1-by-1 array. You cannot assign a value to an element beyond the current size of $x$. For example, this code produces a run-time error because the index 3 exceeds the dimensions of $x$.
.
$x=7$;
coder.varsize('x', [1,5]);
$x(3)=1$;

- coder.varsize is not supported for a function input argument. Instead:
- If the function is an entry-point function, specify that an input argument has a variable size by using coder. typeof at the command line. Alternatively, specify that an entry-point function input argument has a variable size by using the Define Input Types step of the app.
- If the function is not an entry-point function, use coder.varsize in the calling function with the variable that is the input to the called function.
- For sparse matrices, coder.varsize drops upper bounds for variable-size dimensions.
- Limitations for using coder .varsize with cell arrays:
- A cell array can have a variable size only if it is homogeneous. When you use coder.varsize with a heterogeneous cell array, the code generator tries to make the cell array homogeneous. The code generator tries to find a class and maximum size that apply to all elements of the cell array. For example, consider the cell array c = \{1, [2 3] \}. Both elements can be represented by a double type whose first dimension has a fixed size of 1 and whose second dimension has a variable size with an upper bound of 2 . If the code generator cannot find a common class and a maximum size, code generation fails. For example, consider the cell array $c=\{' a ',[23]\}$. The code generator cannot find a class that can represent both elements because the first element is char and the second element is double.
- If you use the cell function to define a fixed-size cell array, you cannot use coder.varsize to specify that the cell array has a variable size. For example, this code causes a code generation error because $x=\operatorname{cell}(1,3)$ makes $x$ a fixed-size, 1 -by- 3 cell array.

```
x = cell(1,3);
```

coder.varsize('x',[15])
...
You can use coder. varsize with a cell array that you define by using curly braces. For example:

```
...
x = {1 2 3};
coder.varsize('x',[1 5])
```

- To create a variable-size cell array by using the cell function, use this code pattern:

```
function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
end
```

See "Definition of Variable-Size Cell Array by Using cell".

To specify upper bounds for the cell array, use coder.varsize.

```
function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
coder.varsize('x',[1,20]);
end
end
```

- coder.varsize is not supported for:
- Global variables
- MATLAB classes or class properties
- String scalars


## More About

## Singleton Dimension

Dimension for which size(A, dim) $=1$.

## Tips

- In a code generation report or a MATLAB Function report, a colon (:) indicates that a dimension has a variable size. For example, a size of $1 \times: 2$ indicates that the first dimension has a fixed size of one and the second dimension has a variable size with an upper bound of two.
- If you use coder. varsize to specify that the upper bound of a dimension is 1 , by default, the dimension has a fixed size of 1 . To specify that the dimension can be (empty array) or 1 , set the corresponding element of the dims argument to true. For example, this code specifies that the first dimension of $x$ has a fixed size of 1 and the other dimensions have a variable size of 5 .
coder.varsize('x', [1,5,5])
In contrast, this code specifies that the first dimension of $x$ has an upper bound of 1 and has a variable size (can be 0 or 1 ).

```
coder.varsize('x',[1,5,5],[1,1,1])
```

- If you use input variables or the result of a computation using input variables to specify the size of an array, it is declared as variable-size in the generated code. Do not re-use coder.varsize on the array, unless you also want to specify an upper bound for its size.
- If you do not specify upper bounds with a coder.varsize declaration and the code generator is unable to determine the upper bounds, the generated code uses dynamic memory allocation.
Dynamic memory allocation can reduce the speed of generated code. To avoid dynamic memory allocation, specify the upper bounds by providing the ubounds argument.


## Version History <br> Introduced in R2011a

## See Also

coder.typeof

## Topics

"Code Generation for Variable-Size Arrays"
"Incompatibilities with MATLAB in Variable-Size Support for Code Generation"

## colon, :

Create vectors, array subscripting

## Syntax

y = j:k
y = j:i:k

## Description

$y=j: k$ returns a regularly-spaced vector, $[j, j+1, \ldots, k] . j: k$ is empty when $j>k$.
At least one of the colon operands must be a fi object. All colon operands must have integer values. All the fixed-point operands must be binary-point scaled. Slope-bias scaling is not supported. If any of the operands is complex, the colon function generates a warning and uses only the real part of the operands.
$y=\operatorname{colon}(j, k)$ is the same as $y=j: k$.
$y=j: i: k$ returns a regularly-spaced vector, $[j, j+i, j+2 i, \ldots, j+m * i]$, where $m=f i x((k-$
j)/i). y = j:i:k returns an empty matrix wheni == 0,i>0and $\mathrm{j}>\mathrm{k}$, or $\mathrm{i}<0$ and $\mathrm{j}<\mathrm{k}$.

## Examples

## Use fi as a Colon Operator

When you use fi as a colon operator, all colon operands must have integer values.

```
a = fi(1,0,3,0);
b = fi(2,0,8,0);
c = fi(12,0,8,0);
x = a:b:c
X =
 1
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0
```

Because all the input operands are unsigned, x is unsigned and the word length is 8 . The fraction length of the resulting vector is always 0 .

## Use the colon Operator With Signed and Unsigned Operands

```
a= fi(int8(-1));
b = uint8(255);
```

```
c = a:b;
len = c.WordLength
len = 9
signedness = c.Signedness
signedness =
'Signed'
```

The word length of c requires an additional bit to handle the intersection of the ranges of int8 and uint8. The data type of c is signed because the operand a is signed.

## Create a Vector of Decreasing Values

If the beginning and ending operands are unsigned, the increment operand can be negative.

```
x = fi(4,false):-1:1
x =
 4 3 2 1
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 0
```


## Use the colon Operator With Floating-Point and fi Operands

If any of the operands is floating-point, the output has the same word length and signedness as the fi operand

```
x = fi(1):10
x =
 1 [llllllllll
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0
```

$x=f i(1): 10$ is equivalent to $f i(1: 10$, true, 16,0$)$ so $x$ is signed and its word length is 16 bits.

## Rewrite Code That Uses Non-Integer Operands

If your code uses non-integer operands, rewrite the colon expression so that the operands are integers.

The following code does not work because the colon operands are not integer values.

```
Fs = fi(100);
n = 1000;
t = (0:1/Fs:(n/Fs - 1/Fs));
```

Rewrite the colon expression to use integer operands.

```
Fs = fi(100);
n = 1000;
t = (0:(n-1))/Fs;
```


## All Colon Operands Must Be in the Range of the Data Type

If the value of any of the colon operands is outside the range of the data type used in the colon expression, MATLAB generates an error.

$$
y=f i(1, \text { true }, 8,0): 256
$$

MATLAB generates an error because 256 is outside the range of fi( 1, true, 8,0 ). This behavior matches the behavior for built-in integers. For example, $y=i n t 8(1): 256$ generates the same error.

## Input Arguments

## j - Beginning operand

real scalar

Beginning operand, specified as a real scalar integer-valued fi object or built-in numeric type.
If you specify non-scalar arrays, MATLAB interprets $j: i: k$ as $j(1): i(1): k(1)$.
Data Types: fi |single | double | int8| int16|int32|int64|uint8|uint16|uint32| uint64

## i - Increment

1 (default) | real scalar
Increment, specified as a real scalar integer-valued fi object or built-in numeric type. Even if the beginning and end operands, $j$ and $k$, are both unsigned, the increment operand $i$ can be negative.

Data Types: fi|single | double | int8| int16|int32| int64|uint8|uint16|uint32| uint64

## k - Ending operand

real scalar
Ending operand, specified as a real scalar integer-valued fi object or built-in numeric type.
Data Types: fi |single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

## Output Arguments

## y - Regularly-spaced vector

real vector
Fixed-Point Designer determines the data type of the y using the following rules:

- The data type covers the union of the ranges of the fixed-point types of the input operands.
- If either the beginning or ending operand is signed, the resulting data type is signed. Otherwise, the resulting data type is unsigned.
- The word length of $y$ is the smallest value such that the fraction length is 0 and the real-world value of the least-significant bit is 1 .
- If any of the operands is floating-point, the word length and signedness of $y$ is derived from the fi operand.
- If any of the operands is a scaled double, y is a scaled double.
- The fimath of $y$ is the same as the fimath of the input operands.
- If all the fi objects are of data type double, the data type of $y$ is double. If all the fi objects are of data type single, the data type of $y$ is single. If there are both double and single inputs, and no fixed-point inputs, the output data type is single.


## Version History <br> \section*{Introduced in R2013b}

## See Also

colon|fi

## complex

Construct complex fi object from real and imaginary parts

## Syntax

c = complex (a,b)
c = complex(x)

## Description

$c=$ complex $(a, b)$ creates a complex output, $c$, from two real inputs, such that $c=a+b i$.
When $b$ is all zero, $c$ is complex with an all-zero imaginary part. This is in contrast to the addition of $a$ $+0 i$, which returns a strictly real result.
$c=$ complex(x) returns the complex equivalent of $x$, such that is real(c) returns logical 0 (false).

- If $x$ is real, then $c$ is $x+0 i$.
- If $x$ is complex, then $c$ is identical to $x$.


## Examples

## Complex Scalar from Two Real Scalars

Use the complex function to create the complex scalar, $3+4 i$.

```
a = fi(3,1,16,12);
b = fi(4,0,8);
c = complex(a,b)
C =
 3.0000 + 4.0000i
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12
```

The output, $c$, has the same numerictype and fimath properties as the input fi object, a.

## Complex Vector from One Real Vector

Create a complex fi vector with a zero imaginary part.
$x=f i([1 ; 2 ; 3 ; 4])$;
$c=$ complex $(x)$

```
c =
1.0000 + 0.0000i
2.0000 + 0.0000i
3.0000 + 0.0000i
4.0000 + 0.0000i
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12
```

Verify that c is complex.

```
isreal(c)
```

ans =
logical
0

## Input Arguments

## a - Real component

scalar | vector $\mid$ matrix | multidimensional array
Real component, specified as a fi scalar, vector, matrix, or multidimensional array.
The size of a must match the size of $b$, unless one is a scalar. If either $a$ or $b$ is a scalar, MATLAB expands the scalar to match the size of the other input.

Data Types: fi
b - Imaginary component
scalar | vector | matrix | multidimensional array
Imaginary component, specified as a fi scalar, vector, matrix, or multidimensional array.
The size of $b$ must match the size of $a$, unless one is a scalar. If either $a$ or $b$ is a scalar, MATLAB expands the scalar to match the size of the other input.

Data Types: fi

## x - Input array

scalar | vector | matrix | multidimensional array
Input array, specified as a fi scalar, vector, matrix, or multidimensional array.
Data Types: fi

## Output Arguments

## c - Complex array

scalar | vector | matrix | multidimensional array
Complex array, returned as a fi scalar, vector, matrix, or multidimensional array.

The size of c is the same as the input arguments.
The output fi object, $c$, has the same numerictype and fimath properties as the input fi object, a.

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## See Also

fi|fimath|numerictype

## conj

Complex conjugate of fi object

## Syntax

conj(a)

## Description

$\operatorname{conj}(\mathrm{a})$ is the complex conjugate of fi object a .
When a is complex,

$$
\operatorname{conj}(a)=\operatorname{real}(a)-i \times \operatorname{imag}(a)
$$

The numerictype and fimath properties associated with the input a are applied to the output.

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {rm }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

## See Also

complex

## conv

Convolution and polynomial multiplication of fi objects

## Syntax

$c=\operatorname{conv}(a, b)$
$c=\operatorname{conv}(a, b, s h a p e)$

## Description

$c=\operatorname{conv}(a, b)$ returns the convolution of input vectors $a$ and $b$, at least one of which must be a fi object.
$c=\operatorname{conv}(a, b$, shape $)$ returns a subsection of the convolution, as specified by shape.

## Examples

## Convolution of 22-Sample Sequence with 16-Tap FIR Filter

Find the convolution of a 22 -sample sequence with a 16 -tap FIR filter.
x is a 22 -sample sequence of signed values with a word length of 16 bits and a fraction length of 15 bits. h is the 16 -tap FIR filter.
$\mathrm{u}=(\mathrm{pi} / 4) *\left[\begin{array}{lllllllllll}1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & -1\end{array}\right]$;
$x=$ fi(kron(u,[11]));
$\mathrm{h}=\mathrm{firls}\left(15,[0\right.$. 1.2 . 5$] * 2,\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right)$;
Because x is a fi object, you do not need to cast h into a fi object before performing the convolution operation. The conv function does this automatically using best-precision scaling.

Use the conv function to convolve the two vectors.
$y=\operatorname{conv}(x, h)$;
The operation results in a signed fi object $y$ with a word length of 36 bits and a fraction length of 31 bits. The default fimath properties associated with the inputs determine the numerictype of the output. The output does not have a local fimath.

## Central Part of Convolution of Two fi Vectors

Create two fi vectors. Find the central part of the convolution of $a$ and $b$ that is the same size as $a$.

```
a = fi([-1 2 3 -2 0 1 2]);
b = fi([2 4 -1 1]);
c = conv(a,b,'same')
c =
```

```
15
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 34
FractionLength: 25
```

c has a length of 7. The full convolution would be of length length (a)+length(b) -1 , which in this example would be 10 .

## Input Arguments

## $a, b-\operatorname{Input}$ vectors

vectors
Input vectors, specified as either row or column vectors.
If either input is a built-in data type, conv casts it into a fi object using best-precision rules before the performing the convolution operation.
Data Types: single | double | int8 | int16| int32 | int64 |uint8|uint16|uint32|uint64 | fi
Complex Number Support: Yes
shape - Subset of convolution
'full' (default)|'same'|'valid'
Subset of convolution, specified as one of these values:

- 'full' - Returns the full convolution. This option is the default shape.
- ' same ' - Returns the central part of the convolution that is the same size as input vector a.
- 'valid' - Returns only those parts of the convolution that the function computes without zeropadded edges. Using this option, the length of output vector C is $\max$ (length (a) $\max (0$, length (b) -1$), 0)$.

Data Types: char

## More About

## Convolution

The convolution of two vectors, $u$ and $v$, represents the area of overlap under the points as $v$ slides across $u$. Algebraically, convolution is the same operation as multiplying polynomials whose coefficients are the elements of $u$ and $v$.

Let $\mathrm{m}=$ length( u ) and $\mathrm{n}=$ length( v$)$. Then w is the vector of length $\mathrm{m}+\mathrm{n}-1$ whose kth element is

The sum is over all the values of $j$ that lead to legal subscripts for $u(j)$ and $v(k-j+1)$, specifically $j$ $=\max (1, k+1-n): 1: \min (k, m)$. When $m=n$, this gives
$w(1)=u(1) * v(1)$
$w(2)=u(1) * v(2)+u(2) * v(1)$

```
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
w(n) = u(1)*v(n)+u(2)*v(n-1)+\ldots+u(n)*v(1)
w(2*n-1) = u(n)*v(n)
```


## Algorithms

The fimath properties associated with the inputs determine the numerictype properties of output fi object c:

- If either a or b has a local fimath object, conv uses that fimath object to compute intermediate quantities and determine the numerictype properties of $c$.
- If neither a nor b have an attached fimath, conv uses the default fimath to compute intermediate quantities and determine the numerictype properties of c .

If either input is a built-in data type, conv casts it into a fi object using best-precision rules before the performing the convolution operation.

The output fi object c always uses the default fimath.

## Version History

## Introduced in R2009b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Variable-sized inputs are only supported when the SumMode property of the governing fimath is set to SpecifyPrecision or KeepLSB.
- For variable-sized signals, you might see different results between generated code and MATLAB.
- In the generated code, the output for variable-sized signals is computed using the SumMode property of the governing fimath.
- In MATLAB, the output for variable-sized signals is computed using the SumMode property of the governing fimath when both inputs are nonscalar. However, if either input is a scalar, MATLAB computes the output using the ProductMode of the governing fimath.


## See Also <br> conv

## convergent

Round toward nearest integer with ties rounding to nearest even integer

## Syntax

```
y = convergent(a)
y = convergent(x)
```


## Description

$y=$ convergent (a) rounds fi object a to the nearest integer. In the case of a tie, convergent (a) rounds to the nearest even integer.
$y=$ convergent $(x)$ rounds the elements of $x$ to the nearest integer. In the case of a tie, convergent ( $x$ ) rounds to the nearest even integer.

## Examples

## Use Convergent Rounding on Signed fi Object

The following example demonstrates how the convergent function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 3 .

```
a = fi(pi,1,8,3)
a =
 3.1250
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3
y = convergent(a)
y =
 3
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0
```

The following example demonstrates how the convergent function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 12.

```
a = fi(0.025,1,8,12)
a \(=\)
0.0249
```

```
DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
FractionLength: 12
```

```
y = convergent(a)
y =
 0
```

        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 2
        FractionLength: 0
    
## Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least significant digit is 5 .

- The convergent function rounds ties to the nearest even integer.
- The nearest function rounds ties to the nearest integer toward positive infinity.
- The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

```
a = fi([-3.5:3.5]');
y = [a convergent(a) nearest(a) round(a)]
y =
\begin{tabular}{rrrr}
-3.5000 & -4.0000 & -3.0000 & -4.0000 \\
-2.5000 & -2.0000 & -2.0000 & -3.0000 \\
-1.5000 & -2.0000 & -1.0000 & -2.0000 \\
-0.5000 & 0 & 0 & -1.0000 \\
0.5000 & 0 & 1.0000 & 1.0000 \\
1.5000 & 2.0000 & 2.0000 & 2.0000 \\
2.5000 & 2.0000 & 3.0000 & 3.0000 \\
3.5000 & 3.9999 & 3.9999 & 3.9999
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
```


## Input Arguments

## a - Input fi array

scalar | vector | matrix | multidimensional array
Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.
convergent does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is trivial when the slope is an integer power of 2 and the bias is 0 .

Data Types: fi
Complex Number Support: Yes
x - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array.
For complex inputs, the real and imaginary parts are rounded independently.
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64
Complex Number Support: Yes

## Algorithms

- y and a have the same fimath object and DataType property.
- When the DataType property of $a$ is single, or double, the numerictype of $y$ is the same as that of a.
- When the fraction length of a is zero or negative, a is already an integer, and the numerictype of $y$ is the same as that of $a$.
- When the fraction length of a is positive, the fraction length of y is 0 , its sign is the same as that of a, and its word length is the difference between the word length and the fraction length of a, plus one bit. If a is signed, then the minimum word length of $y$ is 2 . If a is unsigned, then the minimum word length of y is 1 .


## Version History

## Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## See Also

ceil|fix|floor|nearest| round
Topics
"Precision and Range"

## convertToSingle

Convert double-precision MATLAB code to single-precision MATLAB code

## Syntax

```
convertTosingle options fcn_1, ..., fcn_n
convertTosingle options fcn_1, -args args_1 ,..., fcn_n -args args_n
```


## Description

convertTosingle options fcn_1, ..., fcn_n generates single-precision MATLAB code from the specified function or functions. When you use this syntax, you must provide a test file that convertToSingle can use to determine the properties of the input parameters. To specify the test file, use coder.config('single') to create a coder. SingleConfig object. Specify the TestBenchName property.
convertTosingle options fcn_1, -args args_1 ,..., fcn_n -args args_n specifies the properties of the input arguments.

## Examples

## Convert to Single Precision and Validate Using a Test File

Generate single-precision code from a double-precision function myfun.m. Specify a test file for determining the argument properties and for verification of the converted types. Plot the error between the double-precision and single-precision values.

```
scfg = coder.config('single');
scfg.TestBenchName = 'myfun_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;
convertToSingle -config scfg myfun
```


## Convert Multiple Functions to Single Precision with the Default Configuration

Convert my fun1.m and myfun2.m to single precision. Specify that myfun1 has a double scalar argument and myfun2 has a $2 \times 3$ double argument.

```
convertToSingle -config scfg myfun1 -args {0} myfun2 -args {zeros(2, 3)}
```


## Specify Input Argument Properties

Generate single-precision code from a double-precision function, myfun.m, whose first argument is double scalar and whose second argument is 2 x 3 double.

```
convertToSingle myfun -args {0, zeros(2, 3)}
```


## Input Arguments

fen - Function name
character vector
MATLAB function from which to generate single-precision code.

## args - Argument properties

cell array of types or example values.
Definition of the size, class, and complexity of the input arguments specified as a cell array of types or example values. To create a type, use coder. typeof.

## options - options for single-precision conversion

- config|-globals

Specify one of the following single-conversion options.

- config config_object

Specify the configuration object to use for conversion of double-precision MATLAB code to single-precision MATLAB code. To create the configuration object, use
coder.config('single');
If you do not use this option, the conversion uses a default configuration. When you omit - config, to specify the properties of the input arguments, use -args.

```
-globals global_values
```


## Version History <br> Introduced in R2015b

## See Also

coder. SingleConfig|coder.config

## Topics

"Generate Single-Precision MATLAB Code"

Specify names and initial values for global variables in MATLAB files.
global_values is a cell array of global variable names and initial values. The format of global_values is:
\{g1, init1, g2, init2, ..., gn, initn\}
gn is the name of a global variable. initn is the initial value. For example:

```
-globals {'g', 5}
```

Alternatively, use this format:

```
-globals {global_var, {type, initial_value}}
```

type is a type object. To create the type object, use coder.typeof.

If you do not provide initial values for global variables using the -globals option, convertToSingle checks for the variable in the MATLAB global workspace. If you do not supply an initial value, convertToSingle generates an error.

## copyobj

Make independent copy of quantizer object

## Syntax

$q 1=\operatorname{copyobj}(q)$
[q1,q2,...] = copyobj(obja,objb,...)

## Description

$\mathrm{q} 1=\operatorname{copyobj}(\mathrm{q})$ makes a copy of quantizer object q and returns it in q 1 .
$[q 1, q 2, \ldots]=\operatorname{copyobj}(o b j a, o b j b, \ldots)$ copies obja into q1, objb into q2, and so on.
Using copyobj to copy a quantizer object is not the same as using the command syntax $q 1=q$ to copy a quantizer object. quantizer objects have memory (their read-only properties). When you use copyobj, the resulting copy is independent of the original item; it does not share the original object's memory, such as the values of the properties min, max, noverflows, or noperations. Using $q 1=q$ creates a new object that is an alias for the original and shares the original object's memory, and thus its property values.

## Examples

q = quantizer([8 7]);
q1 $=$ copyobj(q)

## Version History

Introduced before R2006a

See Also<br>quantizer|get|set

## cordicabs

CORDIC-based absolute value

## Syntax

```
r = cordicabs(c)
r = cordicabs(c,niters)
r = cordicabs(
```

$\qquad$

``` ,'ScaleOutput', b)
```


## Description

$r=$ cordicabs(c) returns the magnitude of the complex elements of $c$.
$r=$ cordicabs(c,niters) performs the number of CORDIC algorithm iterations specified by niters.
$r=$ cordicabs ( $\qquad$ , 'Scale0utput' , b) specifies whether to scale the output by the inverse CORDIC gain factor.

## Examples

## CORDIC Absolute Value

Compare the absolute value computed using double-precision input values to the cordicabs and abs functions.

```
dblValues = complex(rand (5,4),rand(5,4))
dblValues = 5×4 complex
 0.8147 + 0.6557i 0.0975 + 0.7577i 0.1576 + 0.7060i 0.1419 + 0.8235i
 0.9058 + 0.0357i 0.2785 + 0.7431i 0.9706 + 0.0318i 0.4218 + 0.6948i
 0.1270 + 0.8491i 0.5469 + 0.3922i 0.9572 + 0.2769i 0.9157 + 0.3171i
 0.9134 + 0.9340i 0.9575 + 0.6555i 0.4854 + 0.0462i 0.7922 + 0.9502i
 0.6324 + 0.6787i 0.9649 + 0.1712i 0.8003 + 0.0971i 0.9595 + 0.0344i
r_dbl_ref = abs(dblValues)
r dbl_ref = 5x4
\begin{tabular}{llll}
1.0458 & 0.7640 & 0.7234 & 0.8356 \\
0.9065 & 0.7936 & 0.9711 & 0.8128 \\
0.8586 & 0.6730 & 0.9964 & 0.9691 \\
1.3064 & 1.1604 & 0.4876 & 1.2371 \\
0.9277 & 0.9800 & 0.8062 & 0.9601
\end{tabular}
r_dbl_cdc = cordicabs(dblValues)
r_dbl_cdc = 5×4
```

1.0458	0.7640	0.7234	0.8356
0.9065	0.7936	0.9711	0.8128
0.8586	0.6730	0.9964	0.9691
1.3064	1.1604	0.4876	1.2371
0.9277	0.9800	0.8062	0.9601

Compute absolute values of fixed-point inputs.

```
fxpValues = fi(dblValues)
fxpValues =
 0.8147 + 0.6557i 0.0975 + 0.7578i 0.1576 + 0.7061i 0.1419 + 0.8235i
 0.9058 + 0.0357i 0.2785 + 0.7431i 0.9706 + 0.0318i 0.4218 + 0.6948i
 0.1270 + 0.8491i 0.5469 + 0.3922i 0.9572 + 0.2769i 0.9157 + 0.3171i
 0.9134 + 0.9340i 0.9575 + 0.6555i 0.4854 + 0.0462i 0.7922 + 0.9502i
 0.6324 + 0.6787i 0.9649 + 0.1712i 0.8003 + 0.0971i 0.9595 + 0.0345i
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15
r_fxp_cdc = cordicabs(fxpValues)
r_fxp_cdc =
 1.0458 0.7640 0.7234 0.8356
 0.9066 0.7935 0.9712 0.8128
 0.8586 0.6730 0.9965 0.9691
 1.3064 1.1604 0.4876 1.2371
 0.9277 0.9799 0.8062 0.9601
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 15
```


## Input Arguments

c - Complex input array
scalar | vector | matrix | multidimensional array
Complex input array, specified as a scalar, vector, matrix, or multidimensional array. All input values must have the same data type.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi
Complex Number Support: Yes

## niters - Number of iterations CORDIC algorithm performs

positive integer-valued scalar
Number of iterations the CORDIC algorithm performs, specified as a positive integer-valued scalar.
If you do not specify niters, or if you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the maximum number of iterations is one less than the word length of c. For floating-point operation, the maximum value is 52 for double or 23 for single.

Increasing the number of iterations can produce more accurate results but also increases the expense of the computation and adds latency.

## b - Whether to scale output by inverse CORDIC gain factor

1 (true) (default) | 0 (false)
Whether to scale output by inverse CORDIC gain factor, specified as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

## Output Arguments

## $r$ - Magnitude values of the complex input values <br> scalar | vector | matrix | multidimensional array

Magnitude values of the complex input values, returned as a scalar, vector, matrix, or multidimensional array. If the input c is fixed point, then r is returned as a signed fixed-point data type using binary-point scaling. If the inputs are signed, then the word length of $r$ is the input word length +2 . If the inputs are unsigned, then the word length of $r$ is the input word length +3 . The fraction length of $r$ is always the same as the fraction length of the input $c$.

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arcsine, arccosine, arctangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results but also increases the expense of the computation and adds latency.

## Algorithms

## Signal Flow Diagrams



CORDIC Vectoring Kernel


The accuracy of the CORDIC kernel depends on the choice of initial values for $X, Y$, and $Z$. This algorithm uses the following initial values:
$x_{0}$ is initialized to the $x$ input value
$y_{0}$ is initialized to the $y$ input value
$z_{0}$ is initialized to 0

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction-Wrap
- RoundingMethod-Floor

The output has no attached fimath.

## Version History

Introduced in R2011b

## References

[1] Volder, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. EC-8, no. 3 (Sept. 1959): 330-334.
[2] Andraka, Ray. "A Survey of CORDIC Algorithm for FPGA Based Computers." In Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, 191-200. https://dl.acm.org/doi/10.1145/275107.275139.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." In Proceedings of the May 18-20, 1971 Spring Joint Computer Conference, 379-386. https://dl.acm.org/doi/ 10.1145/1478786.1478840.
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly, no. 5 (May 1983): 317-325. https://doi.org/10.2307/2975781.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{Tm}}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.


## See Also

cordiccart2pol|cordicangle|abs|abs

## cordicacos

CORDIC-based approximation of inverse cosine

## Syntax

theta $=\operatorname{cordicacos}(x)$
theta $=$ cordicacos(x, niters)

## Description

theta $=$ cordicacos $(x)$ returns the inverse cosine of $x$ based on a double CORDIC (DCORDIC) algorithm approximation.
theta $=$ cordicacos(x, niters) performs niters iterations of the DCORDIC algorithm.

## Examples

## Calculate CORDIC Inverse Cosine

Compute the inverse cosine of a fixed-point fi object using a CORDIC implementation.

```
a = fi(-1:.1:1,1,16);
b = cordicacos(a);
plot(a,b);
title('Inverse CORDIC Cosine');
```



Compare the output of the cordicacos function and the acos function.

```
c = acos(double(a));
error = double(b)-c;
plot(a,error);
title('Error');
```



## Calculate CORDIC Inverse Cosine with Specified Number of Iterations

Find the inverse cosine of a fi object using a CORDIC implementation and specify the number of iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the inverse cosine with varying numbers of iterations.

```
a = fi(-1:.1:1,1,16);
for i = 5:5:20
 b = cordicacos(a,i);
 plot(a,b);
 hold on;
end
legend('5 iterations','10 iterations',...
 '15 iterations','20 iterations')
```



## Input Arguments

## x - Cosine of angle

scalar | vector | matrix | multidimensional array
Cosine of angle, specified as a scalar, vector, matrix, or multidimensional array. x must be a real, finite value in the range $[-1,1]$.

When x is specified as a fi object, the property 'DataTypeMode' must equal Fixed-point: binary point scaling','Scaled double: binary point scaling','double', or 'single'.
Data Types: single|double|fi
Complex Number Support: Yes

## niters - Number of iterations CORDIC algorithm performs

positive integer-valued scalar
Number of iterations the CORDIC algorithm performs, specified as a positive integer-valued scalar.
If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the default value of niters is one less than the word length of the input array x. For double-precision inputs, the default value of niters is 54 . For single-precision inputs, the default value is 25 .
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi

## Output Arguments

## theta - Inverse cosine angle values

scalar | vector | matrix | multidimensional array
Inverse cosine angle values in radians, returned as a scalar, vector, matrix, or multidimensional array. The cordicacos function returns values in the interval $[0, \pi]$.

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arcsine, arccosine, arctangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results but also increases the expense of the computation and adds latency.

## Version History

## Introduced in R2018b

## References

[1] Volder, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. EC-8, no. 3 (Sept. 1959): 330-334.
[2] Andraka, Ray. "A Survey of CORDIC Algorithm for FPGA Based Computers." In Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, 191-200. https://dl.acm.org/doi/10.1145/275107.275139.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." In Proceedings of the May 18-20, 1971 Spring Joint Computer Conference, 379-386. https://dl.acm.org/doi/ 10.1145/1478786.1478840.
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly, no. 5 (May 1983): 317-325. https://doi.org/10.2307/2975781.

## See Also

## Functions

cordicsin|cordiccos

## cordicangle

CORDIC-based phase angle

## Syntax

theta $=$ cordicangle(c)
theta $=$ cordicangle(c,niters)

## Description

theta $=$ cordicangle( $c$ ) returns the phase angle in the interval $[-\pi, \pi]$ for each element of $a$ complex array c.
theta $=$ cordicangle(c, niters) performs niters iterations of the CORDIC algorithm.

## Examples

## CORDIC-Based Phase Angle

Use the cordicangle function to compute the CORDIC-based phase angle for double-precision and fixed-point inputs.

```
dblRandomVals = complex(rand(5,4),rand(5,4));
theta_dbl_ref = angle(dblRandomVals);
theta_dbl_cdc = cordicangle(dblRandomVals)
theta_dbl_cdc = 5×4
\begin{tabular}{llll}
0.6777 & 1.4428 & 1.3512 & 1.4002 \\
0.0394 & 1.2122 & 0.0328 & 1.0252 \\
1.4223 & 0.6222 & 0.2816 & 0.3334 \\
0.7966 & 0.6003 & 0.0948 & 0.8758 \\
0.8208 & 0.1756 & 0.1208 & 0.0359
\end{tabular}
```

```
fxpRandomVals = fi(dblRandomVals);
theta_fxp_cdc = cordicangle(fxpRandomVals)
theta_fxp_cdc =
\begin{tabular}{llll}
\(0.677 \overline{7}\) & 1.4426 & 1.3513 & 1.4001 \\
0.0393 & 1.2122 & 0.0327 & 1.0254 \\
1.4224 & 0.6223 & 0.2817 & 0.3333 \\
0.7964 & 0.6003 & 0.0950 & 0.8757 \\
0.8208 & 0.1758 & 0.1208 & 0.0359
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
```


## Input Arguments

c - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array. When the elements of c are nonnegative real numbers, cordicangle returns 0 . When the elements of c are negative real numbers, cordicangle returns $\pi$.
Data Types: single |double|fi
Complex Number Support: Yes

## niters - Number of iterations CORDIC algorithm performs

positive integer-valued scalar
Number of iterations the CORDIC algorithm performs, specified as a positive integer-valued scalar.
Increasing the number of iterations can produce more accurate results but also increases the expense of the computation and adds latency.

If you do not specify niters, or if you specify it as empty or nonfinite, the maximum allowed value is used. For fixed-point input, the maximum number of iterations is one less than the word length of c . For double-precision input, the maximum value is 52 . For single-precision input, the maximum value is 23 .
Data Types: single | double |int8|int16|int32 | int64|uint8|uint16|uint32|uint64 | fi

## Output Arguments

## theta - Phase angle in radians

scalar | vector | matrix | multidimensional array
Phase angle in radians, returned as a scalar, vector, matrix, or multidimensional array.
If c is floating-point, then theta has the same data type as c . Otherwise, theta has a fixed-point data type with the same word length as c and with a best-precision fraction length.

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arcsine, arccosine, arctangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results but also increases the expense of the computation and adds latency.

## Algorithms

## Signal Flow Diagrams



CORDIC Vectoring Kernel


The accuracy of the CORDIC kernel depends on the choice of initial values for $X, Y$, and $Z$. This algorithm uses the following initial values:
$x_{0}$ is initialized to the $x$ input value
$y_{0}$ is initialized to the $y$ input value
$z_{0}$ is initialized to 0

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction-Wrap
- RoundingMethod-Floor

The output has no attached fimath.

## Version History

Introduced in R2011b

## References

[1] Volder, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. EC-8, no. 3 (Sept. 1959): 330-334.
[2] Andraka, Ray. "A Survey of CORDIC Algorithm for FPGA Based Computers." In Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, 191-200. https://dl.acm.org/doi/10.1145/275107.275139.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." In Proceedings of the May 18-20, 1971 Spring Joint Computer Conference, 379-386. https://dl.acm.org/doi/ 10.1145/1478786.1478840.
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly, no. 5 (May 1983): 317-325. https://doi.org/10.2307/2975781.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.


## See Also <br> cordicatan2 | cordiccart2pol|cordicabs|angle

## cordicasin

CORDIC-based approximation of inverse sine

## Syntax

theta $=\operatorname{cordicasin}(x)$
theta $=$ cordicasin(x, niters)

## Description

theta $=$ cordicasin( $x$ ) returns the inverse sine of $x$ based on a CORDIC approximation.
theta $=$ cordicasin( $x$, niters) returns the inverse sine of x performing niters iterations of the CORDIC algorithm.

## Examples

## Calculate CORDIC Inverse Sine

Compute the inverse Sine of a fixed-point fi object using a CORDIC implementation.

```
a = fi(-1:.1:1,1,16);
b = cordicasin(a);
plot(a, b);
title('Inverse CORDIC Sine');
```



## Calculate CORDIC Inverse Sine with Specified Number of Iterations

Find the inverse sine of a fi object using a CORDIC implementation and specify the number of iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the inverse sine with varying numbers of iterations.

```
a = fi(-1:.1:1,1,16);
for i = 5:5:20
 b = cordicasin(a,i);
 plot(a,b);
 hold on;
end
legend('5 iterations','10 iterations',...
 '15 iterations','20 iterations')
```



## Input Arguments

## x - Numeric input

scalar | vector | matrix | multidimensional array
Numeric input, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16| int32| int64 | uint8|uint16|uint32|uint64| fi
Complex Number Support: Yes

## niters - Number of iterations

scalar
The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the default value of niters is one less than the word length of the input array, theta. For doubleprecision inputs, the default value of niters is 52 . For single-precision inputs, the default value is 23.

Data Types: single | double | int8 | int16| int32 | int64 | uint8|uint16|uint32|uint64| fi

## Output Arguments

theta - Inverse sine angle values
scalar | vector | matrix | n-dimensional array
Inverse sine angle values in rad.

## Version History

Introduced in R2018b

## See Also

Functions
cordicsin |cordiccos

## cordicatan2

CORDIC-based four quadrant inverse tangent

## Syntax

theta $=$ cordicatan2 $(\mathrm{y}, \mathrm{x})$
theta $=$ cordicatan2( $y, x$, niters $)$

## Description

theta $=$ cordicatan2 $(y, x)$ computes the four quadrant arctangent of $y$ and $x$ using a CORDIC algorithm approximation.
theta $=$ cordicatan2( $\mathrm{y}, \mathrm{x}$, niters) performs niters iterations of the algorithm.

## Examples

## Compute CORDIC Arctangent

Define floating-point Cartesian coordinates.
$y=0.5 ;$
$\mathrm{x}=-0.5$;
Use cordicatan2 to compute floating-point CORDIC arctangent. Compare the result to the arctangent computed using atan2.

```
theta_cdat2_float = cordicatan2(y,x)
theta_cdat2_float = 2.3562
theta_atan2_float = atan2(y,x)
theta_atan2_float = 2.3562
```

Define fixed-point Cartesian coordinates.

```
y = fi(0.5,1,16,15);
x = fi(-0.5,1,16,15);
```

Use cordicatan2 to compute fixed-point CORDIC arctangent. Compare the result to the arctangent computed using atan2.

```
theta_cdat2_fixpt = cordicatan2(y,x)
theta_cdat2_fixpt =
 2.3562
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
```

```
theta_atan2_fixpt = atan2(y,x)
theta_atan2_fixpt =
 2.3562
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
```


## Input Arguments

## y - Cartesian y-coordinate

scalar | vector | matrix | multidimensional array
Cartesian y-coordinate, specified as a scalar, vector, matrix, or multidimensional array.
$y$ and $x$ must be the same size. If they are not the same size, at least one value must be a scalar value. $y$ and $x$ must have the same data type.

```
Data Types: single | double| int8| int16| int32 | int64|uint8|uint16|uint32|uint64 |
fi
Complex Number Support: Yes
```

x-Cartesian x-coordinate
scalar | vector | matrix | multidimensional array
Cartesian $x$-coordinate, specified as a scalar, vector, matrix, or multidimensional array.
$y$ and $x$ must be the same size. If they are not the same size, at least one value must be a scalar value. $y$ and $x$ must have the same data type.

```
Data Types: single|double| int8| int16| int32 | int64|uint8|uint16|uint32|uint64 |
fi
Complex Number Support: Yes
```


## niters - Number of iterations of CORDIC algorithm

positive integer-valued scalar
Number of iterations of CORDIC algorithm, specified as a positive, integer-valued scalar.
Increasing the number of iterations can produce more accurate results, but also increases the expense of the computation and adds latency.

If you do not specify niters, or if you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the maximum number of iterations is one less than the word length of y or x . For floating-point operation, the maximum value is 52 for double or 23 for single.

## Output Arguments

## theta - Arctangent value

scalar | vector | matrix | multidimensional array

Arctangent value in the range [-pi, pi] radians, returned as a scalar, vector, matrix, or multidimensional array.

If $y$ and $x$ are floating-point numbers, then theta has the same data type as $y$ and $x$. Otherwise, theta is a fixed-point data type with the same word length as $y$ and $x$ and with a best-precision fraction length for the [-pi, pi] range.

## Algorithms

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## Signal Flow Diagram



CORDIC Vectoring Kernel


The accuracy of the CORDIC kernel depends on the choice of initial values for $X, Y$, and $Z$. This algorithm uses the following initial values:

- $X_{0}$ is initialized to the $X$ input value
- $Y_{0}$ is initialized to the $Y$ input value
- $Z_{0}$ is initialized 0


## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction - Wrap
- RoundingMethod - Floor

The output has no attached fimath.

## Version History

Introduced in R2011b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.


## See Also

atan2|atan2|cordicsin|cordiccos

## cordiccart2pol

CORDIC-based approximation of Cartesian-to-polar conversion

## Syntax

[theta, $r$ ] = cordiccart2pol( $x, y$ )
[theta, r] = cordiccart2pol(x,y, niters)
[theta, r] = cordiccart2pol(x,y, niters,'ScaleOutput', b)
[theta, r] = cordiccart2pol(x,y, 'ScaleOutput',b)

## Description

[theta, r] = cordiccart2pol( $x, y$ ) using a CORDIC algorithm approximation, returns the polar coordinates, angle theta and radius $r$, of the Cartesian coordinates, $x$ and $y$.
[theta, r] = cordiccart2pol(x,y, niters) performs niters iterations of the algorithm.
[theta, r] = cordiccart2pol(x,y, niters,'ScaleOutput',b) specifies both the number of iterations and, depending on the Boolean value of $b$, whether to scale the $r$ output by the inverse CORDIC gain value.
[theta, r] = cordiccart2pol(x,y, 'ScaleOutput',b) scales the routput by the inverse CORDIC gain value, depending on the Boolean value of $b$.

## Input Arguments

## $x, y$

$\mathrm{x}, \mathrm{y}$ are Cartesian coordinates. x and y must be the same size. If they are not the same size, at least one value must be a scalar value. Both x and y must have the same data type.

## niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the maximum number of iterations is the word length of $r$ or one less than the word length of theta, whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations can produce more accurate results but also increases the expense of the computation and adds latency.

## ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0 , the output is not scaled.

Default: true

## Output Arguments

## theta

theta contains the polar coordinates angle values, which are in the range [-pi, pi] radians. If $x$ and $y$ are floating-point, then theta has the same data type as $x$ and $y$. Otherwise, theta is a fixed-point data type with the same word length as $x$ and $y$ and with a best-precision fraction length for the [-pi, pi] range.

## r

$r$ contains the polar coordinates radius magnitude values. $r$ is real-valued and can be a scalar value or have the same dimensions as theta If the inputs $x, y$ are fixed-point values, $r$ is also fixed point (and is always signed, with binary point scaling). Both $x, y$ input values must have the same data type. If the inputs are signed, then the word length of $r$ is the input word length +2 . If the inputs are unsigned, then the word length of $r$ is the input word length +3 . The fraction length of $r$ is always the same as the fraction length of the $\mathrm{x}, \mathrm{y}$ inputs.

## Examples

Convert fixed-point Cartesian coordinates to polar coordinates.

```
[thPos,r]=cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(0.5,16,15))
thPos =
 0.5881 0.7854 1.1072 1.5708 2.0344 2.3562 2.5535
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
r=
 0.9014 0.7071 0.5591 0.5000 0.5591 0.7071 0.9014 1.1180
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 15
[thNeg,r]=...
 cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(-0.5,16,15))
thNeg =
 -0.5881 -0.7854 -1.1072 -1.5708 -2.0344 -2.3562 -2.5535 -2.6780
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
r =
```

```
0.9014 0.7071 0.5591 0.5000 0.5591 0.7071 0.9014 1.1180
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
FractionLength: 15
```


## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## More About

[1] Volder, JE. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. Vol. EC-8, September 1959, pp. 330-334.
[2] Andraka, R. "A survey of CORDIC algorithm for FPGA based computers." Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24, 1998, pp. 191-200.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." Hewlett-Packard Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317-325.

## Algorithms

## Signal Flow Diagrams



CORDIC Vectoring Kernel


The accuracy of the CORDIC kernel depends on the choice of initial values for $X, Y$, and $Z$. This algorithm uses the following initial values:
$x_{0}$ is initialized to the $x$ input value
$y_{0}$ is initialized to the $y$ input value
$z_{0}$ is initialized to 0

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction-Wrap
- RoundingMethod-Floor

The output has no attached fimath.

## Version History

Introduced in R2011b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.


## See Also

cordicatan2|cordicpol2cart|cart2pol

## cordiccexp

CORDIC-based approximation of complex exponential

## Syntax

y = cordiccexp(theta, niters)

## Description

$y=$ cordiccexp(theta, niters) computes cos(theta) + $j^{*}$ sin(theta) using a "CORDIC" on page 4-285 algorithm approximation. $y$ contains the approximated complex result.

## Input Arguments

## theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle values in radians. All values of theta must be real and in the range $[-2 \pi 2 \pi$ ).

## niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument. When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the maximum number of iterations is one less than the word length of theta. For floating-point operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations can produce more accurate results, but it also increases the expense of the computation and adds latency.

## Output Arguments

## y

$y$ is the approximated complex result of the cordiccexp function. When the input to the function is floating point, the output data type is the same as the input data type. When the input is fixed point, the output has the same word length as the input, and a fraction length equal to the WordLength - 2 .

## Examples

The following example illustrates the effect of the number of iterations on the result of the cordiccexp approximation.

```
wrdLn = 8;
theta = fi(pi/2, 1, wrdLn);
fprintf('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (COS)\t ERROR\t LSBs\n');
fprintf('-----\t\t------\t -----\t ---\t\t------\t -----\t ----\n');
for niters = 1:(wrdLn - 1)
 cis = cordiccexp(theta, niters);
 fl = cis.FractionLength;
 x = real(cis);
y = imag(cis);
x_dbl = double(x);
x_err = abs(x_dbl - cos(double(theta)));
y_dbl = doubl\overline{e}(y);
y_err = abs(y_dbl - sin(double(theta)));
fprintf('%d\t\\%1.4f\t%1.4f\t%1.1f\t\t%1.4f\t%1.4f\t%1.1f\n',...
 niters,y_dbl,y_err,(y_err*pow2(fl)),x_dbl,x_err,(x_err*pow2(fl)));
end
fprintf('\n');
```

The output table appears as follows:

NITERS	$Y(S I N)$	ERROR	LSBs	$X(C O S)$	ERROR	LSBs
-----	------	-----	----	------	-----	----
1	0.7031	0.2968	19.0	0.7031	0.7105	45.5
2	0.9375	0.0625	4.0	0.3125	0.3198	20.5
3	0.9844	0.0156	1.0	0.0938	0.1011	6.5
4	0.9844	0.0156	1.0	-0.0156	0.0083	0.5
5	1.0000	0.0000	0.0	0.0312	0.0386	2.5
6	1.0000	0.0000	0.0	0.0000	0.0073	0.5
7	1.0000	0.0000	0.0	0.0156	0.0230	1.5

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## More About

[1] Volder, JE. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. Vol. EC-8, September 1959, pp. 330-334.
[2] Andraka, R. "A survey of CORDIC algorithm for FPGA based computers." Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24, 1998, pp. 191-200.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." Hewlett-Packard Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317-325.

## Algorithms

Signal Flow Diagrams


CORDIC Rotation Kernel

$X$ represents the real part, $Y$ represents the imaginary part, and $Z$ represents theta. The accuracy of the CORDIC rotation kernel depends on the choice of initial values for $X, Y$, and $Z$. This algorithm uses the following initial values:
$z_{0}$ is initialized to the $\theta$ input argument value
$x_{0}$ is initialized to $\frac{1}{A_{N}}$
$y_{0}$ is initialized to 0

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction-Wrap
- RoundingMethod-Floor

The output has no attached fimath.

## Version History

Introduced in R2010a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.


## See Also

cordiccos | cordicsin |cordicsincos

## cordiccos

CORDIC-based approximation of cosine

## Syntax

$y=\operatorname{cordiccos}(t h e t a$, niters)

## Description

$y=$ cordiccos(theta, niters) computes the cosine of theta using a "CORDIC" on page 4-291 algorithm approximation.

## Input Arguments

## theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle values in radians. All values of theta must be real and in the range $[-2 \pi 2 \pi$ ).

## niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument. When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the maximum number of iterations is one less than the word length of theta. For floating-point operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations can produce more accurate results, but it also increases the expense of the computation and adds latency.

## Output Arguments

## y

$y$ is the CORDIC-based approximation of the cosine of theta. When the input to the function is floating point, the output data type is the same as the input data type. When the input is fixed point, the output has the same word length as the input, and a fraction length equal to the WordLength -2 .

## Examples

## Compare Results of cordiccos and cos Functions

Compare the results produced by various iterations of the cordiccos algorithm to the results of the double-precision cos function.

```
% Create 1024 points between [0,2*pi)
stepSize = pi/512;
thRadDbl = 0:stepSize:(2*pi - stepSize);
thRadFxp = sfi(thRadDbl,12); % signed, 12-bit fixed-point
```

```
cosThRef = cos(double(thRadFxp)); % reference results
% Use 12-bit quantized inputs and vary the number
% of iterations from 2 to 10.
% Compare the fixed-point CORDIC results to the
% double-precision trig function results.
for niters = 2:2:10
 cdcCosTh = cordiccos(thRadFxp,niters);
 errCdcRef = cosThRef - double(cdcCosTh);
end
figure
hold on
axis([0 2*pi -1.25 1.25]);
 plot(thRadFxp,cosThRef,'b');
 plot(thRadFxp,cdcCosTh,'g');
 plot(thRadFxp,errCdcRef,'r');
 ylabel('cos(\Theta)');
 gca.XTick = 0:pi/2:2*pi;
 gca.XTickLabel = {'0','pi/2','pi','3*pi/2','2*pi'};
 gca.YTick = -1:0.5:1;
 gca.YTickLabel = {'-1.0','-0.5','0','0.5','1.0'};
 ref_str = 'Reference: cos(double(\Theta))';
 cdc_str = sprintf('12-bit CORDIC cosine; N = %d',niters);
 err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
 legend(ref_str,cdc_str,err_str);
```



After 10 iterations, the CORDIC algorithm has approximated the cosine of theta to within 0.005187 of the double-precision cosine result.

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## More About

[1] Volder, JE. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. Vol. EC-8, September 1959, pp. 330-334.
[2] Andraka, R. "A survey of CORDIC algorithm for FPGA based computers." Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24, 1998, pp. 191-200.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." Hewlett-Packard Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317-325.

## Algorithms

Signal Flow Diagrams


CORDIC Rotation Kernel

$X$ represents the sine, $Y$ represents the cosine, and $Z$ represents theta. The accuracy of the CORDIC rotation kernel depends on the choice of initial values for $X, Y$, and $Z$. This algorithm uses the following initial values:
$z_{0}$ is initialized to the $\theta$ input argument value
$x_{0}$ is initialized to $\frac{1}{A_{N}}$
$y_{0}$ is initialized to 0

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction-Wrap
- RoundingMethod-Floor

The output has no attached fimath.

## Version History

Introduced in R2010a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.
You can generate HDL code for cordiccos function.

## See Also

cordiccexp|cordicsin|cordicsincos|sin|cos

## cordicpol2cart

CORDIC-based approximation of polar-to-Cartesian conversion

## Syntax

$[x, y]=$ cordicpol2cart(theta, $r$ )
[ $\mathrm{x}, \mathrm{y}$ ] = cordicpol2cart(theta, r, niters)
$[x, y]=$ cordicpol2cart(theta, r,Name, Value)
$[x, y]=$ cordicpol2cart(theta, r, niters, Name, Value)

## Description

$[x, y]=$ cordicpol2cart(theta, $r)$ returns the Cartesian xy coordinates of $r^{*} e^{\wedge}\left(j^{*} t h e t a\right)$ using a CORDIC algorithm approximation.
[ $\mathrm{x}, \mathrm{y}$ ] = cordicpol2cart(theta, r,niters) performs niters iterations of the algorithm.
$[x, y]=$ cordicpol2cart(theta, $r$, Name, Value) scales the output depending on the Boolean value of $b$.
[x,y] = cordicpol2cart(theta,r,niters,Name,Value) specifies both the number of iterations and Name, Value pair for whether to scale the output.

## Input Arguments

## theta

theta can be a signed or unsigned scalar, vector, matrix, or $N$-dimensional array containing the angle values in radians. All values of theta must be in the range $[-2 \pi 2 \pi)$.

## r

$r$ contains the input magnitude values and can be a scalar or have the same dimensions as theta. $r$ must be real valued.

## niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the maximum number of iterations is the word length of $r$ or one less than the word length of theta, whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations can produce more accurate results but also increases the expense of the computation and adds latency.

## ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set Scale0utput to false or 0 , the output is not scaled.

Default: true

## Output Arguments

## [ $x, y$ ]

$[x, y]$ contains the approximated Cartesian coordinates. When the input $r$ is floating point, the output $[x, y]$ has the same data type as the input.

When the input $r$ is a signed integer or fixed point data type, the outputs $[x, y$ ] are signed $f i$ objects. These fi objects have word lengths that are two bits larger than that of $r$. Their fraction lengths are the same as the fraction length of $r$.

When the input $r$ is an unsigned integer or fixed point, the outputs $[x, y]$ are signed fi objects. These fi objects have word lengths are three bits larger than that of $r$. Their fraction lengths are the same as the fraction length of $r$.

## Examples

Run the following code, and evaluate the accuracy of the CORDIC-based Polar-to-Cartesian conversion.

```
wrdLn = 16;
theta = fi(pi/3, 1, wrdLn);
u = fi(2.0, 1, wrdLn);
fprintf('\n\nNITERS\tX\t\t ERROR\t LSBs\t\tY\t\t ERROR\t LSBs\n');
fprintf('-----\t------\t -----\t ---\t\t------\t ------\t ----\n');
for niters = 1:(wrdLn - 1)
 [x_ref, y_ref] = pol2cart(double(theta),double(u));
 [x_fi, y_fi] = cordicpol2cart(theta, u, niters);
 x_dbl = double(x_fi);
 y_dbl = double(y_fi);
 x_err = abs(x_db\overline{l - x_ref);}
 y_err = abs(y_dbl - y_ref);
 fprintf('%d\t%\overline{1}.4f\t %\overline{1}.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n',...
 niters,x_dbl,x_err,(x_err * pow2(x_fi.FractionLength)),...
 y_dbl,y_err,(y_err * pow2(y_fi.FractionLength)));
end
fprintf('\n');
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline NITERS & X & ERROR & LSBs & Y & \multicolumn{2}{|l|}{ERROR LSBs} \\
\hline 1 & 1.4142 & 0.4142 & 3392.8 & 81.4142 & 20.3178 & 2603.8 \\
\hline 2 & 0.6324 & 40.3676 & 3011.2 & 21.8973 & 0.1653 & 1354.2 \\
\hline 3 & 1.0737 & 0.0737 & 603.8 & 1.6873 & 0.0448 & 366.8 \\
\hline 4 & 0.8561 & 10.1440 & 1179.2 & 21.8074 & 0.0753 & 617.2 \\
\hline 5 & 0.9672 & 0.0329 & 269.2 & 1.7505 & 0.0185 & 151.2 \\
\hline 6 & 1.0214 & 40.0213 & -174.8 & 1.7195 & -0.0126 & 102.8 \\
\hline 7 & 0.9944 & 0.0056 & 46.2 & 1.7351 & 0.0031 & 1 25.2 \\
\hline 8 & 1.0079 & 0.0079 & 64.8 & 1.7274 & 0.0046 & 37.8 \\
\hline 9 & 1.0011 & 10.0011 & 8.8 & 1.7313 & 3.0007 & 7.8 \\
\hline 10 & 0.9978 & 0.0022 & 18.21 & 1.7333 & 0.0012 & 10.2 \\
\hline 11 & 0.9994 & 0.0006 & 5.21 & 1.7323 & 0.0003 & 2.2 \\
\hline 12 & 1.0002 & 0.0002 & 1.81 & 1.7318 & 0.0002 & 1.8 \\
\hline 13 & 0.9999 & 0.0002 & 1.21 & 1.7321 & 0.0000 & 0.2 \\
\hline 14 & 0.9996 & 0.0004 & 3.21 & 1.7321 & 0.0000 & 0.2 \\
\hline 15 & 0.9998 & 0.0003 & 2.21 & 1.7321 & 0.0000 & 0.2 \\
\hline
\end{tabular}
```


## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## More About

[1] Volder, JE. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. Vol. EC-8, September 1959, pp. 330-334.
[2] Andraka, R. "A survey of CORDIC algorithm for FPGA based computers." Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24, 1998, pp. 191-200.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." Hewlett-Packard Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317-325.

## Algorithms

## Signal Flow Diagrams



CORDIC Rotation Kernel

$X$ represents the real part, $Y$ represents the imaginary part, and $Z$ represents theta. This algorithm takes its initial values for $X, Y$, and $Z$ from the inputs, $r$ and theta.

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction-Wrap
- RoundingMethod-Floor

The output has no attached fimath.

## Version History

Introduced in R2011a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.


## See Also

cordicrotate|cordicsincos|pol2cart

## cordicrotate

Rotate input using CORDIC-based approximation

## Syntax

v = cordicrotate(theta,u)
$v=$ cordicrotate(theta,u,niters)
v = cordicrotate(theta, u, Name, Value)
v = cordicrotate(theta, u, niters, Name, Value)

## Description

$v=$ cordicrotate(theta, u) rotates the input $u$ by theta using a CORDIC algorithm approximation. The function returns the result of $u .{ }^{*} e^{\wedge}\left(j^{*}\right.$ theta).
v = cordicrotate(theta,u,niters) performs niters iterations of the algorithm.
$v=$ cordicrotate(theta, $u$, Name, Value) scales the output depending on the Boolean value, $b$.
$v=$ cordicrotate(theta, u, niters, Name, Value) specifies both the number of iterations and the Name, Value pair for whether to scale the output.

## Input Arguments

## theta

theta can be a signed or unsigned scalar, vector, matrix, or $N$-dimensional array containing the angle values in radians. All values of theta must be in the range [-2п $2 \pi$ ).

## u

u can be a signed or unsigned scalar value or have the same dimensions as theta. u can be real or complex valued.

## niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the maximum number of iterations is the word length of $u$ or one less than the word length of theta, whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations can produce more accurate results, but it also increases the expense of the computation and adds latency.

## Scale0utput

Scale0utput is a Boolean value that specifies whether to scale the output by the inverse CORDIC gain factor. This argument is optional. If you set Scale0utput to true or 1 , the output values are multiplied by a constant, which incurs extra computations. If you set Scale0utput to false or 0 , the output is not scaled.

Default: true

## Output Arguments

## v

v contains the approximated result of the CORDIC rotation algorithm. When the input u is floating point, the output v has the same data type as the input.

When the input $u$ is a signed integer or fixed point data type, the output $v$ is a signed fi object. This fi object has a word length that is two bits larger than that of $u$. Its fraction length is the same as the fraction length of $u$.

When the input $u$ is an unsigned integer or fixed point, the output $v$ is a signed fi object. This $f i$ object has a word length that is three bits larger than that of $u$. Its fraction length is the same as the fraction length of $u$.

## Examples

Run the following code, and evaluate the accuracy of the CORDIC-based complex rotation.

```
wrdLn = 16;
theta = fi(-pi/3, 1, wrdLn);
u = fi(0.25 - 7.1i, 1, wrdLn);
uTeTh = double(u) .* exp(1i * double(theta));
fprintf('\n\nNITERS\tReal\t ERROR\t LSBs\t\tImag\tERROR\tLSBs\n');
fprintf('-----\t------\t -----\t ---\t\t------\t-----\t----\n');
for niters = 1:(wrdLn - 1)
 v_fi = cordicrotate(theta, u, niters);
 v_dbl = double(v_fi);
 x_err = abs(real(`v_dbl) - real(uTeTh));
 y_err = abs(imag(v_dbl) - imag(uTeTh));
 fprintf('%d\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n',...
 niters, real(v_dbl),x_err,(x_err * pow2(v_fi.FractionLength)), ...
 imag(v_dbl),y_èrr, (y_err * pow2(v_fi.FračctionLength)));
end
fprintf('\n');
```

The output table appears as follows:

NITERS	Real	ERROR	LSBs	Imag	ERROR	LSBs
1	-4.8438			-- - 1973	1.4306	
2	-4.8438	1.1800 0.6329	4833.5 2592.5	-5.1973 -2.4824	1.43065	5859.8
3	-5.8560	0.1678	687.5	-4.0227	0.2560	1048.8
4	-6.3098	0.2860	1171.5	-3.2649	0.50182	2055.2
5	-6.0935	0.0697	285.5	-3.6528	0.1138	466.2
6	-5.9766	0.0472	193.5	-3.8413	0.074630	305.8
7	-6.0359	0.0121	49.5	-3.7476	0.0191	78.2
8	-6.0061	0.0177	72.5	-3.7947	0.0280	114.8
9	-6.0210	0.0028	11.5	-3.7710	0.0043	17.8
10	-6.0286	0.0048	19.5	-3.7590	0.0076	31.2
11	-6.0247	0.0009	3.5	-3.765	10.0015	5.2
12	-6.0227	0.0011	4.5	-3.7683	0.0017	76.8
13	-6.0237	0.0001	0.5	-3.766	60.0001	10.2


14	-6.0242	0.0004	1.5	-3.7656	0.0010	4.2
15	-6.0239	0.0001	0.5	-3.7661	0.0005	2.2

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## More About

[1] Volder, JE. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. Vol. EC-8, September 1959, pp. 330-334.
[2] Andraka, R. "A survey of CORDIC algorithm for FPGA based computers." Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24, 1998, pp. 191-200.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." Hewlett-Packard Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317-325.

## Algorithms

## Signal Flow Diagrams



CORDIC Rotation Kernel

$X$ represents the real part, $Y$ represents the imaginary part, and $Z$ represents theta. This algorithm takes its initial values for $X, Y$, and $Z$ from the inputs, $u$ and theta.

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction-Wrap
- RoundingMethod-Floor

The output has no attached fimath.

## Version History

Introduced in R2011a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.


## See Also

cordicpol2cart|cordiccexp

## cordicsin

CORDIC-based approximation of sine

## Syntax

$y=\operatorname{cordicsin}(t h e t a)$
$y=$ cordicsin(theta, niters)

## Description

$y=$ cordicsin(theta) computes the sine of theta using a CORDIC algorithm approximation.
$y=$ cordicsin(theta, niters) computes the sine of theta using a CORDIC algorithm approximation with specified number of iterations, niters.

## Examples

## Compare Results of cordicsin and sin Functions

This example compares the results produced by the cordicsin algorithm to the results of the double-precision sin function.

Create 1024 points between [0, 2*pi).
stepSize = pi/512;
thRadDbl = 0:stepSize:(2*pi - stepSize);
thRadFxp $=$ sfi(thRadDbl,12); $\quad \%$ signed, 12 -bit fixed point
sinThRef $=$ sin(double(thRadFxp)); \% reference results
Set the number of iterations to 10 .

```
niters = 10;
cdcSinTh = cordicsin(thRadFxp,niters);
errCdcRef = sinThRef - double(cdcSinTh);
```

Compare the fixed-point cordicsin function results to the results of the double-precision sin function.

```
figure
hold on
axis([0 2*pi -1.25 1.25])
plot(thRadFxp,sinThRef,'b');
plot(thRadFxp,cdcSinTh,'g');
plot(thRadFxp,errCdcRef,'r');
ylabel('sin(\Theta)');
gca.XTick = 0:pi/2:2*pi;
gca.XTickLabel = {'0','pi/2','pi','3*pi/2','2*pi'};
gca.YTick = -1:0.5:1;
gca.YTickLabel = {'-1.0','-0.5','0','0.5','1.0'};
ref_str = 'Reference: sin(double(\Theta))';
cdc_str = sprintf('12-bit CORDIC sine; N = %d',niters);
```

```
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
legēnd(ref_str,cdc_str,err_str);
```



After 10 iterations, the CORDIC algorithm has approximated the sine of theta to within 0.005492 of the double-precision sine result.

## Input Arguments

## theta - Input angle in radians

scalar | vector | matrix | multidimensional array
Input angle in radians, specified as a signed or unsigned scalar, vector, matrix, or multidimensional array. All values of theta must be real and in the range $[-2 \pi 2 \pi$ ).

## niters - Number of iterations

positive integer-valued scalar
Number of iterations the CORDIC algorithm performs, specified as a positive, integer-valued scalar.
If you do not specify niters, or if you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the maximum number of iterations is one less than the word length of theta. For floating-point operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations can produce more accurate results, but it also increases the expense of the computation and adds latency.

## Output Arguments

## y - CORDIC-based approximation of sine

scalar | vector | matrix | multidimensional array
CORDIC-based approximation of sine of theta, returned as a scalar, vector, matrix, or multidimensional array.

When the input to the function is floating point, the output data type is the same as the input data type. When the input is fixed point, the output has the same word length as the input, and a fraction length equal to the WordLength -2 .

## Algorithms

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## Signal Flow Diagrams



CORDIC Rotation Kernel

$X$ represents the sine, $Y$ represents the cosine, and $Z$ represents theta. The accuracy of the CORDIC rotation kernel depends on the choice of initial values for $X, Y$, and $Z$. This algorithm uses the following initial values:
$z_{0}$ is initialized to the $\theta$ input argument value
$x_{0}$ is initialized to $\frac{1}{A_{N}}$
$y_{0}$ is initialized to 0

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction-Wrap
- RoundingMethod-Floor

The output has no attached fimath.

## Version History

Introduced in R2010a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.
You can generate HDL code for cordicsin function.

## See Also

cordiccexp|cordiccos|cordicsincos | sin |cos

## cordicsincos

CORDIC-based approximation of sine and cosine

## Syntax

$[y, x]=$ cordicsincos(theta)
$[y, x]=$ cordicsincos(theta,niters)

## Description

$[y, x]=$ cordicsincos(theta) computes the sine and cosine of theta using a CORDIC algorithm approximation. $y$ contains the approximated sine result, and $x$ contains the approximated cosine result.
[ $y, x]=$ cordicsincos(theta,niters) performs the number of CORDIC algorithm iterations specified by niters.

## Examples

## Compare Accuracy of CORDIC Sine and Cosine Results

View the effect of the number of iterations on the result of the CORDIC approximation of sine and cosine.

```
wordlength = 8;
theta = fi(pi/2,1,wordlength);
fprintf('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (COS)\t ERROR\t LSBs\n');
fprintf('-----\t\t------\t -----\t ----\t\\t------\t ------\t ----\n');
for niters = 1:(wordlength - 1)
 [y,x] = cordicsincos(theta,niters);
 y_FL = y.FractionLength;
 y_dbl = double(y);
 x_dbl = double(x);
 y_err = abs(y_dbl - sin(double(theta)));
 x_err = abs(x_dbl - cos(double(theta)));
 f\overline{p}rintf(' %d\t\\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n', ...
 niters,y_dbl,y_err,(y_err*pow2(y_FL)),x_dbl,x_err, ...
 (x_err*pow2(y_FL)));
end
fprintf('\n');
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline NITERS & & & & LSBs & X & ER & LSBs \\
\hline 1 & 0.7031 & 0.2968 & 19.0 & & -0.7031 & 0.6958 & 44.5 \\
\hline 2 & 0.9375 & 0.0625 & 4.0 & & -0.3125 & 0.3052 & 19.5 \\
\hline 3 & 0.9688 & 0.0312 & 2.0 & & -0.0625 & 0.0552 & 3.5 \\
\hline
\end{tabular}
```

4	0.9688	0.0312	2.0	0.0625	0.0698	4.5
5	0.9844	0.0156	1.0	0.0000	0.0073	0.5
6	0.9844	0.0156	1.0	0.0312	0.0386	2.5
7	1.0000	0.0000	0.0	0.0156	0.0230	1.5

## Input Arguments

## theta - Input angle in radians

scalar | vector | matrix | multidimensional array
Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array. All theta values must be in the range $\left[-2 * \mathrm{pi}, 2^{*} \mathrm{pi}\right)$. When theta has a fixed-point data type, it must be signed.

## niters - Number of iterations CORDIC algorithm performs

positive integer-valued scalar
Number of iterations the CORDIC algorithm performs, specified as a positive integer-valued scalar.
If you do not specify niters or if you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the maximum number of iterations is one less than the word length of theta. For floating-point operation, the maximum value is 52 for double or 23 for single.

Increasing the number of iterations can produce more accurate results but also increases the expense of the computation and adds latency.

## Output Arguments

y - CORDIC-based approximated sine of theta
scalar | vector | matrix | multidimensional array
CORDIC-based approximated sine of theta, returned as a scalar, vector, matrix, or multidimensional array. When the input to the function is floating point, the output data type is the same as the input data type. When the input is fixed point, the output has the same word length as the input and a fraction length equal to the Wordlength - 2.
x - CORDIC-based approximated cosine of theta
scalar | vector | matrix | multidimensional array
CORDIC-based approximated cosine of theta, returned as a scalar, vector, matrix, or multidimensional array. When the input to the function is floating point, the output data type is the same as the input data type. When the input is fixed point, the output has the same word length as the input and a fraction length equal to the Wordlength - 2.

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see "References" on page 4-316). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine,
arcsine, arccosine, arctangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results but also increases the expense of the computation and adds latency.

## Algorithms

## Signal Flow Diagrams



CORDIC Rotation Kernel

$X$ represents the sine, $Y$ represents the cosine, and $Z$ represents theta. The accuracy of the CORDIC rotation kernel depends on the choice of initial values for $X, Y$, and $Z$. This algorithm uses these initial values:
$z_{0}$ is initialized to the $\theta$ input argument value
$x_{0}$ is initialized to $\frac{1}{A_{N}}$
$y_{0}$ is initialized to 0

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction - Wrap
- RoundingMethod - Floor

The output has no attached fimath.

## Version History

## Introduced in R2010a

## References

[1] Volder, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. EC-8, no. 3 (Sept. 1959): 330-334.
[2] Andraka, Ray. "A Survey of CORDIC Algorithm for FPGA Based Computers." In Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, 191-200. https://dl.acm.org/doi/10.1145/275107.275139.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." In Proceedings of the May 18-20, 1971 Spring Joint Computer Conference, 379-386. https://dl.acm.org/doi/ 10.1145/1478786.1478840.
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly, no. 5 (May 1983): 317-325. https://doi.org/10.2307/2975781.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.


## See Also

cordiccexp|cordiccos | cordicsin

## cordicsqrt

CORDIC-based approximation of square root

## Syntax

y=cordicsqrt(u)
y=cordicsqrt(u, niters)
y=cordicsqrt(__, 'ScaleOutput', B)

## Description

$y=$ cordicsqrt ( $u$ ) computes the square root of $u$ using a CORDIC algorithm implementation.
$y=$ cordicsqrt(u, niters) computes the square root of $u$ by performing niters iterations of the CORDIC algorithm.
y=cordicsqrt( __, 'ScaleOutput', B) scales the output depending on the Boolean value of B.

## Examples

## Calculate the CORDIC Square Root

Find the square root of $f i$ object $x$ using a CORDIC implementation.

```
x = fi(1.6,1,12);
y = cordicsqrt(x)
y =
 1.2646
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 10
```

Because you did not specify niters, the function performs the maximum number of iterations, x.WordLength - 1 .

Compute the difference between the results of the cordicsqrt function and the double-precision sqrt function.

```
err = abs(sqrt(double(x))-double(y))
err = 1.0821e-04
```


## Calculate the CORDIC Square Root With a Specified Number of Iterations

Compute the square root of x with three iterations of the CORDIC kernel.

```
x = fi(1.6,1,12);
y = cordicsqrt(x,3)
y =
 1.2646
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 10
```

Compute the difference between the results of the cordicsqrt function and the double-precision sqrt function.

```
err = abs(sqrt(double(x))-double(y))
err = 1.0821e-04
```


## Calculate the CORDIC Square Root Without Scaling the Output

```
x = fi(1.6,1,12);
y = cordicsqrt(x, 'ScaleOutput', 0)
y =
 1.0479
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 10
```

The output, y , was not scaled by the inverse CORDIC gain factor.

## Compare Results of cordicsqrt and sqrt Functions

Compare the results produced by 10 iterations of the cordicsqrt algorithm to the results of the double-precision sqrt function.

```
% Create 500 points between [0, 2)
stepSize = 2/500;
XDbl = 0:stepSize:2;
XFxp = fi(XDbl, 1, 12); % signed, 12-bit fixed-point
sqrtXRef = sqrt(double(XFxp)); % reference results
% Use 12-bit quantized inputs and set the number
% of iterations to 10.
% Compare the fixed-point CORDIC results to the
% double-precision sqrt function results.
niters = 10;
cdcSqrtX = cordicsqrt(XFxp, niters);
errCdcRef = sqrtXRef - double(cdcSqrtX);
figure
```

```
hold on
axis([0 2 -. 5 1.5])
plot(XFxp, sqrtXRef, 'b')
plot(XFxp, cdcSqrtX, 'g')
plot(XFxp, errCdcRef, 'r')
ylabel('Sqrt(x)')
gca.XTick = 0:0.25:2;
gca.XTickLabel = {'0','0.25','0.5','0.75','1','1.25','1.5','1.75','2'};
gca.YTick = -.5:.25:1.5;
gca.YTickLabel = {'-0.5','-0.25','0','0.25','0.5','0.75','1','1.25','1.5'};
ref_str = 'Reference: sqrt(double(X))';
cdc_str = sprintf('12-bit CORDIC square root; N = %d', niters);
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
legēnd(ref_str, cdc_str, err_str, 'Location', 'southeast')
```



## Input Arguments

## u - Data input array

scalar \| vector $\mid$ matrix $\mid$ multidimensional array
Data input array, specified as a positive scalar, vector, matrix, or multidimensional array of fixed-point or built-in data types. When the input array contains values between 0.5 and 2 , the algorithm is most accurate. A pre- and post-normalization process is performed on input values outside of this range. For more information on this process, see "Pre- and Post-Normalization" on page 4-322.

Data Types: fi|single | double | int8|int16|int32|int64|uint8|uint16|uint32| uint64

## niters - Number of iterations

scalar
The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the default value of niters is u.WordLength - 1. For floating-point inputs, the default value of niters is 52 for double precision; 23 for single precision.

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

## ScaleOutput - Whether to scale the output

true (default) | false
Boolean value that specifies whether to scale the output by the inverse CORDIC gain factor. If you set Scale0utput to true or 1, the output values are multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0, the output is not scaled.

Data Types: logical

## Output Arguments

y - Output array
scalar | vector | matrix | multidimensional array
Output array, returned as a scalar, vector, matrix, or multidimensional array.

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## Algorithms

## Signal Flow Diagrams



For further details on the pre- and post-normalization process, see "Pre- and Post-Normalization" on page 4-322.

## CORDIC Hyperbolic Kernel


$X$ is initialized to $\mathrm{u}^{\prime}+.25$, and $Y$ is initialized to $\mathrm{u}^{\prime}-.25$, where $\mathrm{u}^{\prime}$ is the normalized function input.
With repeated iterations of the CORDIC hyperbolic kernel, $X$ approaches $A_{N} \sqrt{u^{\prime}}$, where $A_{N}$ represents the CORDIC gain. $Y$ approaches 0 .

## Pre- and Post-Normalization

For input values outside of the range of $[0.5,2$ ) a pre- and post-normalization process occurs. This process performs bitshifts on the input array before passing it to the CORDIC kernel. The result is then shifted back into the correct output range during the post-normalization stage. For more details on this process see "Overcoming Algorithm Input Range Limitations" in "Compute Square Root Using CORDIC".

## fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

- OverflowAction-Wrap
- RoundingMethod-Floor

The output has no attached fimath.

## Version History

## Introduced in R2014a

## References

[1] Volder, JE. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers. Vol. EC-8, September 1959, pp. 330-334.
[2] Andraka, R. "A survey of CORDIC algorithm for FPGA based computers." Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24, 1998, pp. 191-200.
[3] Walther, J.S. "A Unified Algorithm for Elementary Functions." Hewlett-Packard Company, Palo Alto. Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf
[4] Schelin, Charles W. "Calculator Function Approximation." The American Mathematical Monthly. Vol. 90, No. 5, May 1983, pp. 317-325.

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Variable-size signals are not supported.
- The number of iterations the CORDIC algorithm performs, niters, must be a constant.


## See Also

sqrt

## Topics

"Compute Square Root Using CORDIC"

## cordictanh

CORDIC-based hyperbolic tangent

## Syntax

$\mathrm{T}=$ cordictanh (theta)
$\mathrm{T}=$ cordictanh(theta, niters)

## Description

$\mathrm{T}=$ cordictanh(theta) returns the hyperbolic tangent of theta.
$\mathrm{T}=$ cordictanh (theta, niters) returns the hyperbolic tangent of theta by performing niters iterations of the CORDIC algorithm.

## Examples

## Compute CORDIC Hyperbolic Tangent

Find the hyperbolic tangent of fi object theta using a CORDIC implementation with the default number of iterations.

```
theta = fi(-2*pi:.1:2*pi-.1);
T_cordic = cordictanh(theta);
```

Plot the hyperbolic tangent of theta using the tanh function and its CORDIC approximation.

```
T = tanh(double(theta));
plot(theta, T_cordic);
hold on;
plot(theta, T);
legend('CORDIC approximation of tanh', 'tanh');
xlabel('theta');
ylabel('tanh(theta)');
```



Compute the difference between the results of the cordictanh function and the tanh function.
figure;
err = abs(T - double(T_cordic));
plot(theta, err);
xlabel('theta');
ylabel('error');


## Compute CORDIC Hyperbolic Tangent with Specified Number of Iterations

Find the hyperbolic tangent of fi object theta using a CORDIC implementation and specify the number of iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the hyperbolic tangent of theta with varying numbers of iterations.

```
theta = fi(-2*pi:.1:2*pi-.1);
for niters = 5:10:25
T_cordic = cordictanh(theta,niters);
plot(theta,T_cordic);
hold on;
end
xlabel('theta');
ylabel('tanh(theta)');
legend('5 iterations','15 iterations',...
 '25 iterations','Location','southeast');
```



## Input Arguments

## theta - angle values

scalar | vector | matrix | n-dimensional array
Angle values in radians specified as a scalar, vector, matrix, or N-dimensional array.
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi

## niters - Number of iterations

scalar
The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the default value of niters is one less than the word length of the input array, theta. For doubleprecision inputs, the default value of niters is 52 . For single-precision inputs, the default value is 23.

Data Types: single | double | int8 | int16| int32 | int64 | uint8|uint16|uint32|uint64 | fi

## Output Arguments

## T - Output array

scalar | vector $\mid$ matrix $\mid$ n-dimensional array
T is the CORDIC-based approximation of the hyperbolic tangent of theta. When the input to the function is floating point, the output data type is the same as the input data type. When the input is fixed point, the output has the same word length as the input, and a fraction length equal to the WordLength - 2 .

## Version History

Introduced in R2017b

## See Also

cordicatan2|cordicsin|cordiccos|tanh

## COS

Package: embedded
Cosine of fi object in radians

## Syntax

$Y=\cos (X)$

## Description

$Y=\cos (X)$ returns the cosine for each element of fi input $X$ using an 8-bit lookup table algorithm.

## Examples

## Cosine of Fixed-Point Angles

Calculate the cosine of fixed-point input values.
$X=\mathrm{fi}([0, \mathrm{pi} / 4, \mathrm{pi} / 3, \mathrm{pi} / 2,(2 * \mathrm{pi}) / 3,(3 * \mathrm{pi}) / 4, \mathrm{pi}])$
$X=$
$\begin{array}{lllllll}0 & 0.7854 & 1.0472 & 1.5708 & 2.0944 & 2.3562 & 3.1416\end{array}$
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 13
$Y=\cos (X)$
$Y=$
$\begin{array}{lllllll}1.0000 & 0.7072 & 0.4999 & 0.0001 & -0.4999 & -0.7070 & -1.0000\end{array}$
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 15

## Input Arguments

$X$ - Input angle in radians
scalar | vector | matrix | multidimensional array
Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array.
$X$ can be a real-valued, signed or unsigned:

- fi single
- fi double
- fi fixed-point with binary-point scaling
- fi scaled double with binary-point scaling

Example: $X=$ fi([pi pi/6],1,8);
Data Types: fi

## Output Arguments

## Y - Cosine of input angle

scalar | vector | matrix | multidimensional array
Cosine of input angle, returned as a real-valued fi scalar, vector, matrix, or multidimensional array.

## More About

## Cosine

The cosine of angle $\Theta$ is defined as

$$
\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2}
$$

## Algorithms

The cos function computes the cosine of fixed-point input using an 8-bit lookup table as follows:
1 Perform a modulo $2 \pi$, so the input is in the range $[0,2 \pi)$ radians.
2 Cast the input to a 16-bit stored integer value, using the 16 most-significant bits.
3 Compute the table index, based on the 16-bit stored integer value, normalized to the full uint 16 range.
4 Use the 8 most-significant bits to obtain the first value from the table.
5 Use the next-greater table value as the second value.
6 Use the 8 least-significant bits to interpolate between the first and second values, using nearestneighbor linear interpolation.

## fimath Propagation Rules

The cos function ignores and discards any fimath attached to the input, $X$. The output, $Y$, is always associated with the default fimath.

## Version History

Introduced in R2012a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.

## See Also

cos | angle | sin | atan2|cordiccos |cordicsin

## ctranspose

Complex conjugate transpose of fi object

## Syntax

ctranspose(a)

## Description

This function accepts fi objects as inputs.
ctranspose (a) returns the complex conjugate transpose of fi object $a$. It is also called for the syntaxa'.

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## CustomFloat

Numeric object with a custom floating-point data type

## Description

Use a CustomFloat object to define a floating-point numeric data type with specified word length and mantissa length. Floating-point data types defined by a CustomFloat object adhere to the IEEE 754-2008 standard. For more information on floating-point data types, see "Floating-Point Numbers".

## Creation

## Syntax

$\mathrm{x}=$ CustomFloat(v)
$\mathrm{x}=$ CustomFloat(v, type)
x = CustomFloat(v, WordLength, MantissaLength)
x = CustomFloat(v, WordLength, MantissaLength, 'typecast')
x = CustomFloat(cf)

## Description

$x=$ CustomFloat (v) returns a CustomFloat object with value $v$. The output object has the same word length, mantissa length, and exponent length as input v .
$x=$ CustomFloat (v, type) returns a CustomFloat object with value $v$ and floating-point type specified by type.
$\mathrm{x}=$ CustomFloat(v, WordLength, MantissaLength) returns a CustomFloat object with the specified word length and mantissa length.
$\mathrm{x}=$ CustomFloat(v, WordLength, MantissaLength, 'typecast') returns a CustomFloat object with the bit pattern of $v$ and the specified mantissa length. The word length must match the word length of the input v .
$x=$ CustomFloat (cf) returns a CustomFloat object with value and data type properties of CustomFloat object cf.

## Input Arguments

## v - Value of object

scalar | vector | matrix | multi-dimensional array
The value of the CustomFloat object, specified as a scalar, vector, matrix, or multi-dimensional array.
Data Types: half | single | double | int8 | int16|int32|int64|uint8|uint16|uint32| uint64|fi

## type - Floating-point type of object

'double'| 'single'|'half'
Floating-point data type of CustomFloat object, specified as either 'double', 'single', or 'half'.

The properties of these types are summarized in the following table.

Type	Word Length	Mantissa Length
double	64	52
single	32	23
half	16	10

Data Types: char
cf - Custom floating-point type
CustomFloat object
Custom floating-point type, specified as a CustomFloat object.

## Properties

## ExponentBias - Offset value for the exponent

scalar integer
Scalar integer representing the offset value for the exponent.
This property cannot be changed directly, however you can change this property by changing the WordLength and MantissaLength properties, which influence the ExponentLength property. The ExponentBias for a floating-point data type is computed through the following equation:

ExponentBias $=2^{e-1}-1$
where $e$ represents the ExponentLength.
Data Types: double

## ExponentLength - Number of bits representing the exponent <br> scalar integer less than 31

Number of bits representing the exponent. You cannot edit this property directly, however you can change the exponent length by changing the MantissaLength and WordLength properties.

The ExponentLength, MantissaLength, and WordLength properties are related through the following equation:

WordLength $=1+$ MantissaLength + ExponentLength
ExponentLength must be less than 31 bits.
Data Types: double
MantissaLength - Number of bits representing the mantissa
scalar integer

Number of bits representing the mantissa, specified as a scalar integer.
The ExponentLength, MantissaLength, and WordLength properties are related through the following equation.

WordLength $=1+$ MantissaLength + ExponentLength

Note ExponentLength must be less than 31 bits.

Example: custfloat.MantissaLength = 14;
Data Types: single |double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi

## WordLength - Total number of bits in the data type

scalar integer
Total number of bits in the data type, specified as a scalar integer.
The ExponentLength, MantissaLength, and WordLength properties are related through the following equation.

WordLength $=1+$ MantissaLength + ExponentLength

Note ExponentLength must be less than 31 bits.

Example: custfloat.WordLength $=28$;
Data Types: single | double | int8 | int16|int32 | int64 | uint8 | uint16 | uint32 | uint64 | fi

## Object Functions

## Math and Arithmetic

abs	Absolute value and complex magnitude
ceil	Round toward positive infinity
complex	Create complex array
conj	Complex conjugate
cosh	Hyperbolic cosine
exp	Exponential
fix	Round toward zero
floor	Round toward negative infinity
fma	Multiply and add using fused multiply add approach
hypot	Square root of sum of squares (hypotenuse)
ldivide	Left array division
log	Natural logarithm
log2	Base 2 logarithm and floating-point number dissection
log10	Common logarithm (base 10)
minus	Subtraction
mod	Remainder after division (modulo operation)


mtimes	Matrix multiplication
ndims	Number of array dimensions
plus	Add numbers, append strings
pow10	Base 10 power and scale half-precision numbers
pow2	Base 2 exponentiation and scaling of floating-point numbers
power	Element-wise power
rdivide	Right array division
real	Real part of complex number
rem	Remainder after division
round	Round to nearest decimal or integer
rsqrt	Reciprocal square root
sqrt	Square root
tanh	Hyperbolic tangent
times	Multiplication
uminus	Unary minus
uplus	Unary plus

## Data Types

bin Unsigned binary representation of stored integer of fi object
double Double-precision arrays
fi Construct fixed-point numeric object
int8 8-bit signed integer arrays
int16 16-bit signed integer arrays
int32 32-bit signed integer arrays
int64 64-bit signed integer arrays
isnan Determine which array elements are NaN
isreal Determine whether array uses complex storage
single Single-precision arrays
uint8 8 -bit unsigned integer arrays
uint16 16-bit unsigned integer arrays
uint32 32-bit unsigned integer arrays
uint64 64-bit unsigned integer arrays

## Relational and Logical Operators

eq Determine equality
ge Determine greater than or equal to
gt Determine greater than
le Determine less than or equal to
lt Determine less than
ne Determine inequality

Array and Matrix Operations	
cat	Concatenate arrays
ctranspose	Complex conjugate transpose
horzcat	Concatenate arrays horizontally
isfinite	Determine which array elements are finite   isinf
Determine which array elements are infinite	
norm	Vector and matrix norms
numel	Number of array elements
reshape	Reshape array

```
size Array size
transpose Transpose vector or matrix
vertcat Concatenate arrays vertically
```


## Language Fundamentals

disp Display value of variable

## Examples

## Create a CustomFloat Object

This example shows how to create a CustomFloat object.

```
v = pi;
x = CustomFloat(v)
x =
 3.1416
 Data Type: Floating-point: Double-precision
 WordLength: 64
 MantissaLength: 52
 ExponentLength: 11
 ExponentBias: 1023
```

Because the input to the CustomFloat constructor was a double, the data type of the CustomFloat object, $x$, is also a double. If the value passed in to the CustomFloat function is a single, then the resulting CustomFloat object will also have a single-precision floating-point data type.

```
v = single(pi);
x = CustomFloat(v)
X =
 3.1416
```

            Data Type: Floating-point: Single-precision
            WordLength: 32
        MantissaLength: 23
        ExponentLength: 8
            ExponentBias: 127
    
## Create a Half-Precision CustomFloat Object

To create a CustomFloat object with a specified floating-point data type, specify the data type as the second argument in the CustomFloat function.

```
v = pi;
x = CustomFloat(v,'half')
x =
 3.1406
```

```
 Data Type: Floating-point: Half-precision
 WordLength: 16
MantissaLength: 10
ExponentLength: 5
 ExponentBias: 15
```


## Create a CustomFloat Object with Specified Word Length and Mantissa Length

Specify a word length and a mantissa length in the CustomFloat function.

```
v = pi;
wl = 16;
ml = 4;
x = CustomFloat(v,wl,ml)
X =
 3.1250
 Data Type: Floating-point: Custom-precision
 WordLength: }1
 MantissaLength: 4
 ExponentLength: 11
 ExponentBias: 1023
```

Compare the difference between the double-precision value and the value of the CustomFloat object as you change the mantissa length.

```
err = zeros(1,12);
for ml = 1:12
 x = CustomFloat(v,wl,ml);
 err(ml) = v-double(x);
end
plot(err);
title('Error: v - double(x)');
ylabel('Error');
xlabel('Mantissa Length');
```



## Typecast a Value to a New CustomFloat Data Type

Using the 'typecast ' input argument, the CustomFloat function creates a CustomFloat object with the bit pattern of the input value, and the specified word length and mantissa length.

Define a single-precision value. Single-precision floating-point data types have a 32 -bit word length and 23 -bit mantissa length. View the binary representation of the single-precision value.

```
v = single(pi);
bit_pattern = bin(CustomFloat(v))
bit_pattern =
'01000000010010010000111111011011'
```

Define a CustomFloat object that has the same bit pattern as the input value, but has a different mantissa length.

```
x = CustomFloat(v, 32, 20, 'typecast')
x =
 50.1239
```

        Data Type: Floating-point: Custom-precision
        WordLength: 32
    ```
MantissaLength: 20
ExponentLength: 11
 ExponentBias: 1023
```

View the binary representation of the CustomFloat object, and compare it to the bit pattern of the single-precision input value.

```
bit_pattern2 = bin(x)
bit_pattern2 =
'01000000010010010000111111011011'
same = strcmp(bit_pattern, bit_pattern2)
same = logical
 1
```


## Limitations

The following functions, which support custom floating-point inputs, do not support complex custom floating-point inputs.

- ceil
- cosh
- exp
- fix
- floor
- ge
- gt
- hypot
- le
- log
- log10
- log2
- lt
- mod
- pow10
- pow2
- power
- rem
- round
- rsqrt
- sqrt
- tanh


## Version History

Introduced in R2020a

See Also<br>half|single|double<br>Topics<br>"Floating-Point Numbers"

# DataTypeWorkflow.findDecoupledSubsystems 

Get a list of subsystems to replace with an approximation

## Syntax

systemsToApproximate = DataTypeWorkflow.findDecoupledSubsystems(system)

## Description

systemsToApproximate = DataTypeWorkflow.findDecoupledSubsystems(system)returns a table containing all of the subsystems in the system specified by system created by the Fixed-Point Tool during the preparation stage of conversion.

When converting a model to fixed point using the Fixed-Point Tool, when you click Prepare, the tool finds any blocks that are not supported for conversion. When the tool finds these blocks, it isolates the block by placing it in a subsystem surrounded by Data Type Conversion blocks. After converting the rest of the system to fixed point, use this function to get a list of all the subsystems you must replace. You can use the Lookup Table Optimizer to generate a lookup table approximation of the subsystems containing the unsupported blocks.

## Examples

## Replace Unsupported Blocks with a Lookup Table Approximation

In this example, you replace a block that is not supported for fixed-point conversion, with a lookup table approximation.

Open the model.

```
open_system('ex_fixed_point_workflow_lutapprox')
```



The Controller Subsystem in the model uses fixed-point data types, except in the Exp subsystem. This subsystem was created by the Fixed-Point Tool during the preparation stage of the conversion. In this example, you use the Lookup Table Optimizer to replace this subsystem with a lookup table approximation.


Identify the subsystems that you need to replace using the DataTypeWorkflow. findDecoupledSubsystems function.

```
decoupled = DataTypeWorkflow.findDecoupledSubsystems(gcs)
decoupled =
 1x2 table
 ID
 BlockPath
 1 {'ex_fixed_point_workflow_lutapprox/Controller Subsystem/Exp'}
```

To replace the functions, open the Lookup Table Optimizer. In the Simulink Apps tab, select Lookup Table Optimizer.

On the Objective page of the Lookup Table Optimizer, select Simulink Block. Click Next.
Under Block Information, copy and paste the path to the decoupled subsystem created by the Fixed-Point Tool.


Continue through the steps of the Lookup Table Optimizer to generate the lookup table approximation.


## Input Arguments

system - System containing the decoupled subsystems
character vector
System containing the decoupled subsystems, specified as a character vector.

## Output Arguments

systemsToApproximate - Subsystems to approximate with a lookup table table

A list of the subsystems decoupled from the model by the Fixed-Point Tool to approximate, returned as a table.

## Version History

Introduced in R2019a

## See Also

DataTypeWorkflow. Converter | Lookup Table Optimizer
Topics
"Convert Floating-Point Model to Fixed Point"
"Use the Fixed-Point Tool to Prepare a System for Conversion"

## dec

Package: embedded
Unsigned decimal representation of stored integer of fi object

## Syntax

b $=\operatorname{dec}(a)$

## Description

$b=\operatorname{dec}(a)$ returns the stored integer of fi object $a$ in unsigned decimal format as a character vector.

Fixed-point numbers can be represented as

$$
\text { real-worldvalue }=2^{- \text {fractionlength }} \times \text { storedinteger }
$$

or, equivalently as
real-worldvalue $=($ slope $\times$ storedinteger $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.

## Examples

## View Stored Integer of fi Object in Unsigned Decimal Format

Create a signed fi object with values -1 and 1 , a word length of 8 bits, and a fraction length of 7 bits.

```
a = fi([-1 1], 1, 8, 7)
a =
 1.0000 0.9922
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: }
```

Find the unsigned decimal representation of the stored integers of $f i$ object a.

```
b = dec(a)
b =
 '128 127'
```


## Input Arguments

a - Input array
fi object
Input array, specified as a fi object.
Data Types: fi

## Version History

Introduced before R2006a

## See Also

bin |hex|storedInteger|oct|sdec|dec2hex|dec2base|dec2bin

## dec2base

Package: embedded
Convert decimal integer to its base-n representation for fi objects

## Syntax

```
baseStr = dec2base(D,n)
```

baseStr = dec2base( $\mathrm{D}, \mathrm{n}$, minDigits)

## Description

baseStr $=\operatorname{dec} 2$ base $(D, n)$ returns a base- $n$ representation of the decimal integer $D$. The output argument baseStr is a character array that represents digits using numeric characters, and, when $n$ is greater than 10 , letters. For example, if $n$ is 12 , the dec2base represents the numbers 9,10 , and 11 using the characters $9, A$ and $B$, and represents the number 12 as the character sequence 10 .
baseStr = dec2base( $D, n$, minDigits) returns a base- $n$ representation of $D$ with no fewer than minDigits digits.

Tip dec2base returns the base-n representation of the real-world value of the values contained in fi object D.

## Examples

## Convert Decimal Number

Convert a decimal number to a character vector that represents its value in base 3 .

```
D = fi(23);
baseStr = dec2base(D,3)
baseStr =
 '212'
```

Convert a decimal number to a character vector that represents its value in base 12. In this base system, the characters ' A ' and ' B ' represent the numbers denoted as 10 and 11 in base 10 .

D = fi(23);
baseStr = dec2base(D,12)
baseStr =
'1B'

## Specify Number of Digits

Specify the number of base-3 digits that dec2base returns. If you specify more digits than are required, then dec2base pads the output with leading zeros.

```
D = fi(23);
baseStr = dec2base(D,3,5)
baseStr =
 '00212'
```


## Convert Upperbound of fi Object

Convert the upper bound of a signed fi object with 100-bit word length to base 36 representation.

```
baseStr = dec2base(upperbound(fi([],1,100,0)),36)
baseStr =
```

'1PG70T050BLA0IQ8FPQ7'

## Input Arguments

## D - Input array

fi array of nonnegative numbers
Input array, specified as a fi array of nonnegative numbers.
$D$ must contain finite integers. If any element of $D$ has a fractional part, then dec2base produces an error. For example, dec2base(fi(10),8) converts fi(10) to ' 12 ', but dec2base(fi(10.5), 8) produces an error.
Data Types: fi

## n - Base of output representation

integer between 2 and 36
Base of output representation, specified as an integer between 2 and 36 . For example, if $n$ is 8 , then the output represents base-8 numbers.

## minDigits - Minimum number of digits in output

positive integer
Minimum number of digits in the output, specified as a positive integer.

- If $D$ can be represented with fewer than minDigits digits, then dec2base pads the output with leading zeros.
- If $D$ is so large that it must be represented with more than minDigits digits, then dec2base returns the output with as many digits as required.


## Version History <br> Introduced in R2021b

## Extended Capabilities

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\text {TM }}$.
Slope-bias representation is not supported.

## See Also

fi|dec2bin|dec2hex|bin|dec|oct|hex

## dec2bin

Package: embedded
Convert decimal integer to its binary representation for fi objects

## Syntax

binStr = dec2bin(D)
binStr = dec2bin(D,minDigits)

## Description

binStr $=\operatorname{dec} 2 \operatorname{bin}(\mathrm{D})$ returns the binary, or base-2, representation of the decimal integer D . The output argument binStr is a character vector that represents binary digits using the characters 0 and 1.
binStr = dec2bin(D,minDigits) returns a binary representation with no fewer than minDigits digits.

Tip dec2bin returns the binary representation of the real-world value of the fi object D . To obtain the binary representation of the stored integer value, use bin instead.

## Examples

## Convert Decimal Number

Convert a decimal number stored as a fi object to a character vector that represents its binary value.

```
D1 = fi(2748);
D2 = fi(251);
binStr1 = dec2bin(D1)
binStr2 = dec2bin(D2)
binStr1 =
 '101010111100'
binStr2 =
 '11111011'
```

The dec2bin function converts negative numbers using their two's complement binary values.
D3 $=\mathrm{fi}(-5)$;
binStr3 = dec2bin(D3)

```
binStr3 =
```

'11111011'

## Specify Minimum Number of Digits

Convert the decimal number stored as a fi object to binary representation. Specify the minimum number of binary digits that dec2bin returns. If you specify more digits than are required, then dec2bin pads the output.

D = fi(2748);
binStr $=\operatorname{dec} 2 b i n(D, 16)$
binStr =
'0000101010111100'
If you specify fewer digits, then dec2bin still returns as many binary digits as required to represent the input number.

```
binStr = dec2bin(D,8)
binStr =
 '101010111100'
```


## Convert Numeric Array

Create a numeric fi array.

```
D = fi([1023 122 14]);
```

To represent the elements of $D$ as binary values, use the dec2bin function. Each row of binStr corresponds to an element of $D$.

```
binStr = dec2bin(D)
```

binStr =
$3 \times 10$ char array
'1111111111'
'0001111010'
'0000001110'

## Convert Upper and Lower Bound of fi Object

Convert the upper and lower bound of a signed fi object with 100-bit word length.

```
binStr = dec2bin([lowerbound(fi([],1,100,0)),...
 upperbound(fi([],1,100,0))])
binStr =
```


## Input Arguments

## D - Input array

numeric fi array
Input array, specified as a numeric fi array.

- D must contain finite integers. If any element of $D$ has a fractional part, then dec2bin truncates it before conversion. For example, dec2bin converts both fi(12) and fi(12.5) to '1100'. The truncation is always to the nearest integer less than or equal to that element.
- D can include negative numbers. The function converts negative numbers using their two's complement binary values.

Data Types: fi
minDigits - Minimum number of digits in output
positive integer
Minimum number of digits in the output, specified as a positive integer.

- If $D$ can be represented with fewer than minDigits binary digits, then dec2bin pads the output.
- If D is so large that it must be represented with more than minDigits digits, then dec2bin returns the output with as many digits as required.


## Version History

## Introduced in R2021b

## Extended Capabilities

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\text {TM }}$.
Slope-bias representation is not supported.

## See Also

fi|bin|dec2base|dec2hex|bin|dec|oct|hex

## dec2hex

Package: embedded
Convert decimal integer to its hexadecimal representation for fi objects

## Syntax

hexStr = dec2hex(D)
hexStr = dec2hex(D,minDigits)

## Description

hexStr $=\operatorname{dec} 2 h e x(D)$ returns the hexadecimal, or base-16, representation of the decimal integer D. The output argument hexStr is a character array where each row represents the hexadecimal digits of each decimal integer in D using the characters 0-9 and A-F. D must contain finite integers.
hexStr $=$ dec2hex( $D$, minDigits) returns a hexadecimal representation with no fewer than minDigits digits.

Tip dec2hex returns the hexadecimal representation of the real-world value of the fi object D . To obtain the hexadecimal representation of the stored integer value, use hex instead.

## Examples

## Convert Decimal Number

Convert the decimal number stored as a fi object to hexadecimal representation.

```
D1 = fi(2748);
```

D2 = fi(251);
hexStr1 = dec2hex(D1)
hexStr2 $=$ dec2hex(D2)
hexStr1 =
' ABC '
hexStr2 =
'FB'
The dec2hex function converts negative numbers using their two's complement binary values.
D3 = fi(-5);
hexStr3 = dec2hex(D3)

```
hexStr3 =
```

' FB'

## Specify Minimum Number of Digits

Convert the decimal number stored as a fi object to hexadecimal representation. Specify the minimum number of hexadecimal digits that dec2hex returns. If you specify more digits than are required, then dec2hex pads the output.

```
D = fi(2748);
hexStr = dec2hex(D,8)
hexStr =
```

    ' 000000ABC'
    If you specify fewer digits, then dec2hex still returns as many hexadecimal digits as required to represent the input number.

```
hexStr = dec2hex(D,2)
hexStr =
 ' ABC'
```


## Convert Numeric Array

Create a numeric fi array.

```
D = fi([1023 122 14]);
```

To represent the elements of $D$ as hexadecimal values, use the dec2hex function. Each row of hexStr corresponds to an element of $D$.

```
hexStr = dec2hex(D)
hexStr =
 3\times3 char array
 '3FF'
 '07A'
 '00E'
```

Convert a numeric fi array containing negative values and specify minimum number of digits.

```
D = fi([1023 122 14;2748 251 -5]);
hexStr = dec2hex(D,5)
hexStr =
 6x5 char array
 '003FF'
```


## Convert Upper and Lower Bound of fi Object

Convert the upper and lower bound of a signed fi object with 100-bit word length.

```
binStr = dec2hex([lowerbound(fi([],1,100,0)),...
 upperbound(fi([],1,100,0))])
binStr =
 2\times25 char array
```

    ' 8000000000000000000000000 '
    '7FFFFFFFFFFFFFFFFFFFFFFFF'
    
## Input Arguments

## D - Input array

numeric fi array
Input array, specified as a numeric fi array.

- D must contain finite integers. If any element of $D$ has a fractional part, then dec2hex produces an error. For example, dec2hex converts $\mathrm{fi}(10)$ to ' A ', but does not convert fi(10.5).
- D can include negative numbers. The function converts negative numbers using their two's complement binary values.

Data Types: fi

## minDigits - Minimum number of digits in output

positive integer
Minimum number of digits in the output, specified as a positive integer.

- If D can be represented with fewer than minDigits hexadecimal digits, then dec2hex pads the output.
- If $D$ is so large that it must be represented with more than minDigits digits, then dec2hex returns the output with as many digits as required.


## Version History

Introduced in R2021b

## Extended Capabilities

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.

Slope-bias representation is not supported.

## See Also

fi|dec2base | dec2bin|hex|bin|dec|oct

## denormalmax

Largest denormalized quantized number for quantizer object

## Syntax

$x=\operatorname{denormalmax}(q)$

## Description

$x=$ denormalmax $(q)$ is the largest positive denormalized quantized number where $q$ is a quantizer object. Anything larger than $x$ is a normalized number. Denormalized numbers apply only to floating-point format. When q represents fixed-point numbers, this function returns eps (q).

## Examples

```
q = quantizer('float',[6 3]);
x = denormalmax(q)
x =
 0.1875
```


## Algorithms

When q is a floating-point quantizer object,

```
denormalmax(q) = realmin(q) - denormalmin(q)
```

When q is a fixed-point quantizer object,

```
denormalmax(q) = eps(q)
```


## Version History

Introduced before R2006a

## See Also

denormalmin|eps|quantizer

## denormalmin

Smallest denormalized quantized number for quantizer object

## Syntax

$x=$ denormalmin(q)

## Description

$x=$ denormalmin $(q)$ is the smallest positive denormalized quantized number where $q$ is a quantizer object. Anything smaller than $x$ underflows to zero with respect to the quantizer object q. Denormalized numbers apply only to floating-point format. When q represents a fixed-point number, denormalmin returns eps (q).

## Examples

```
q = quantizer('float',[6 3]);
x = denormalmin(q)
x =
 0.0625
```


## Algorithms

When q is a floating-point quantizer object,

$$
x=2^{E_{\min }-f}
$$

where $E_{\text {min }}$ is equal to exponentmin(q).
When q is a fixed-point quantizer object,

$$
x=\operatorname{eps}(q)=2^{-f}
$$

where $f$ is equal to fractionlength (q).

## Version History

Introduced before R2006a

## See Also

denormalmax|eps|quantizer

## divide

Package: embedded
Divide two fi objects

## Syntax

c = divide(T,a,b)

## Description

$c=\operatorname{divide}(T, a, b)$ performs division on the elements of $a$ by the elements of $b$. The result $c$ has the numeric type specified by numerictype object $T$.

## Examples

## Divide Two fi Objects

This example shows how to control the precision of the divide function.
Create an unsigned fi object with an 80 -bit word length and $2^{\wedge}-83$ scaling, which puts the leading 1 of the representation into the most significant bit. Initialize the object with value 0.1 , and examine the binary representation.

```
P = fipref('NumberDisplay', 'bin',...
 'NumericTypeDisplay', 'short',...
 'FimathDisplay', 'none');
a = fi(0.1, 0, 80, 83)
a =
11001100110011001100110011001100110011001100110011010000000000000000000000000000
 numerictype(0,80,83)
```

Notice that the infinite repeating representation is truncated after 52 bits, because the mantissa of an IEEE® standard double-precision floating-point number has 52 bits.

Contrast the above to calculating $1 / 10$ in fixed-point arithmetic with the quotient set to the same numeric type as before.

```
T = numerictype('Signed', false,...
 'WordLength', 80,...
 'FractionLength', 83);
a = fi(1);
b = fi(10);
c = divide(T, a, b);
c.bin
ans =
 '11001100110011001100110011001100110011001100110011001100110011001100110011001101'
```

Notice that when you use the divide function, the quotient is calculated to the full 80 bits, regardless of the precision of $a$ and $b$. Thus, the fi object $c$ represents $1 / 10$ more precisely than a IEEE® standard double-precision floating-point number can.

## Input Arguments

T - Numeric type of the output
numerictype object
Numeric type of the output, specified as a numerictype object.

## a - Numerator

scalar | vector | matrix | multidimensional array
Numerator, specified as a scalar, vector, matrix, or multidimensional array.
Inputs $a$ and $b$ must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32 | uint64 | logical|fi
Complex Number Support: Yes

## b - Denominator

scalar | vector | matrix | multidimensional array
Denominator, specified as a real scalar, vector, matrix, or multidimensional array.
Inputs a and b must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical|fi
Complex Number Support: Yes

## Output Arguments

## c - Quotient

scalar | vector | matrix | multidimensional array
Solution, returned as a scalar, vector, matrix, or multidimensional array.
The size of c is determined by implicit expansion of the dimensions of $a$ and $b$. For more information, see "Compatible Array Sizes for Basic Operations".

## Algorithms

If $a$ and $b$ are both fi objects, $c$ has the same fimath object as $a$. If $c$ has a fi Fixed data type, and any one of the inputs have fi floating point data types, then the fi floating point is converted into a fixed-point value. Intermediate quantities are calculated using the fimath object of a.

If either a or b is a fi object, and the other is a MATLAB built-in numeric type, then the built-in object is cast to the word length of the fi object, preserving best-precision fraction length. Intermediate quantities are calculated using the fimath object of the input fi object.

If $a$ and $b$ are both MATLAB built-in doubles, then $c$ is the floating-point quotient $a . / b$, and numerictype T is ignored.

## Data Type Propagation Rules

For syntaxes for which Fixed-Point Designer software uses the numerictype object T, the divide function follows the data type propagation rules listed in the following table. In most cases, floatingpoint data types are propagated. This allows you to write code that can be used with both fixed-point and floating-point inputs.

| Data Type of Input fi Objects a and b |  | Data Type of <br> numerictype Object T | Data Type of Output c |
| :--- | :--- | :--- | :--- |
| Built-in double | Built-in double | Any | Built-in double |
| fi Fixed | fi Fixed | fi Fixed | Data type of <br> numerictype object T |
| fi Fixed | fi Fixed | fi double | fi double |
| fi Fixed | fi Fixed | fi single | fi single |
| fi Fixed | fi Fixed | fi ScaledDouble | fi ScaledDouble with <br> properties of <br> numerictype object T |
| fi double | fi double | fi Fixed | fi double |
| fi double | fi double | fi double | fi double |
| fi double | fi double | fi single | fi single |
| fi double | fi double | fi ScaledDouble | fi double |
| fi single | fi single | fi Fixed | fi single |
| fi single | fi single | fi single | fi double |
| fi single | fi single | fi ScaledDouble | fi single |
| fi single | fi ScaledDouble | fi Fixed | lf either input a or b is <br> of type fi <br> ScaledDouble, then <br> output cis of type fi <br> ScaledDouble with <br> properties of <br> numerictype object T. |
| fi ScaledDouble |  | fi double |  |
| fi ScaledDouble | fi ScaledDouble | fi double | fi single |
| fi ScaledDouble | fi ScaledDouble | fi single |  |


| Data Type of Input fi Objects a and b |  | Data Type of <br> numerictype Object T | Data Type of Output c |
| :--- | :--- | :--- | :--- |
| fi ScaledDouble | fi ScaledDouble | fi ScaledDouble | If either input a or b is <br> of type fi <br> ScaledDouble, then <br> output c is of type fi <br> ScaledDouble with <br> properties of <br> numerictype object T. |

## Version History

Introduced before R2006a
R2022a: Implicit expansion change affects arguments for operators
Behavior changed in R2022a
Starting in R2022a with the addition of implicit expansion for fi divide, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
Usage notes and limitations:

- Any non-fi input must be constant; that is, its value must be known at compile time so that it can be cast to a fi object.
- Complex and imaginary divisors are not supported.
- Code generation does not support the syntax T.divide(a,b).


## HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

- For HDL Code generation, the divisor must be a constant and a power of two.
- Non-fi inputs must be constant; that is, their values must be known at compile time so that they can be cast to fi objects.
- Complex and imaginary divisors are not supported.
- Code generation in MATLAB does not support the syntax T. divide(a,b).


## See Also

add | fi |fimath | mpy | mrdivide | numerictype | rdivide | sub|sum

## double

Double-precision floating-point real-world value of fi object

## Syntax

b = double(a)

## Description

$\mathrm{b}=$ double(a) returns the real-world value of a fi object in double-precision floating point format.
Fixed-point numbers can be represented as
real-worldvalue $=2^{- \text {fractionlength }} \times$ storedinteger
or, equivalently as
real-worldvalue $=($ slope $\times$ storedinteger $)+$ bias

## Examples

## View Stored Integer of fi Object in Double-Precision Format

Create a signed fi object with values -1 and 1 , a word length of 8 bits, and a fraction length of 7 bits.

```
a = fi([-1 1], 1, 8, 7)
a =
 -1.0000 0.9922
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7
```

Find the double-precision floating-point real-world value of the stored integers of fi object a.
b = double(a)
b $=1 \times 2$
$-1.0000 \quad 0.9922$

## Input Arguments

a - fi object to view in double-precision floating-point
fi object

Input fi object to view in double-precision floating-point.
Data Types: fi

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
Usage notes and limitations:

- For the automated workflow, do not use explicit double or single casts in your MATLAB algorithm to insulate functions that do not support fixed-point data types. The automated conversion tool does not support these casts. Instead of using casts, supply a replacement function. For more information, see "Function Replacements".


## See Also

single

## eps

Quantized relative accuracy for fi or quantizer objects

## Syntax

$\mathrm{d}=\mathrm{eps}(\mathrm{a})$
$d=e p s(q)$

## Description

$d=e p s(a)$ returns the value of the least significant bit value of the fi object $a$. The result of this function is equivalent to that given by the Fixed-Point Designer function lsb.
$d=\operatorname{eps}(q)$ returns the value of the least significant bit of the value of the quantizer object $q$.

## Examples

## Quantized Relative Accuracy of fi Object

```
a = fi(pi, 1, 8)
eps(a)
ans =
 0.1250
```


## Quantization Level of quantizer Object

```
q = quantizer('fixed',[6 3]);
eps(q)
ans =
 0.1250
```


## Input Arguments

a - Input fi object
fi object
Input fi object.
Data Types: fi
q - Input quantizer object
quantizer object
Input quantizer object.

## Version History

Introduced before R2006a

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\text {TM }}$.
Usage notes and limitations:

- Code generation supports scalar fixed-point signals only.
- Code generation supports scalar, vector, and matrix, fi single and fi double signals.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

- Supported for scalar fixed-point signals only.
- Supported for scalar, vector, and matrix, fi single and fi double signals.


## See Also

intmax |intmin|lowerbound|lsb|range|realmax|realmin|upperbound|quantizer| fi

## eq, = =

Package: embedded
Determine whether real-world values are equal

## Syntax

$\mathrm{A}=\mathrm{B}$
eq(A,B)

## Description

$\mathrm{A}==\mathrm{B}$ returns a logical array with elements set to logical 1 (true) where the real-world values of arrays $A$ and $B$ are equal, when $A$ or $B$ is a fi object. Otherwise, the element is logical 0 (false). The test compares both real and imaginary parts of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point value is cast to a fixed-point type that preserves the relative order of the value with respect to the value in the fixed-point fi object.
$\mathrm{eq}(A, B)$ is an alternate way to execute $A==B$, but is rarely used.

## Examples

## Compare Two fi Objects

Use the eq function to determine if two fi objects have the same real-world value.

```
a = fi(pi);
b = fi(pi,1,32);
a == b
ans = logical
0
```

Input a has a 16 -bit word length, while input b has a 32 -bit word length. The eq function returns 0 because the two fi objects do not have the same real-world value.

## Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the relative order of the value with respect to the value in the fixed-point fi object. This behavior allows relational operations to work between fi objects and floating-point constants without introducing floating-point values in generated code.

```
a = fi(pi);
b = pi;
eq(a,b)
ans =
 logical
 0
```


## Input Arguments

## A, B - Operands

scalars | vectors | matrices | multidimensional arrays
Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".

```
Data Types: single | double | int8| int16| int32 | int64 | uint8|uint16|uint32 | uint64 |
fi
Complex Number Support: Yes
```


## Version History

## Introduced before R2006a

## R2022a: Implicit expansion change affects arguments for operators

Behavior changed in R2022a
Starting in R2022a with the addition of implicit expansion for fi eq, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

## R2022a: Improved accuracy in comparing fi objects and floating-point numbers using relational operators <br> Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was cast to the same word length and signedness of the fi object. This could lead to incorrect results. For example,

```
fi(0,0,8) > [-1,10]
ans =
 1\times2 logical array
 0 0
```

```
fi(65534)
fi(65534.25) == 65534.25
ans =
 65534
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: -1
ans =
 logical
 I
```

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always return the mathematically correct behavior. The previous examples now gives these results:

```
fi(0,0,8) > [-1,10]
ans =
 1\times2 logical array
 1 0
```

Note that the updated algorithm may produce subtle, but accurate, results. For example:

```
fi(pi) == pi
ans =
 logical
 0
```

Simulation results for relational operations between fi objects and floating-point singles or doubles may be more accurate than in previous releases. The updated algorithm requires a modest wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Fixed-point signals with different biases are not supported.


## HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

## See Also

ge|gt|isequal|le|lt|ne

## errmean

Package: embedded
Mean of quantization error

## Syntax

$\mathrm{m}=$ errmean(q)

## Description

$m=\operatorname{errmean}(q)$ returns the mean of a uniformly distributed random quantization error that arises from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

## Examples

## Mean of Quantization Error

Find the mean of the quantization error for the quantizer object $q$.

```
q = quantizer;
m = errmean(q)
m = - 1.5259e-05
```

Compare this result to the sample mean from a Monte Carlo experiment.

```
r = realmax(q);
u = 2*r*rand(1000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e = y - u; % Error
m_est = mean(e) % Estimate of the error mean
m_est = -1.5028e-05
```


## Input Arguments

q - Input quantizer object
quantizer object
Input quantizer object, specified as a quantizer object.

## Version History

Introduced in R2008a

## See Also

errpdf|errvar|quantize

## errpdf

Probability density function of quantization error

## Syntax

$[f, x]=\operatorname{errpdf}(q)$
$f=\operatorname{errpdf}(q, x)$

## Description

$[f, x]=\operatorname{erpdf}(q)$ returns the probability density function $f$ evaluated at the values in $x$. The vector $x$ contains the uniformly distributed random quantization errors that arise from quantizing a signal by quantizer object $q$.
$f=\operatorname{errpdf}(q, x)$ returns the probability density function $f$ evaluated at the values in vector $x$.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

## Examples

## Compute the PDF of the quantization error

```
q = quantizer('nearest',[4 3]);
[f,x] = errpdf(q);
subplot(211)
plot(x,f)
title('Computed PDF of the quantization error.')
```



The output plot shows the probability density function of the quantization error. Compare this result to a plot of the sample probability density function from a Monte Carlo experiment:

```
r = realmax(q);
 u = 2*r*rand(10000,1)-r; % Original signal
 y = quantize(q,u); %Quantized signal
 e = y - u; % Error
 subplot(212)
 hist(e,20)
 gca.xlim = [min(x) max(x)];
 title('Estimate of the PDF of the quantization error.')
```




## Version History <br> Introduced in R2008a

See Also<br>errmean |errvar|quantize

## errvar

Variance of quantization error

## Syntax

v = errvar(q)

## Description

$\mathrm{v}=\operatorname{errvar}(\mathrm{q})$ returns the variance of a uniformly distributed random quantization error that arises from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

## Examples

Find v , the variance of the quantization error for quantizer object q :

```
q = quantizer;
v = errvar(q)
v =
 7.761021455128987e-11
```

Now compare v to v_est, the sample variance from a Monte Carlo experiment:
$r=r e a l m a x(q) ;$
$u=2 * r^{*}$ rand $(1000,1)-r$; Original signal
$y=$ quantize $(q, u) ; \quad$ \% Quantized signal
e = y - u;
\% Error
v_est $=$ var(e) \% Estimate of the error variance
v_est =
$7.686538499583834 \mathrm{e}-11$

## Version History

Introduced in R2008a

## See Also

errmean | errpdf \| quantize

## exponentbias

Exponent bias for quantizer object

## Syntax

b = exponentbias(q)

## Description

b = exponentbias(q) returns the exponent bias of the quantizer object q. For fixed-point quantizer objects, exponentbias(q) returns 0 .

## Examples

q = quantizer('double');
b = exponentbias(q)
b =
1023

## Algorithms

For floating-point quantizer objects,

$$
b=2^{e-1}-1
$$

where $e=\operatorname{eps}(q)$, and exponentbias is the same as the exponent maximum.
For fixed-point quantizer objects, b = 0 by definition.

## Version History <br> Introduced before R2006a

## See Also

eps | exponentlength | exponentmax | exponentmin

## exponentlength

Exponent length of quantizer object

## Syntax

e = exponentlength(q)

## Description

$\mathrm{e}=$ exponentlength $(\mathrm{q})$ returns the exponent length of quantizer object q . When q is a fixedpoint quantizer object, exponentlength ( $q$ ) returns 0 . This is useful because exponent length is valid whether the quantizer object mode is floating point or fixed point.

## Examples

q = quantizer('double');
e = exponentlength(q)
e =
11

## Algorithms

The exponent length is part of the format of a floating-point quantizer object [w e]. For fixed-point quantizer objects, $e=0$ by definition.

## Version History

Introduced before R2006a

## See Also

eps | exponentbias | exponentmax | exponentmin

## exponentmax

Maximum exponent for quantizer object

## Syntax

exponentmax (q)

## Description

exponentmax $(\mathrm{q})$ returns the maximum exponent for quantizer object q . When q is a fixed-point quantizer object, it returns 0 .

## Examples

```
q = quantizer('double');
exponentmax(q)
ans =
```

1023

## Algorithms

For floating-point quantizer objects,

$$
E_{\max }=2^{e-1}-1
$$

For fixed-point quantizer objects, $E_{\max }=0$ by definition.

## Version History <br> Introduced before R2006a

## See Also

eps | exponentbias | exponentlength | exponentmin

## exponentmin

Minimum exponent for quantizer object

## Syntax

```
emin = exponentmin(q)
```


## Description

emin $=$ exponentmin( $q$ ) returns the minimum exponent for quantizer object $q$. If $q$ is a fixedpoint quantizer object, exponentmin returns 0 .

## Examples

```
q = quantizer('double');
emin = exponentmin(q)
emin =
```

```
-1022
```


## Algorithms

For floating-point quantizer objects,

$$
E_{\min }=-2^{e-1}+2
$$

For fixed-point quantizer objects, $E_{\min }=0$.

## Version History <br> Introduced before R2006a

## See Also

eps | exponentbias | exponentlength | exponentmax

## eye

Create identity matrix with fixed-point properties

## Syntax

```
I = eye('like', p)
I = eye(n,'like', p)
I = eye(\(n, m,{ }^{\prime}\) like', \(p\))
I = eye(sz,'like',p)
```


## Description

I = eye('like',p) returns the scalar 1 with the same fixed-point properties and complexity (real or complex) as the prototype argument, p . The output, I , contains the same numerictype and fimath properties as $p$.
$\mathrm{I}=\operatorname{eye}(\mathrm{n}, \mathrm{l}$ like', p$)$ returns an n -by-n identity matrix like p , with ones on the main diagonal and zeros elsewhere.

I = eye(n,m,'like', p) returns an n-by-m identity matrix like $p$.
I = eye(sz,'like',p) returns an array like $p$, where the size vector, sz, defines size(I).

## Examples

## Create Identity Matrix with Fixed-Point Properties

Create a prototype fi object, p.
p = fi([],1,16,14);
Create a 3-by-4 identity matrix with the same fixed-point properties as $p$.
I = eye(3,4,'like',p)
I =

| 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |

## Create Identity Matrix with Attached fimath

Create a signed fi object with word length of 16 , fraction length of 15 and OverflowAction set to Wrap.

```
format long
p = fi([],1,16,15,'OverflowAction','Wrap');
```

Create a 2-by-2 identity matrix with the same numerictype properties as p .

```
X = eye(2,'like',p)
X =
 0.999969482421875 0
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15
 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision
```

1 cannot be represented by the data type of $p$, so the value saturates. The output fi object $X$ has the same numerictype and fimath properties as $p$.

## Input Arguments

## n - Size of first dimension of I

integer value
Size of first dimension of I, specified as an integer value.

- If n is the only integer input argument, then I is a square n -by- n identity matrix.
- If $n$ is 0 , then $I$ is an empty matrix.
- If n is negative, then it is treated as 0 .

Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64

## m - Size of second dimension of I

integer value
Size of second dimension of $I$, specified as an integer value.

- If $m$ is 0 , then $I$ is an empty matrix.
- If $m$ is negative, then it is treated as 0 .

Data Types: single | double | int8 | int16 | int32 | int64 |uint8|uint16|uint32|uint64

## sz - Size of I

row vector of no more than two integer values

Size of I, specified as a row vector of no more than two integer values.

- If an element of $s z$ is 0 , then $I$ is an empty matrix.
- If an element of $s z$ is negative, then the element is treated as 0 .

Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64
p - Prototype
fi object | numeric variable
Prototype, specified as a fi object or numeric variable.
If the value 1 overflows the numeric type of $p$, the output saturates regardless of the specified OverflowAction property of the attached fimath. All subsequent operations performed on the output obey the rules of the attached fimath.

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

## Tips

Using the $b=$ cast ( $a$, 'like', $p$ ) syntax to specify data types separately from algorithm code allows you to:

- Reuse your algorithm code with different data types.
- Keep your algorithm uncluttered with data type specifications and switch statements for different data types.
- Improve readability of your algorithm code.
- Switch between fixed-point and floating-point data types to compare baselines.
- Switch between variations of fixed-point settings without changing the algorithm code.


## Version History

Introduced in R2015a

## See Also

zeros|ones

## Topics

"Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types Using cast and zeros" "Manual Fixed-Point Conversion Best Practices"

## fi

Construct fixed-point numeric object

## Description

To assign a fixed-point data type to a number or variable, create a fi object using the fi constructor. You can specify numeric attributes and math rules in the constructor or by using the numerictype and fimath objects.

## Creation

## Syntax

$\mathrm{a}=\mathrm{fi}$
$a=f i(v)$
$a=f i(v, s)$
$a=f i(v, s, w)$
$a=f i(v, s, w, f)$
$a=f i(v, s, w, s l o p e, b i a s)$
a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias)
$a=f i(v, T)$
a $=\mathrm{fi}($ , F)
a = fi( $\qquad$ ,Name, Value)

Description
a = fi returns a signed fi object with no value, a 16-bit word length, and a 15-bit fraction length.
$a=f i(v)$ returns a signed fi object with value $v$, a 16 -bit word length, and best-precision fraction length.
$a=f i(v, s)$ returns a fi object with value $v$, signedness $s$, a 16-bit word length, and bestprecision fraction length.
$a=f i(v, s, w)$ returns a fi object with value $v$, signedness $s$, and word length $w$.
$a=f i(v, s, w, f)$ returns a fi object with value $v$, signedness $s$, word length $w$, and fraction length f.
$a=f i(v, s, w, s l o p e, b i a s)$ returns a fi object with value $v$, signedness $s$, slope, and bias.
a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns a fi object with value v , signedness s , slopeadjustmentfactor, fixedexponent, and bias.
$a=f i(v, T)$ returns a fi object with value $v$ and numerictype $T$.
$a=f i($ $\qquad$ ,F) returns a fi object with fimath $F$.
a = fi(__, Name, Value) returns a fi object with property values specified by one or more name-value pair arguments.

## Input Arguments

## v-Value

scalar | vector | matrix | multidimensional array
Value of the fi object, specified as a scalar, vector, matrix, or multidimensional array.
The value of the returned fi object is the value of the input $v$ quantized to the data type specified in the fi constructor. When the input v is a non-double and you do not specify the word length or fraction length, the returned fi object retains the numerictype of the input. For an example, see "Create fi Object From Non-double Value" on page 4-394.

You can specify the non-finite values - Inf, Inf, and NaN as the value only if you fully specify the numerictype of the fi object. When fi is specified as a fixed-point numerictype,

- $\quad \mathrm{NaN}$ maps to 0 .
- When the 'OverflowAction' property of the fi object is set to 'Wrap', - Inf, and Inf map to 0.
- When the 'OverflowAction' property of the fi object is set to 'Saturate', Inf maps to the largest representable value, and -Inf maps to the smallest representable value.

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|fi
s - Signedness
true or 1 (default) | false or 0
Signedness of the fi object, specified as a numeric or logical 1 (true) or 0 (false). A value of 1 (true) indicates a signed data type. A value of 0 (false) indicates an unsigned data type.
Data Types: logical
w - Word length in bits
16 (default) | positive scalar integer
Word length in bits of the fi object, specified as a positive scalar integer.
The fi object has a word length limit of 65535 bits.

```
Data Types: single | double | int8| int16 | int32 | int64 | uint8|uint16 | uint32|uint64 |
logical
```

f - Fraction length in bits
15 (default) | scalar integer
Fraction length in bits of the stored integer value of the fi object, specified as a scalar integer.
If you do not specify a fraction length, the fi object automatically uses the fraction length that gives the best precision while avoiding overflow for the specified value, word length, and signedness.
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64 | logical

## slope - Slope

positive scalar
Slope of the scaling of the fi object, specified as a positive scalar.
This equation represents the real-world value of a slope bias scaled number.

$$
\begin{aligned}
& \text { real }- \text { worldvalue }=(\text { slope } \times \text { integer })+\text { bias } \\
& \text { Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | } \\
& \text { logical }
\end{aligned}
$$

## bias - Bias

scalar
Bias of the scaling of the fi object, specified as a scalar.
This equation represents the real-world value of a slope bias scaled number.
real - worldvalue $=($ slope $\times$ integer $)+$ bias
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical

## slopeadjustmentfactor - Slope adjustment factor

scalar greater than or equal to 1 and less than 2
Slope adjustment factor of the fi object, specified as a scalar greater than or equal to 1 and less than 2.

The following equation demonstrates the relationship between the slope, fixed exponent, and slope adjustment factor.

$$
\text { slope }=\text { slopead justmentfactor } \times 2^{\text {fixedexponent }}
$$

Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical

## fixedexponent - Fixed exponent

scalar
Fixed exponent of the fi object, specified as a scalar.
The following equation demonstrates the relationship between the slope, fixed exponent, and slope adjustment factor.

$$
\text { slope }=\text { slopead justmentfactor } \times 2^{\text {fixedexponent }}
$$

Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical

## T - Numeric type properties

numerictype object
Numeric type properties of the fi object, specified as a numerictype object.

## F - Fixed-point math properties <br> fimath object

Fixed-point math properties of the fi object, specified as a fimath object.

## Properties

The fi object has three types of properties:

- fi Object Data Properties
- fimath Object Properties
- numerictype Object Properties

You can set these properties when you create a fi object. Use the data properties to access data in a fi object. The fimath properties and numerictype properties are, by transitivity, also properties of the fi object. fimath properties determine the rules for performing fixed-point arithmetic operations on fi objects. The numerictype object contains all the data type and scaling attributes of a fixed-point object.

## Examples

## Create fi Object

Create a fi object using the default constructor. The constructor returns a signed fi object with no value, a 16 -bit word length, and a 15 -bit fraction length.
$\mathrm{a}=\mathrm{fi}$
a $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
FractionLength: 15
```

Create a signed fi object with a value of pi, a 16-bit word length, and best-precision fraction length. The fraction length is automatically set to achieve the best precision possible without overflow.

```
a = fi(pi)
a =
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
```

Create an unsigned fi object with a value of pi. When you specify only the value and the signedness of the fi object, the word length defaults to 16 bits with best-precision fraction length.
$a=f i(p i, 0)$

```
a =
 3.1416
```

    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Unsigned
    WordLength: 16
    FractionLength: 14

Create a signed fi object with a word length of 8 bits and best-precision fraction length. In this example, the fraction length of a is 5 because three bits are required to represent the integer portion of the value when the data type is signed.

```
a = fi(pi,1,8)
a =
 3.1562
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 5
```

If the fi object is unsigned, only two bits are needed to represent the integer portion, leaving six fractional bits.

```
b = fi(pi,0,8)
b =
 3.1406
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 6
```

Create a signed fi object with a value of pi, a word length of 8 bits, and a fraction length of 3 bits.

```
a = fi(pi,1,8,3)
```

a $=$
3.1250
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3

Create an array of fi objects with 16 -bit word length and 12 -bit fraction length.

```
a = fi((magic(3)/10),1,16,12)
a =
 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
```


## Create fi Object with Slope and Bias Scaling

The real-world value of a slope and bias scaled number is represented by
real world value $=($ slope $\times$ integer $)+$ bias.
To create a fi object that uses slope and bias scaling, include the slope and bias arguments after the word length in the constructor. For example, create a fi object with a slope of 3 and a bias of 2.
$a=f i(p i, 1,16,3,2)$
a $=$
2

```
DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2
```

The DataTypeMode property of the fi object a is Fixed-point: slope and bias scaling. Alternatively, you can specify the slope adjustment factor and fixed exponent where
slope $=$ slopeadjustmentfactor $\times 2^{\text {fixedexponent }}$.
For example, create a fi object with a slope adjustment factor of 1.5, a fixed exponent of 1, and a bias of 2 .

```
a = fi(pi,1,16,1.5,1,2)
a =
 2
 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2
```


## Create fi Object From numerictype Object

A numerictype object contains all of the data type information of a fi object. numerictype properties are also properties of fi objects.

You can create a fi object that uses all of the properties of an existing numerictype object by specifying the numerictype object in the fi constructor.

```
T = numerictype(0,24,16)
```

```
T =
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 16
a = fi(pi,T)
a =
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 16
```


## Create fi Object With Associated fimath

The arithmetic attributes of a fi object are defined by a fimath object which is attached to that fi object.

Create a fimath object and specify the OverflowAction, RoundingMethod, and ProductMode properties.

```
F = fimath('OverflowAction','Wrap',...
 'RoundingMethod','Floor',...
 'ProductMode','KeepMSB')
F =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: KeepMSB
 ProductWordLength: 32
 SumMode: FullPrecision
```

Create a fi object and specify the fimath object F in the constructor.
$a=f i(p i, F)$
a =
3.1415
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13
RoundingMethod: Floor
OverflowAction: Wrap
ProductMode: KeepMSB
ProductWordLength: 32
SumMode: FullPrecision

Use the removefimath function to remove the associated fimath object and restore the math settings to their default values.

```
a = removefimath(a)
a =
 3.1415
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
```


## Create fi Object From Non-double Value

When the input argument $v$ of a fi object is not a double and you do not specify the word length or fraction length properties, the returned fi object retains the numeric type of the input.

## Create fi object from built-in integer

When the input is a built-in integer, the fixed-point attributes match the attributes of the integer type.

```
v1 = uint32(5);
al = fi(v1)
a1 =
 5
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 32
 FractionLength: 0
v2 = int8(5);
a2 = fi(v2)
a2 =
 5
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0
```


## Create fi object from fi object

When the input value is a fi object, the output uses the same word length, fraction length, and signedness as the input fi object.

```
v = fi(pi,1,24,12);
a = fi(v)
a =
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
```

Signedness: Signed
WordLength: 24
FractionLength: 12

## Create fi object from logical

When the input value is a logical, the DataTypeMode property of the output fi object is Boolean.

```
v = true;
a = fi(v)
a =
```

DataTypeMode: Boolean

## Create fi object from single

When the input value is single, the DataTypeMode property of the output is Single.

```
v = single(pi);
a = fi(v)
a =
 3.1416
 DataTypeMode: Single
```


## Specify Rounding and Overflow Modes in fi Object Constructor

You can set fimath properties, such as rounding and overflow modes during the creation of the fi object.

```
a = fi(pi,'RoundingMethod','Floor',...
 'OverflowAction','Wrap')
a =
 3.1415
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision
```

The RoundingMethod and OverflowAction properties are properties of the fimath object. Specifying these properties in the fi constructor associates a local fimath object with the fi object.

Use the removefimath function to remove the local fimath and set the math properties back to their default values.
$\mathrm{a}=$ removefimath(a)

```
a =
 3.1415
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
FractionLength: 13
```


## Set Data Type Override on fi Object

This examples shows how to use the DataTypeOverride setting of the fipref object to override fi objects with doubles, singles, or scaled doubles. The fipref object defines the display and logging attributes for all fi objects.

Save the current fipref settings to restore later.

```
fp = fipref;
initialDT0 = fp.DataTypeOverride;
```

Create a fi object with the default settings and original fipref settings.

```
a = fi(pi)
```

a $=$
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Use the fipref object to turn on data type override to doubles.

```
fipref('DataTypeOVerride','TrueDoubles')
ans =
```

```
 NumberDisplay: 'RealWorldValue'
```

            NumberDisplay: 'RealWorldValue'
        NumericTypeDisplay: 'full'
        NumericTypeDisplay: 'full'
                        FimathDisplay: 'full'
                        FimathDisplay: 'full'
                        LoggingMode: 'Off'
                        LoggingMode: 'Off'
        DataTypeOverride: 'TrueDoubles'
        DataTypeOverride: 'TrueDoubles'
    DataTypeOverrideAppliesTo: 'AllNumericTypes'
    ```
 DataTypeOverrideAppliesTo: 'AllNumericTypes'
```

Create a new fi object without specifying its DataTypeOverride property so that it uses the data type override settings specified using fipref.

```
a = fi(pi)
a =
 3.1416
 DataTypeMode: Double
```

Create another fi object and set its DataTypeOverride setting to off so that it ignores the data type override settings of the fipref object.
b = fi(pi,'DataTypeOverride','Off')
b =
3.1416

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 13
Restore the fipref settings saved at the start of the example.

```
fp.DataTypeOverride = initialDTO;
```


## fi Behavior for -Inf, Inf, and NaN

To use the non-numeric values - Inf, Inf, and NaN as fixed-point values with fi, you must fully specify the numeric type of the fixed-point object. Automatic best-precision scaling is not supported for these values.

## Saturate on Overflow

When the numeric type of the fi object is specified to saturate on overflow, then Inf maps to the largest representable value of the specified numeric type, and - Inf maps to the smallest representable value. NaN maps to zero.

```
x = [-inf nan inf];
a = fi(x,1,8,0,'OverflowAction','Saturate')
b = fi(x,0,8,0,'OverflowAction','Saturate')
a =
 -128 0 127
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0
 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision
b =
 0 0 255
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0
 RoundingMethod: Nearest
```

```
OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision
```


## Wrap on Overflow

When the numeric type of the fi object is specified to wrap on overflow, then - Inf, Inf, and NaN map to zero.

```
x = [-inf nan inf];
a = fi(x,1,8,0,'OverflowAction','Wrap')
b = fi(x,0,8,0,'OverflowAction','Wrap')
a =
 0 0 0
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0
 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision
b =
 0 0 0
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0
 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision
```


## Tips

- Use the fipref object to control the display, logging, and data type override preferences for fi objects.


## Version History

Introduced before R2006a
R2020b: Change in default behavior of fi for -Inf, Inf, and NaN
Behavior changed in R2020b
In previous releases, fi would return an error when passed the non-finite input values - Inf, Inf, or NaN. fi now treats these inputs in the same way that MATLAB and Simulink handle - Inf, Inf, and NaN for integer data types.

When $f i$ is specified as a fixed-point numeric type,

- $\quad \mathrm{NaN}$ maps to 0.
- When the 'OverflowAction' property of the fi object is set to 'Wrap', - Inf, and Inf map to 0.
- When the 'OverflowAction' property of the fi object is set to 'Saturate', Inf maps to the largest representable value, and - Inf maps to the smallest representable value.

For an example of this behavior, see "fi Behavior for -Inf, Inf, and NaN" on page 4-397.

Note Best-precision scaling is not supported for input values of - Inf, Inf, or NaN.

## R2021a: Inexact property names for fi, fimath, and numerictype objects not supported

In previous releases, inexact property names for fi, fimath, and numerictype objects would result in a warning. In R2021a, support for inexact property names was removed. Use exact property names instead.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
Usage notes and limitations:

- The default constructor syntax without any input arguments is not supported.
- If the numerictype is not fully specified, the input to fi must be a constant, a fi, a single, or a built-in integer value. If the input is a built-in double value, it must be a constant. This limitation allows fi to autoscale its fraction length based on the known data type of the input.
- All properties related to data type must be constant for code generation.
- numerictype object information must be available for nonfixed-point Simulink inputs.


## HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

## See Also

fimath | numerictype|fipref

## Topics

"Create Fixed-Point Data"
"Perform Fixed-Point Arithmetic"
"Perform Binary-Point Scaling"
"Binary Point Interpretation"

## fiaccel

Accelerate fixed-point code or convert floating-point MATLAB code to fixed-point MATLAB code

## Syntax

fiaccel -options fcn
fiaccel -float2fixed fcn

## Description

fiaccel - options fcn translates the MATLAB file fcn.m to a MEX function, which accelerates fixed-point code. To use fiaccel, your code must meet one of these requirements:

- The top-level function has no inputs or outputs, and the code uses fi.
- The top-level function has an output or a non-constant input, and at least one output or input is a fi.
- The top-level function has at least one input or output containing a built-in integer class (int8, uint8, int16, uint16, int32, uint32, int64, or uint64), and the code uses fi.
fiaccel -float2fixed fcn converts the floating-point MATLAB function, $f \mathrm{fc}$ to fixed-point MATLAB code.


## Examples

## Accelerate Fixed-Point MATLAB Code

This example shows how to accelerate fixed-point MATLAB code using the fiaccel function.
Define a function that computes the moving average.

```
type("moving_average.m")
function [avg,z] = moving_average(x,z)
%#codegen
if nargin < 2
 z = fi(zeros(10,1),1,16,15);
end
```

```
z(2:end) = z(1:end-1); % Update buffer
```

z(2:end) = z(1:end-1); % Update buffer
z(1) = x; % Add new value
z(1) = x; % Add new value
avg = mean(z); % Compute moving average
avg = mean(z); % Compute moving average
end

```
end
```

Create a test file.

```
type("test_moving_average.m")
function avg = test_moving_average(x)
%#codegen
```

```
if nargin < 1
 x = fi(rand(100,1),1,16,15);
end
z = fi(zeros(10,1),1,16,15);
avg = x;
for k = 1:length(x)
 [avg(k),z] = moving_average(x(k),z);
end
end
```

Use the fiaccel function to create a MEX function and accelerate the MATLAB code.

```
x = fi(rand(100,1),1,16,15);
```

fiaccel test_moving_average -args \{x\} -report

Compare the non-accelerated and accelerated code.

```
tic avg = test_moving_average(x); toc % Non-compiled version
tic avg = test_moving_average_mex(x); toc % Compiled version
```


## Convert Floating-Point MATLAB Code to Fixed Point

Create a coder. FixptConfig object, fixptcfg, with default settings.

```
fixptcfg = coder.config('fixpt');
```

Set the test bench name. In this example, the test bench function name is dti_test.

```
fixptcfg.TestBenchName = 'dti_test';
```

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB function name is dti.

```
fiaccel -float2fixed fixptcfg dti
```


## Input Arguments

## fcn - MATLAB function to generate MEX from

function name
MATLAB function to generate MEX from, specified as a function existing in the current working folder or on the path.

Note If your top-level file is on a path that contains Unicode characters, code generation might not be able to find the file.
option value | space delimited list of option values

Compiler options, specified as a space delimited list of option values. fiaccel gives precedence to individual command-line options over options specified using a configuration object. If command-line options conflict, the right-most option prevails.

Specified as one or more of these values:
-args example_inputs
-config config_object
-d out_folder

Define the size, class, and complexity of MATLAB function inputs by providing a cell array of example input values. The position of the example input in the cell array must correspond to the position of the input argument in the MATLAB function definition. To generate a function that has fewer input arguments than the function definition has, omit the example values for the arguments that you do not want.

Specify the example inputs immediately after the function to which they apply.

Instead of an example value, you can provide a coder. Type object. To create a coder. Type object, use the coder. typeof function.

Specify MEX generation parameters, based on config_object, defined as a MATLAB variable using coder.mexconfig.

For example:

```
cfg = coder.mexconfig;
```

Store generated files in the absolute or relative path specified by out_folder. If the folder specified by out_folder does not exist, fiaccel creates it for you.

If you do not specify the folder location, fiaccel generates files in the default folder fiaccel/mex/fcn, where fcn is the name of the MATLAB function specified at the command line.

The function does not support the following characters in folder names: asterisk (*), questionmark (?), dollar (\$), and pound (\#).

```
-float2fixed float2fixed_cfg_name
```

-g
-global global_values
-I include_path

Generates fixed-point MATLAB code using the settings specified by the floating-point to fixedpoint conversion configuration object named float2fixed_cfg_name.

For this option, fiaccel generates files in the folder codegen/fcn_name/fixpt.

You must set the TestBenchName property of float2fixed_cfg_name.

For example:
fixptcfg.TestBenchName = 'myadd_test';
specifies that myadd_test is the test file for the floating-point to fixed-point configuration object fixptcfg.

You cannot use this option with the -global option.
Compiles the MEX function in debug mode, with optimization turned off. If not specified, fiaccel generates the MEX function in optimized mode.
Specify initial values for global variables in MATLAB file. Use the values in cell array global_values to initialize global variables in the function you compile. The cell array should provide the name and initial value of each global variable. You must initialize global variables before compiling with fiaccel. If you do not provide initial values for global variables using the -global option, fiaccel checks for the variable in the MATLAB global workspace. If you do not supply an initial value, fiaccel generates an error.

The generated MEX code and MATLAB each have their own copies of global data. To ensure consistency, you must synchronize their global data whenever the two interact. If you do not synchronize the data, their global variables might differ.

You cannot use this option with the float2fixed option.
Add include_path to the beginning of the code generation path.
fiaccel searches the code generation path first when converting MATLAB code to MEX code.

-launchreport	Generate and open a code generation report. If   you do not specify this option, fiaccel   generates a report only if error or warning   messages occur or you specify the - report   option.
-nargout	Specify the number of output arguments in the   generated entry-point function. The code   generator produces the specified number of   output arguments in the order in which they   occur in the MATLAB function definition.   Generate the MEX function with the base name
output_file_name plus a platform-specific	
extension.	

## Version History

Introduced in R2011a

## R2023a: Change to default fiaccel behavior for constant inputs

When the fiaccel function generates a MEX file, it no longer automatically removes constants from the call to the MEX file. With this change, fiaccel and codegen MEX generation now have the same default behavior with respect to constant inputs.

```
fiaccel myfun -args {x,coder.Constant(c)}
myfun_mex(x,c)
```

To revert to the prior behavior, set the ConstantInputs property of the coder.MexConfig object to 'Remove'.

```
cfg = coder.MexConfig;
cfg.ConstantInputs = "Remove";
fiaccel myfun -args {x,coder.Constant(c)} -config cfg
myfun_mex(x)
```


## See Also

coder.ArrayType | coder. Constant | coder. EnumType | coder.FiType | coder.newtype | coder. PrimitiveType | coder. resize \| coder. StructType | coder.Type |coder.typeof | coder.mexconfig|coder.config|coder.FixPtConfig

## filter

Package: embedded
1-D digital filter of fi objects

## Syntax

y = filter(b,1,x)
[y,zf] = filter(b,1,x,zi)
$y=$ filter(b,1,x,zi,dim)

## Description

$y=$ filter $(b, 1, x)$ filters the data in the fixed-point vector $x$ using the filter described by the fixed-point vector b . The function returns the filtered data in the output fi object y .
filter always operates along the first non-singleton dimension. Thus, the filter operates along the first dimension for column vectors and nontrivial matrices and along the second dimension for row vectors.
[ $y, z f$ ] = filter $(b, 1, x, z i)$ uses initial conditions zi for the filter delays. The length of zi must equal length (b) -1 . The final conditions of the delays are returned in $z f$.
$y=$ filter (b, $1, x, z i, d i m)$ acts along dimension dim. If you do not want to specify the vector of initial conditions, use [] for the input argument zi.

Note This function is a 1-D digital filter for fi objects. To filter non-fi data, use the MATLAB filter function.

## Examples

## Filter High-Frequency Fixed-Point Sinusoid From Signal

Filter a high-frequency fixed-point sinusoid from a signal that contains both a low- and high-frequency fixed-point sinusoid.

```
w1 = 0.1*pi;
w2 = 0.6*pi;
n = 0:999;
xd = sin(w1*n) + sin(w2*n);
x = sfi(xd,12);
b = ufi([0.1:0.1:1,1-0.1:-0.1:0.1]/4,10);
gd = (length(b)-1)/2;
y = filter(b,1,x);
```

Plot the results, accomodating for the group delay of the filter.

```
plot(n(1:end-gd),x(1:end-gd))
```

hold on

```
plot(n(1:end-gd),y(gd+1:end),'r--')
axis([0 50 -2 2])
legend('Unfiltered Signal','Filtered Signal')
xlabel('Sample Index (n)')
ylabel('Signal Value')
```



The resulting plot shows both the unfiltered and filtered signals.

## Input Arguments

b - Filter coefficients
fixed-point vector
Filter coefficients, specified as a fixed-point vector.
Data Types: fi
x - Input data
fixed-point vector
Input data, specified as a fixed-point vector.
Data Types: fi

## zi - Initial conditions for filter delays

[] (default) | fixed-point vector | fixed-point matrix | fixed-point multidimensional array

Initial conditions for filter delays, specified as a fixed-point vector. zi must be a fi object with the same data type as y and zf.

- If $z i$ is a vector, then its length must be length ( b ) - 1 .
- If $z i$ is a matrix or multidimensional array, then the size of the leading dimension must be length (b)-1. The size of each remaining dimension must match the size of the corresponding dimension of $x$.

If you do not specify a value for zi, or if you specify [ ], it defaults to a fixed-point array with a value of 0 and the appropriate numerictype and size.

Data Types: fi

## dim - Dimension along which to operate

positive integer scalar
Dimension along which to operate, specified as a positive integer scalar.
Data Types: single | double | int8 | int16| int32| int64 | uint8|uint16|uint32|uint64| fi

## Output Arguments

## y - Filtered data

fixed-point vector | fixed-point matrix | fixed-point multidimensional array
Filtered data, returned as a fixed-point fi vector, matrix, or multidimensional array.
zf - Final conditions for filter delays
vector | matrix | multidimensional array
Final conditions for filter delays, returned as a fixed-point fi vector, matrix, or multidimensional array.

## Tips

- The filter function only supports FIR filters. In the general filter representation $b / a$, the denominator $a$ of an FIR filter is the scalar 1, which is the second input of this function.
- The numerictype of $b$ can be different than the numerictype of $x$.
- If you want to specify initial conditions but do not know what numerictype to use, first try filtering your data without initial conditions. You can do so by specifying [ ] for the input zi. After performing the filtering operation, you have the numerictype of y and $z f$ (if requested). Because the numerictype of zi must match that of $y$ and $z f$, you now know the numerictype to use for the initial conditions.


## Algorithms

## Filter length (L)

The filter length is length (b) or the number of filter coefficients specified in the fixed-point vector b.

## Filter order ( $\mathbf{N}$ )

The filter order is the number of states (delays) of the filter and is equal to L-1.

## Direct-Form Transposed FIR Filter

The filter function uses a Direct-Form Transposed FIR implementation of this difference equation:

$$
y(n)=b_{1} * x_{n}+b_{2} * x_{n-1}+\ldots+b_{L} * x_{n-N}
$$

where $L$ is the "Filter length ( L )" on page 4-408 and $N$ is the "Filter order ( N )" on page 4-409.
This diagram shows the direct-form transposed FIR filter structure used by the filter function.


## fimath Propagation Rules

The filter function uses these rules regarding fimath behavior:

- globalfimath is obeyed.
- If any of the inputs has an attached fimath, then it is used for intermediate calculations.
- If more than one input has an attached fimath, then the fimaths must be equal.
- The output $y$ is always associated with the default fimath.
- If the input vector zi has an attached fimath, then the output vector zf retains this fimath.


## Version History

Introduced in R2010a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{rm}}$.

Usage notes and limitations:

- Variable-sized inputs are only supported when the SumMode property of the governing fimath is set to Specify precision or Keep LSB.


## See Also

conv|filter

## fimath

Set fixed-point math settings

## Syntax

```
F = fimath
F = fimath(Name, Value)
```


## Description

F = fimath creates a fimath object with the default fimath property settings.
F = fimath (Name, Value) specifies the properties of a fimath object by using one or more namevalue pair arguments. All properties not specified in the constructor use default values.

## Examples

## Create a Default fimath Object

This example shows how to create a fimath object with the default property settings.

```
F = fimath
```

$F=$
RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

## Set Properties of a fimath Object

Set the properties of a fimath object at the time of object creation by using name-value pairs. For example, set the overflow action to saturate and the rounding method to convergent.

```
F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')
F =
 RoundingMethod: Convergent
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision
```


## Input Arguments

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = fimath('OverflowAction','Saturate','RoundingMethod','Floor')
CastBeforeSum - Whether both operands are cast to the sum data type before addition false or 0 (default) | true or 1

Whether both operands are cast to the sum data type before addition, specified as a numeric or logical 1 (true) or 0 (false).

Note This property is hidden when the SumMode is set to FullPrecision.

Example: $F=$ fimath('CastBeforeSum',true)
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical

MaxProductWordLength - Maximum allowable word length for the product data type 65535 (default) | positive integer

Maximum allowable word length for the product data type, specified as a positive integer.
Example: F = fimath('MaxProductWordLength',16)
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64
MaxSumWordLength - Maximum allowable word length for sum data type
65535 (default) | positive integer
Maximum allowable word length for the sum data type, specified as a positive integer.
Example: F = fimath('MaxSumWordLength',16)
Data Types: single | double | int8| int16|int32| int64|uint8|uint16|uint32|uint64

## OverflowAction - Action to take on overflow

'Saturate' (default)|'Wrap'
Action to take on overflow, specified as one of these values:

- 'Saturate ' - Saturate to the maximum or minimum value of the fixed-point range on overflow.
- 'Wrap' - Wrap on overflow. This mode is also known as two's complement overflow.

Example: F = fimath('OverflowAction','Wrap')
Data Types: char

## ProductBias - Bias of product data type

0 (default) | floating-point number

Bias of the product data type, specified as a floating-point number.
Example: F = fimath('ProductBias',1)
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64
ProductFixedExponent - Fixed exponent of product data type

- 30 (default) | nonzero integer

Fixed exponent of the product data type, specified as a nonzero integer.

Note The ProductFractionLength is the negative of the ProductFixedExponent. Changing one property changes the other.

Example: F = fimath('ProductFixedExponent',-20)
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64

## ProductFractionLength - Fraction length of product data type

30 (default) | nonzero integer
Fraction length, in bits, of the product data type, specified as a nonzero integer.

Note The ProductFractionLength is the negative of the ProductFixedExponent. Changing one property changes the other.

Example: $F=$ fimath ('ProductFractionLength',20)
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

## ProductMode - How product data type is determined

'FullPrecision' (default)| 'KeepLSB' | 'KeepMSB'| 'SpecifyPrecision'
How the product data type is determined, specified as one of these values:

- 'FullPrecision' - The full precision of the result is kept.
- 'KeepLSB ' - Keep the least significant bits. Specify the product word length. The fraction length is set to maintain the least significant bits of the product.
- 'KeepMSB ' - Keep the most significant bits. Specify the product word length. The fraction length is set to maintain the most significant bits of the product.
- 'SpecifyPrecision' - Specify the word and fraction lengths or slope and bias of the product.

Example: F = fimath('ProductMode','KeepLSB')
Data Types: char
ProductSlope - Slope of product data type
9.3132e-10 (default) | finite, positive floating-point number

Slope of the product data type, specified as a finite, positive floating-point number.

$$
\text { ProductSlope }=\text { ProductSlopeAd justmentFactor } \times 2^{\text {ProductFixedExponent }}
$$ Changing one of these properties affects the others.

Example: F = fimath('ProductSlope', 9.3132e-10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64
ProductSlopeAdjustmentFactor - Slope adjustment factor of the product data type
1 (default) | floating-point number greater than or equal to 1 and less than 2
Slope adjustment factor of the product data type, specified as a floating-point number greater than or equal to 1 and less than 2 .

## Note

ProductSlope $=$ ProductSlopeAd justmentFactor $\times 2^{\text {ProductFixedExponent }}$
Changing one of these properties affects the others.

Example: $F=$ fimath('ProductSlopeAdjustmentFactor',1)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64

## ProductWordLength - Word length of product data type

32 (default) | positive integer
Word length, in bits, of the product data type, specified as a positive integer.
Example: F = fimath('ProductWordLength',64)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 |uint64

## RoundingMethod - Rounding method to use

'Nearest' (default) | 'Ceiling' | 'Convergent' | 'Zero' | 'Floor' | 'Round'
Rounding method to use, specified as one of these values:

- 'Nearest' - Round toward nearest. Ties round toward positive infinity.
- 'Ceiling ' - Round toward positive infinity.
- 'Convergent ' - Round toward nearest. Ties round to the nearest even stored integer (least biased).
- 'Zero' - Round toward zero.
- 'Floor' - Round toward negative infinity.
- 'Round ' - Round toward nearest. Ties round toward negative infinity for negative numbers, and toward positive infinity for positive numbers.

Example: F = fimath('RoundingMethod','Convergent')
Data Types: char

## SumBias - Bias of sum data type

0 (default) | floating-point number

Bias of the sum data type, specified as a floating-point number.
Example: F = fimath('SumBias',0)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8|uint16|uint32|uint64
SumFixedExponent - Fixed exponent of sum data type

- 30 (default) | nonzero integer

Fixed exponent of the sum data type, specified as a nonzero integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property changes the other.

Example: $\mathrm{F}=$ fimath('SumFixedExponent', -20)
Data Types: single | double |int8 | int16 | int32 | int64 | uint8 | uint16|uint32|uint64

## SumFractionLength - Fraction length of sum data type

30 (default) | nonzero integer
Fraction length, in bits, of the sum data type, specified as a nonzero integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property changes the other.

Example: $F=$ fimath('SumFractionLength', 20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8|uint16|uint32|uint64

## SumMode - How the sum data type is determined

## 'FullPrecision' (default) | 'KeepLSB' | 'KeepMSB' | 'SpecifyPrecision'

How the sum data type is determined, specified as one of these values:

- 'FullPrecision' - The full precision of the result is kept.
- 'KeepLSB ' - Keep least significant bits. Specify the sum data type word length. The fraction length is set to maintain the least significant bits of the sum.
- 'KeepMSB ' - Keep most significant bits. Specify the sum data type word length. The fraction length is set to maintain the most significant bits of the sum and no more fractional bits than necessary.
- 'SpecifyPrecision' - Specify the word and fraction lengths or slope and bias of the sum data type.

Example: $F=$ fimath('SumMode','KeepLSB')
Data Types: char

## SumSlope - Slope of sum data type

9.3132e-10 (default) | floating-point number

Slope of the sum data type, specified as a floating-point number.

## Note

$$
\text { SumSlope }=\text { SumSlopeAdjustmentFactor } \times 2^{\text {SumFixedExponent }}
$$

Changing one of these properties affects the others.

Example: F = fimath('SumSlope',9.3132e-10)
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

## SumSlopeAdjustmentFactor - Slope adjustment factor of the sum data type

1 (default) | floating-point number greater than or equal to 1 and less than 2
Slope adjustment factor of the sum data type, specified as a floating-point number greater than or equal to 1 and less than 2.

## Note

$$
\text { SumSlope }=\text { SumSlopeAdjustmentFactor } \times 2^{\text {SumFixedExponent }}
$$

Changing one of these properties affects the others.

Example: F = fimath('SumSlopeAdjustmentFactor',1)
Data Types: single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

## SumWordLength - Word length of sum data type

32 (default) | positive integer
Word length, in bits, of the sum data type, specified as a positive integer.
Example: F = fimath('SumWordLength',64)
Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

## Version History

Introduced before R2006a
R2021a: Inexact property names for fi, fimath, and numerictype objects not supported

In previous releases, inexact property names for fi, fimath, and numerictype objects would result in a warning. In R2021a, support for inexact property names was removed. Use exact property names instead.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
Usage notes and limitations:

- Fixed-point signals coming in to a MATLAB Function block from Simulink are assigned a fimath object. You define this object in the MATLAB Function block dialog in the Model Explorer.
- Use to create fimath objects in the generated code.
- If the ProductMode property of the fimath object is set to anything other than FullPrecision, the ProductWordLength and ProductFractionLength properties must be constant.
- If the SumMode property of the fimath object is set to anything other than FullPrecision, the SumWordLength and SumFractionLength properties must be constant.


## HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## See Also

fi|fipref|globalfimath|numerictype|quantizer|removefimath|setfimath

## Topics

"fimath Object Construction"
"fimath Object Properties"
How Functions Use fimath
"fimath Properties Usage for Fixed-Point Arithmetic"

## fipref

Set fixed-point preferences

## Syntax

P = fipref
P = fipref(Name,Value)

## Description

$P=$ fipref creates a default fipref object. The fipref object defines the display and logging attributes for all fi objects.
$P=$ fipref(Name,Value) creates a fipref object with properties specified by Name, Value pairs.

Your fipref settings persist throughout your MATLAB session. Use reset (fipref) to return to the default settings during your session. Use savefipref to save your display preferences for subsequent MATLAB sessions.

## Examples

## Create a Default fipref Object

```
P = fipref
P =
 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'full'
 LoggingMode: 'Off'
 DataTypeOverride: 'ForceOff'
```


## Set fipref Properties at Object Creation

You can set properties of fipref objects at the time of object creation by including properties after the arguments of the fipref constructor function. For example, to set NumberDisplay to bin and NumericTypeDisplay to short,

```
P = fipref('NumberDisplay','bin','NumericTypeDisplay','short')
P =
 NumberDisplay: 'bin'
 NumericTypeDisplay: 'short'
 FimathDisplay: 'full'
 LoggingMode: 'Off'
```


## Input Arguments

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ..., NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: $\mathrm{P}=$
fipref('NumberDisplay','RealWorldValue','NumericTypeDisplay','short');

## Data Type Override Properties

## DataTypeOverride - Data type override options

'ForceOff' (default) |'ScaledDoubles'| 'TrueDoubles' | 'TrueSingles'
Data type override options for fi objects, specified as the comma-separated pair consisting of 'DataTypeOverride' and one of these values:

- 'ForceOff' - No data type override
- 'ScaledDoubles ' - Override with scaled doubles
- 'TrueDoubles ' - Override with doubles
- 'TrueSingles ' — Override with singles

Data type override only occurs when the fi constructor function is called.
Data Types: char

## DataTypeOverrideAppliesTo - Data type override setting applicability 'AllNumericTypes' (default)|'Fixed-Point'|'Floating-Point'

Data type override setting applicability to fi objects, specified as the comma-separated pair consisting of 'DataTypeOverrideAppliesTo' and one of these values:

- 'AllNumericTypes ' - Apply data type override to all fi data types. This setting does not override built-in integer types.
- 'Fixed-Point' - Apply data type override only to fixed-point data types
- 'Floating-Point ' - Apply data type override only to floating-point fi data types

DataTypeOverrideAppliesTo displays only if DataTypeOverride is not set to ForceOff.
Data Types: char
Display Properties

## FimathDisplay - Display options for local fimath attributes of fi objects

'full' (default) |'none'

Display options for the local fimath attributes of a fi object, specified as the comma-separated pair consisting of 'FimathDisplay' and one of these values:

- 'full' - Displays all of the fimath attributes of a fixed-point object
- 'none' - None of the fimath attributes are displayed

Data Types: char

## NumberDisplay - Display options for the value of a fi object

'RealWorldValue' (default)|'bin'|'dec'|'hex'|'int'|'none'
Display options for the values of a fi object, specified as the comma-separated pair consisting of
'NumberDisplay ' and one of these values:

- 'bin' - Displays the stored integer value in binary format
- 'dec ' - Displays the stored integer value in unsigned decimal format
- 'RealWorldValue' - Displays the stored integer value in the format specified by the MATLAB format function
fi objects in rat format are displayed according to

$$
\frac{1}{\left(2^{\text {fixed - pointexponent }}\right)} \times \text { storedinteger }
$$

- 'hex' - Displays the stored integer value in hexadecimal format
- 'int ' - Displays the stored integer value in signed decimal format
- 'none ' - No value is displayed

The stored integer value does not change when you change the fipref object. The fipref object only affects the display.

## Data Types: char

## NumericTypeDisplay - Display options for the numerictype attributes of a fi object <br> 'full' (default)|'none' | 'short'

Display options for the numerictype attributes of a fi object, specified as the comma-separated pair consisting of 'NumericTypeDisplay' and one of these values:

- 'full' - Displays all of the numerictype attributes of a fi object
- 'none' - None of the numerictype attributes are displayed
- 'short' - Displays the numerictype attributes of a fi object using the abbreviated notation of the numerictype constructor


## Data Types: char

## Logging Properties

## LoggingMode - Logging options for operations performed on fi objects

```
'off'(default)|'on'
```

Logging options for operations performed on fi objects, specified as the comma-separated pair consisting of 'LoggingMode' and one of these values:

- 'off' - No logging
- 'on' - Information is logged for future operations

Overflows and underflows for assignment, plus, minus, and multiplication operations are logged as warnings when LoggingMode is set to on.

When LoggingMode is on, you can also use the following functions to return logged information about assignment and creation operations to the MATLAB command line:

- maxlog - Returns the maximum real-world value
- minlog - Returns the minimum value
- noverflows - Returns the number of overflows
- nunderflows - Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to log information about it. To clear the log, use the function resetlog.

Data Types: char

## Version History

Introduced before R2006a

## See Also

fi|fimath|numerictype|quantizer| savefipref

## fix

Round toward zero

## Syntax

$y=f i x(a)$

## Description

$y=$ fix(a) rounds fi object a to the nearest integer in the direction of zero and returns the result in fi object $y$.

## Examples

## Use fix on a Signed fi Object

The following example demonstrates how the fix function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 3.

```
a = fi(pi,1,8,3)
a =
 3.1250
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3
y = fix(a)
y =
 3
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 5
 FractionLength: 0
```

The following example demonstrates how the fix function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 12 .

```
a = fi(0.025,1,8,12)
a =
 0.0249
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12
```

```
y = fix(a)
y =
 0
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
FractionLength: 0
```


## Compare Rounding Methods

The functions ceil, fix, and floor differ in the way they round fi objects:

- The ceil function rounds values to the nearest integer toward positive infinity.
- The fix function rounds values to the nearest integer toward zero.
- The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

```
a = fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]');
y = [a ceil(a) fix(a) floor(a)]
y=
\begin{tabular}{rrrr}
-2.5000 & -2.0000 & -2.0000 & -3.0000 \\
-1.7500 & -1.0000 & -1.0000 & -2.0000 \\
-1.2500 & -1.0000 & -1.0000 & -2.0000 \\
-0.5000 & 0 & 0 & -1.0000 \\
0.5000 & 1.0000 & 0 & 0 \\
1.2500 & 2.0000 & 1.0000 & 1.0000 \\
1.7500 & 2.0000 & 1.0000 & 1.0000 \\
2.5000 & 3.0000 & 2.0000 & 2.0000
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
plot(a,y); legend('a','ceil(a)','fix(a)','floor(a)','location','NW');
```



## Input Arguments

a - Input fi array
scalar | vector | matrix | multidimensional array
Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.
fix does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is trivial when the slope is an integer power of 2 and the bias is 0 .

Data Types: fi
Complex Number Support: Yes

## Algorithms

- $y$ and a have the same fimath object and DataType property.
- When the DataType property of a is single, double, or boolean, the numerictype of $y$ is the same as that of a.
- When the fraction length of a is zero or negative, a is already an integer, and the numerictype of $y$ is the same as that of $a$.
- When the fraction length of a is positive, the fraction length of $y$ is 0 , its sign is the same as that of a, and its word length is the difference between the word length and the fraction length of a, plus one bit. If a is signed, then the minimum word length of y is 2 . If a is unsigned, then the minimum word length of y is 1 .


## Version History

Introduced in R2008a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## See Also

ceil| convergent | floor|nearest | round

## fixed.extractNumericType

Extract numeric type from input

## Syntax

T = fixed.extractNumericType(x)

## Description

$\mathrm{T}=$ fixed.extractNumericType(x) returns an embedded.numerictype object that is extracted from a numeric value input $x$, or is specified by the input argument $x$.

## Examples

## Extract Numeric Type

Extract the numeric type from an input numeric value.

```
T = fixed.extractNumericType(pi)
T =
 DataTypeMode: Double
T = fixed.extractNumericType(int8(0))
T =
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0
T = fixed.extractNumericType(fi(pi,1,24,12))
T =
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12
T = fixed.extractNumericType(half(pi))
T =
 DataTypeMode: Half
```

Extract the numeric type from a numeric type specification object.

```
T = fixed.extractNumericType(numerictype(1,32,16))
T =
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16
T = fixed.extractNumericType(fixdt(0,18,0))
T =
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 18
 FractionLength: 0
```

Extract the numeric type from a data type name string.

```
T = fixed.extractNumericType('int8')
T =
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0
T = fixed.extractNumericType('sfix16_En3')
T =
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3
```

Extract the numeric type from a constructor string.

```
T = fixed.extractNumericType('numerictype(1,33,55)')
T =
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 33
 FractionLength: 55
T = fixed.extractNumericType('fixdt(0,77,22)')
T =
DataTypeMode: Fixed-point: binary point scaling
```


## Input Arguments

x - Input
scalar
Input, specified as a scalar.
The following input types are supported:

- Numeric values - half, single, double, int8, int16, int32, int64, uint8, uint16, uint32, uint64, logical, fi
- Numeric type specification objects - embedded. numerictype objects, Simulink. NumericType objects
- MATLAB data type name strings - 'half','single', 'double','int8', 'int16','int32', 'int64', 'uint8', 'uint16', 'uint32','uint64','logical'
- Simulink data type name strings (not aliases) - 'bool', 'sfix16_En3', etc.
- Constructor strings that evaluate to a numeric type object - ' numerictype(1, 33,55 ) ', 'fixdt(0,77,22)', etc.

Data Types: single | double | int8| int16|int32| int64 | uint8|uint16|uint32|uint64 | logical|fi
Complex Number Support: Yes

## Output Arguments

T - Numeric type of input
embedded. numerictype object
Numeric type of the input, returned as a embedded. numerictype object.

## Version History

Introduced in R2021a

## See Also

fi|fixdt | numerictype | Simulink. NumericType | "Fixed-Point Numbers in Simulink"

## fixDiv

Round the result of division toward zero

## Syntax

$y=f i x \operatorname{Div}(x, d)$
$y=f i x D i v(x, d, m)$

## Description

$y=f i x \operatorname{Div}(x, d)$ returns the result of $x / d$ rounded to the nearest integer value in the direction of zero.
$y=f i x \operatorname{Div}(x, d, m)$ returns the result of $x / d$ rounded to the nearest multiple of $m$ in the direction of zero.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to contain both the largest and smallest possible solutions given the data type of $x$, and the values of $d$ and m .

## Examples

## Divide and Round to Zero

Perform a division operation and round to the nearest integer value in the direction of zero.

```
fixDiv(int16(201),10)
ans =
 2 0
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 13
 FractionLength: 0
```

Perform a division operation and round to the nearest multiple of 7 in the direction of zero.

```
fixDiv(int16(201),10,7)
ans =
 1 4
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 13
 FractionLength: 0
```


## Divide and Generate Code

Define a function that uses fixDiv.

```
function y = fixDiv_example(x,d)
y = fixDiv(x,d);
end
```

Define inputs and execute the function in MATLAB®.

```
x = fi(pi);
d = fi(2);
y = fixDiv_example(x,d)
y =
 1
```

    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 2
    FractionLength: 0
    To generate code for this function, the denominator d must be defined as a constant.

```
codegen fixDiv_example -args {x, coder.Constant(d)}
Code generation successful.
```

Alternatively, you can define the denominator, d , as constant in the body of the code.

```
function y = fixDiv10(x)
y = fixDiv(x,10);
end
x = fi(5*pi);
y = fixDiv10(x)
y =
 1
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0
codegen fixDiv10 -args {x}
Code generation successful.
```


## Input Arguments

## x - Dividend

scalar
Dividend, specified as a scalar.
Data Types: single | double | int8 | int16| int32 | int64|uint8|uint16|uint32|uint64 | logical|fi

## d - Divisor

scalar
Divisor, specified as a scalar.
Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|fi

## $m$ - Value to round to nearest multiple of

1 (default) | scalar
Value to round to nearest multiple of, specified as a scalar.

```
Data Types: single| double| int8| int16| int32| int64|uint8|uint16|uint32|uint64|
logical|fi
```


## Output Arguments

## $y$ - Result of division and round to zero

## scalar

Result of division and round to zero, returned as a scalar.
The datatype of $y$ is calculated such that the wordlength and fraction length are of a sufficient size to contain both the largest and smallest possible solutions given the data type of $x$, and the values of $d$ and $m$.

## Version History

Introduced in R2021a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.
To generate code, the denominator d must be declared as constant.

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\text {TM }}$.
Slope-bias representation is not supported for fixed-point data types.

## See Also

ceilDiv | floorDiv | nearestDiv

## fixed.aggregateType

Compute aggregate numerictype

## Syntax

```
aggNT = fixed.aggregateType(A,B)
```


## Description

aggNT = fixed.aggregateType(A,B) computes the smallest binary point scaled numerictype that is able to represent both the full range and precision of inputs $A$ and $B$.

## Examples

## Compute Aggregate Numeric Type

## Aggregate Numeric Type of Two numerictype Objects

a_nt $=$ numerictype(1,16,13);
b_nt = numerictype(1,18,16);
ağgNT = fixed.aggregateType(a_nt,b_nt)
$\operatorname{aggNT}=$

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 19
FractionLength: 16
a_nt can represent the range $[-4,4)$ with precision $2^{\wedge}-13$. b_nt can represent the range $[-2,2$ ) with precision $2^{\wedge}-16$. aggNT can represent the range $[-4,4)$ with precision $2^{\wedge}-16$.

## Aggregate Numeric Type of Two fi Objects

$a_{-} f i=u f i(p i, 16)$
a_fi =
3.1416

DataTypeMode: Fixed-point: binary point scaling Signedness: Unsigned WordLength: 16
FractionLength: 14
b_fi $=s f i(-p i, 24)$
b_fi =
$-3.1416$
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed

WordLength: 24
FractionLength: 21
aggNT = fixed.aggregateType(a_fi,b_fi)
aggNT =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 21

## Aggregate Numeric Type of a fi Object and an Integer

a_fi $=u f i(p i, 16)$;
cInt = uint8(0);
aggNT = fixed.aggregateType(a_fi,cInt)
aggNT =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 22
FractionLength: 14
a_fi can represent the range [ 0,3 ] with precision $2^{\wedge}-14$. cInt can represent the range [0,255] with precision $2^{\wedge} 0$. aggNT can represent the range $[0,255]$ with precision $2^{\wedge}-14$.

## Input Arguments

## A, B - Input objects

integers | numerictype objects | fi objects
Input objects, specified as integers, binary point scaled fixed-point fi objects, or numerictype objects.

## Output Arguments

aggNT - Aggregate numeric type
numerictype object
Aggregate numeric type, returned as a numerictype object.

## Version History

Introduced in R2011b

## See Also

numerictype|fi

## fixed.backwardSubstitute

Solve upper-triangular system of equations through backward substitution

## Syntax

$x=$ fixed.backwardSubstitute( $R, C$ )
$x$ = fixed.backwardSubstitute(R, C, outputType)

## Description

$x=$ fixed.backwardSubstitute( $\mathrm{R}, \mathrm{C}$ ) performs backward substitution on upper-triangular matrix R to compute $x=R \backslash C$.
$x=$ fixed.backwardSubstitute( $\mathrm{R}, \mathrm{C}$, outputType) returns $x=R \backslash C$, where the data type of output variable, $x$, is specified by outputType.

## Examples

## Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations $\left(A^{\prime} A\right) x=B$ using forward and backward substitution.

Specify the input variables, A and B .

```
rng default;
A = gallery('randsvd', [5,3], 1000);
b = [1; 1; 1; 1; 1];
```

Compute the upper-triangular factor, R , of A , where $A=Q R$.
$R=$ fixed.qlessQR(A);
Use forward and backward substitution to compute the value of X .

```
X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)
X = 5×1
105 x
 -0.9088
 2.7123
 -0.8958
 0
 0
```

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.
$x=$ fixed.qlessQRMatrixSolve(A,b)

```
x = 5x1
105 x
 -0.9088
 2.7123
 -0.8958
 0
 0
```


## Input Arguments

R - Upper-triangular input matrix
matrix
Upper triangular input, specified as a matrix.

```
Data Types: single| double|fi
Complex Number Support: Yes
```


## C - Linear system factor <br> matrix

Linear system factor, specified as a matrix.
Data Types: single|double|fi
Complex Number Support: Yes

## outputType - Output data type

numerictype object | numeric variable
Output data type, specified as a numerictype object or a numeric variable. If outputType is specified as a numerictype object, the output, $x$, will have the specified data type. If outputType is specified as a numeric variable, $x$ will have the same data type as the numeric variable.

Data Types: single| double| int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|fi|numerictype

## Output Arguments

x - Solution
matrix
Solution, returned as a matrix satisfying the equation $x=R \backslash C$.

## Version History

Introduced in R2020b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

Generate code for double-precision, single-precision, and fixed-point data types.

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\text {rM }}$.
$R$ and $C$ must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

## See Also

fixed.forwardSubstitute|fixed.qlessQR|fixed.qlessQRUpdate|fixed.qrAB|
fixed.qrMatrixSolve|fixed.qlessQRMatrixSolve

## fixed.complexConditionNumberUpperBound

Estimate of upper bound for 2-norm condition number of complex-valued matrix

## Syntax

$C=$ fixed.complexConditionNumberUpperBound(m,n,max_abs_A, noiseStandardDeviation) C = fixed.complexConditionNumberUpperBound( $\qquad$ ,p_s)
C = fixed.complexConditionNumberUpperBound( $\qquad$ ,regularizationParameter)

## Description

$C=$ fixed.complexConditionNumberUpperBound(m,n,max_abs_A, noiseStandardDeviation) returns an estimate of an upper bound for the 2-norm condition number of a complex-valued m-by-n matrix $A$, where max_abs_A >= max (abs(A(:))) and noiseStandardDeviation is the standard deviation of the additive random noise in $A$.

C = fixed.complexConditionNumberUpperBound( $\qquad$ , p_s) uses the probability p_s that the estimate of the lower bound of the smallest singular value is larger than the actual smallest singular value. $p \_s$ is an optional parameter. If not supplied or empty, then the default value is used.

C = fixed.complexConditionNumberUpperBound( $\qquad$ , regularizationParameter) returns an estimate of an upper bound for the 2-norm condition number of a complex-valued matrix $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$, where $\lambda$ is the regularizationParameter, $A$ is an $m$-by- $n$ matrix with $m>=n$, and $I_{n}=$ eye $(n)$. regularizationParameter is an optional parameter. If not supplied or empty, then the default value is used.

## Examples

## Condition Number of Low Rank Matrix with Additive Noise

Estimate an upper bound for the 2-norm condition number of a low rank, complex-valued matrix with additive noise.

Define a complex matrix A with additive noise.

```
m = 300;
n = 10;
rankA = 3;
A = fixed.example.complexRandomLowRankMatrix(m,n,rankA);
noiseStandardDeviation = sqrt(10^(-50/10));
A = A + fixed.example.complexNormalRandomArray(0,...
 noiseStandardDeviation,m,n);
```

Estimate an upper bound for the condition number of the matrix $A$.

```
C = fixed.complexConditionNumberUpperBound(m,n,...
 max(abs(A(:))), noiseStandardDeviation)
```


## C = <br> $1.4375 \mathrm{e}+03$

Compare to the actual condition number of the matrix.
C_actual $=$ cond $(\mathrm{A})$
C_actual =
304.4858

## Condition Number of Low Rank Matrix with Regularization Parameter

Estimate an upper bound for the 2-norm condition number of a low rank, complex-valued matrix with additive noise, using the regularization parameter.

Define a complex matrix A with additive noise.

```
m = 300;
n = 10;
rankA = 3;
A = fixed.example.complexRandomLowRankMatrix(m,n,rankA);
noiseStandardDeviation = sqrt(10^(-50/10));
A = A + fixed.example.complexNormalRandomArray(0,...
 noiseStandardDeviation,m,n);
Define the regularization parameter.
regularizationParameter = 0.01;
A = [regularizationParameter*eye(n);A];
```

Estimate an upper bound for the condition number of the matrix A with the regularization parameter. Use the default value for $\mathrm{p}_{\mathrm{L}} \mathrm{s}$.

```
C = fixed.complexConditionNumberUpperBound(m,n,max(abs(A(:))),...
 noiseStandardDeviation,[],regularizationParameter)
C =
 1.3946e+03
```

Compare to the actual condition number of the matrix.
C_actual = cond(A)
C_actual =
291.7264

## Condition Number of Full Rank Matrix

Estimate an upper bound for the 2-norm condition number of a full rank random matrix with normally distributed elements.

Define a full rank, random, complex matrix A with normally distributed elements.
$\mathrm{m}=300$;
n = 10;
noiseStandardDeviation = 1;
A = fixed.example.complexNormalRandomArray (0,... noiseStandardDeviation,m,n);

Estimate an upper bound for the condition number of the matrix $A$.
$C=$ fixed.complexConditionNumberUpperBound (m, $n, \ldots$
$\max (\operatorname{abs}(\mathrm{A}(:)))$, noiseStandardDeviation)
$C=$
12.0438

Compare to the actual condition number of the matrix.
C_actual $=$ cond $(A)$
C_actual =
1.3560

## Input Arguments

## m - Number of rows in matrix $A$

positive integer-valued scalar
Number of rows in matrix A, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, $n$.

Data Types: single| double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

## n - Number of columns in matrix $A$

positive integer-valued scalar
Number of columns in matrix $A$, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, $n$.
Data Types: single| double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

## max_abs_A - Maximum of absolute value of matrix $A$ <br> scalar

Maximum of absolute value of matrix $A$, specified as a scalar.
Example: max_abs_A >= max(abs(A(:)))
Data Types: single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64
noiseStandardDeviation - Standard deviation of additive random noise in matrix $A$ (2^-precisionBits)/(sqrt(12)) (default)| scalar

Standard deviation of additive random noise in matrix A, specified as a scalar.
If noiseStandardDeviation is not supplied or empty, then the default value is used, which is the standard deviation of the quantization noise,

$$
\sigma_{q}=\frac{2^{- \text {precisionBits }}}{\sqrt{12}}
$$

This value is calculated by the function fixed.complexQuantizationNoiseStandardDeviation.
If noiseStandardDeviation is zero, then fixed.singularValueLowerBound will return zero for the estimate of the smallest singular value and fixed.complexConditionNumberUpperBound will return an infinite condition number.

Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64

## p_s - Probability that estimate of lower bound of smallest singular value is larger than actual smallest singular value of matrix $A$

### 2.8665e-07 (default) | scalar

Probability that estimate of lower bound of smallest singular value is larger than actual smallest singular value of matrix A, specified as a scalar.

If $p_{-} s$ is not supplied or empty, then the default of $p_{-} s=(1 / 2) *(1+e r f(-5 / \operatorname{sqrt}(2)))=$ $2.8665 \mathrm{e}-07$ is used, which is five standard deviations below the mean. So, the probability that the estimated lower bound for the smallest singular value is less than the actual smallest singular value is 1 - p_s = 0.99999971 - p_s = 0.9999997 .
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64

## regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar.
regularizationParameter is the Tikhonov regularization parameter of the matrix
[regularizationParameter*eye( n ) ; A], where A is an m -by-n matrix with $\mathrm{m}>=\mathrm{n}$.
Data Types: single | double

## More About

## Condition Number for Inversion

A condition number for a matrix and computational task measures how sensitive the answer is to changes in the input data and roundoff errors in the solution process. The condition number for inversion of a matrix measures the sensitivity of the solution of a system of linear equations to errors in the data. The condition number for inversion gives an indication of the accuracy of the results from matrix inversion and the linear equation solution.

A large condition number indicates that a small change in the coefficient matrix A can lead to larger changes in the output $b$ in the linear equation $A x=b$. The extreme case is when A is so poorly conditioned that it is singular (an infinite condition number), in which case it has no inverse and the linear equation has no unique solution.

## Algorithms

The condition number with respect to the inversion of matrix $A$ is the ratio of the largest singular value of A to the smallest singular value of A. The fixed.complexSingularValueLowerBound
function estimates the lower bound of the smallest singular value, $s \_n$, of $A$. The fixed.singularValueUpperBound function determines an upper bound for the largest singular value, svdUpperBound, of $A$. A bound on the condition number of $A$ is then cond $(A)=$ $\max (\operatorname{svd}(A)) / \min (\operatorname{svd}(A))$ <= svdUpperBound/s_n [1][2][3].

## Version History

## Introduced in R2022b

## References

[1] Bryan, Thomas A., Jenna L. Warren, Brenda Zhuang, and Jessica Clayton. Continuation in Part for "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2022.
[2] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2020.
[3] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/ 10.1137/040616413.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## See Also

fixed.singularValueUpperBound | fixed.complexSingularValueLowerBound |
fixed.realConditionNumberUpperBound|
fixed.complexQuantizationNoiseStandardDeviation |cond

## fixed.complexQlessQRMatrixSolveFixedpointTypes

Determine fixed-point types for matrix solution of complex-valued $A^{\prime} A X=B$ using $Q R$ decomposition

## Syntax

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B, precisionBits)
T = fixed.complexQlessQRMatrixSolveFixedpointTypes( $\qquad$ , noiseStandardDeviation)
T = fixed. complexQlessQRMatrixSolveFixedpointTypes ( $\qquad$ ,p_s)
T = fixed.complexQlessQRMatrixSolveFixedpointTypes( $\qquad$ , regularizationParameter) T = fixed.complexQlessQRMatrixSolveFixedpointTypes( $\qquad$ , maxWordLength)

## Description

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B, precisionBits) computes fixed-point types for the matrix solution of complex-valued $A^{\prime} A X=\bar{B}$ using QR decomposition. $T$ is returned as a struct with fields that specify fixed-point types for $A$ and $B$ that guarantee no overflow will occur in the QR algorithm transforming $A$ in-place into upper-triangular $R$, where $Q R=A$ is the QR decomposition of $X$, and $X$ such that there is a low probability of overflow.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes( $\qquad$ ,
noiseStandardDeviation) specifies the standard deviation of the additive random noise in $A$. noiseStandardDeviation is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes( $\qquad$ ,p_s) specifies the probability that the estimate of the lower bound for the smallest singular value of $A$ is larger than the actual smallest singular value of the matrix. p_s is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes( $\qquad$ ,
regularizationParameter) computes fixed-point types for the matrix solution of complex-valued

$$
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
$$

where $\lambda$ is the regularizationParameter, $A$ is an $m$-by- $n$ matrix, and $I_{n}=\operatorname{eye}(n)$. regularizationParameter is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes( $\qquad$ , maxWordLength) specifies the maximum word length of the fixed-point types. maxWordLenth is an optional parameter. If not supplied or empty, then the default value is used.

## Examples

## Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B

This example shows how to use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to analytically determine fixed-point types for the solution of the complex least-squares matrix equation $A^{\prime} A X=B$, where $A$ is an $m$-by- $n$ matrix with $m \geq n, B$ is $n$-by- $p$, and $X$ is $n$-by- $p$.

Fixed-point types for the solution of the matrix equation $A^{\prime} A X=B$ are well-bounded if the number of rows, $m$, of $A$ are much greater than the number of columns, $n$ (i.e. $m \gg n$ ), and $A$ is full rank. If $A$ is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a / b$ and $a, b \in[-1,1]$, then $x$ can be arbitrarily large if $b$ is close to 0 .

## Define System Parameters

Define the matrix attributes and system parameters for this example.
$m$ is the number of rows in matrix $A$. In a problem such as beamforming or direction finding, $m$ corresponds to the number of samples that are integrated over.
m = 300;
$n$ is the number of columns in matrix $A$ and rows in matrices $B$ and $X$. In a least-squares problem, $m$ is greater than $n$, and usually $m$ is much larger than $n$. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
$\mathrm{n}=10$;
$p$ is the number of columns in matrices $B$ and $X$. It corresponds to simultaneously solving a system with $p$ right-hand sides.
$\mathrm{p}=1$;
In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, complex-valued matrices $A$ and $B$ are constructed such that the magnitude of the real and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute value of any element is $|1+1 i|=\sqrt{2}$. Your own system requirements will define what those values are. If you don't know what they are, and $A$ and $B$ are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of $A$ and $B$.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = sqrt(2);
max_abs_B is an upper bound on the maximum magnitude element of $B$.
max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The quantization noise standard deviation is a function of the required number of bits of precision. Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.

```
quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBi
```

quantizationNoiseStandardDeviation $=2.4333 e-08$

## Compute Fixed-Point Types

In this example, assume that the designed system matrix $A$ does not have full rank (there are fewer signals of interest than number of columns of matrix $A$ ), and the measured system matrix $A$ has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix $A$ have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation $=$ thermalNoiseStandardDeviation;
Use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to compute fixed-point types.

```
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)
T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]
```

T.A is the type computed for transforming $A$ to $R=Q^{\prime} A$ in-place so that it does not overflow.
T.A
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: }3
FractionLength: 24
```

T.B is the type computed for $B$ so that it does not overflow.
T.B
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 27
FractionLength: 24
```

T. X is the type computed for the solution $X=\left(A^{\prime} A\right) \backslash B$ so that there is a low probability that it overflows.

```
T.X
ans =
[]
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
FractionLength: 24
```


## Use the Specified Types to Solve the Matrix Equation A'AX=B

Create random matrices $A$ and $B$ such that $\operatorname{rank} A=\operatorname{rank}(A)$. Add random measurement noise to $A$ which will make it become full rank.

```
rng('default');
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
```

Cast the inputs to the types determined by fixed. complexQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent to adding random noise.

```
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
```

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB executable (MEX) function.

```
fiaccel fixed.qlessQRMatrixSolve -args {A,B,T.X} -o qlessQRMatrixSolve_mex
```

Specify output type T. X and compute fixed-point $X=\left(A^{\prime} A\right) \backslash B$ using the QR method.
X = qlessQRMatrixSolve_mex(A,B,T.X);
Compute the relative error to verify the accuracy of the output.

```
relative_error = norm(double(A'*A*X - B))/norm(double(B))
relative_error = 0.1054
```

Suppress mlint warnings in this file.

```
%#ok<*NASGU>
%#ok<*ASGLU>
```


## Determine Fixed-Point Types for Complex Q-less QR Matrix Solve with Tikhonov Regularization

This example shows how to use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to analytically determine fixed-point types for the solution of the complex least-squares matrix equation

$$
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right]^{\mathrm{H}}\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\mathrm{H}} A\right) X=B
$$

where $A$ is an $m$-by- $n$ matrix with $m \geq n, B$ is $n$-by- $p, X$ is $n$-by- $p, I_{n}=\operatorname{eye}(n)$, and $\lambda$ is a regularization parameter.

## Define System Parameters

Define the matrix attributes and system parameters for this example.
$m$ is the number of rows in matrix $A$. In a problem such as beamforming or direction finding, $m$ corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrices B and X . In a least-squares problem, m is greater than $n$, and usually $m$ is much larger than $n$. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
$\mathrm{n}=10 ;$
$p$ is the number of columns in matrices $B$ and $X$. It corresponds to simultaneously solving a system with $p$ right-hand sides.

```
p = 1;
```

In this example, set the rank of matrix $A$ to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.

```
rankA = 3;
```

precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 32;
Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

```
regularizationParameter = 0.01;
```

In this example, complex-valued matrices $A$ and $B$ are constructed such that the magnitude of the real and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute value of any element is $|1+1 i|=\sqrt{2}$. Your own system requirements will define what those values are. If you don't know what they are, and $A$ and $B$ are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of $A$ and $B$.
max_abs_A is an upper bound on the maximum magnitude element of $A$.
max_abs_A $=\operatorname{sqrt}(2)$;
max_abs_B is an upper bound on the maximum magnitude element of $B$.
max_abs_B = sqrt(2);
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The quantization noise standard deviation is a function of the required number of bits of precision. Use fixed. complexQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.

```
quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBi
```

quantizationNoiseStandardDeviation = 9.5053e-11

## Compute Fixed-Point Types

In this example, assume that the designed system matrix $A$ does not have full rank (there are fewer signals of interest than number of columns of matrix $A$ ), and the measured system matrix $A$ has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix $A$ have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.

```
noiseStandardDeviation = thermalNoiseStandardDeviation;
```

Use the fixed. complexQlessQRMatrixSolveFixedpointTypes function to compute fixed-point types.

```
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation,[],regularizationP\overline{Parameter)}
T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]
```

T. A is the type computed for transforming $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ to $R=Q^{\mathrm{H}}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ in-place so that it does not overflow.

## T.A

ans =
[]

```
DataTypeMode: Fixed-point: binary point scaling
```

    Signedness: Signed
    WordLength: 40
FractionLength: 32
T. B is the type computed for $B$ so that it does not overflow.
т.в
ans $=$
[]
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 35
FractionLength: 32
T. X is the type computed for the solution $X=\left(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]^{\mathrm{H}}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\right) \backslash B$ so that there is a low probability that it overflows.
T.X
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 48
FractionLength: 32
```


## Use the Specified Types to Solve the Matrix Equation

Create random matrices $A$ and $B$ such that rankA=rank $(A)$. Add random measurement noise to $A$ which will make it become full rank.

```
rng('default');
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
```

Cast the inputs to the types determined by
fixed.complexQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent to adding random noise.

```
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
```

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB executable (MEX) function.

```
fiaccel +fixed/qlessQRMatrixSolve -args {A,B,T.X,[],regularizationParameter} -o qlessQRMatrixSol
```

Specify output type T.X and compute fixed-point $X=\left(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]^{H}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\right) \backslash B$ using the QR method.
$X=q l e s s Q R M a t r i x S o l v e \_m e x(A, B, T . X,[]$, regularizationParameter);

## Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision floating-point is small.

$$
X_{\text {double }}=\left(\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right]^{\mathrm{H}}\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right]\right) \backslash B
$$

A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda) \double(B);
relativeError $=$ norm(X_double - double $(X)$ )/norm(X_double)
relativeError = 1.0591e-05
Suppress mlint warnings in this file.

```
%#ok<*NASGU>
%#ok<*ASGLU>
```


## Input Arguments

m - Number of rows in $A$ and $B$
positive integer-valued scalar
Number of rows in $A$ and $B$, specified as a positive integer-valued scalar.
Data Types: double
n - Number of columns in $\boldsymbol{A}$
positive integer-valued scalar
Number of columns in $A$, specified as a positive integer-valued scalar.
Data Types: double
max_abs_A - Maximum of absolute value of $A$
scalar
Maximum of the absolute value of $A$, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double
max_abs_B - Maximum of absolute value of $B$
scalar
Maximum of the absolute value of $B$, specified as a scalar.
Example: $\max (\operatorname{abs}(\mathrm{B}(:)))$
Data Types: double
precisionBits - Required number of bits of precision
positive integer-valued scalar
Required number of bits of precision of the input and output, specified as a positive integer-valued scalar.

Data Types: double
noiseStandardDeviation - Standard deviation of additive random noise in $A$ scalar

Standard deviation of additive random noise in $A$, specified as a scalar.
If noiseStandardDeviation is not specified, then the default is the standard deviation of the complex-valued quantization noise $\sigma_{q}=\left(2^{- \text {precisionBits }}\right) /(\sqrt{6})$, which is calculated by fixed.complexQuantizationNoiseStandardDeviation.

Data Types: double
p_s - Probability that estimate of lower bound $s$ is larger than actual smallest singular value of matrix
$\approx 3 \cdot 10^{-7}$ (default) | scalar
Probability that estimate of lower bound $s$ is larger than actual smallest singular value of matrix, specified as a scalar. Use fixed.complexSingularValueLowerBound to estimate the smallest singular value, $s$, of $A$. If $p \_s$ is not specified, the default value is $p_{s}=(1 / 2) \cdot(1+\operatorname{erf}(-5 / \sqrt{2})) \approx 3 \cdot 10^{-7}$ which is 5 standard deviations below the mean, so the probability that the estimated bound for the smallest singular value is less than the actual smallest singular value is $1-p_{s} \approx 0.9999997$.
Data Types: double

## regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
regularizationParameter is the Tikhonov regularization parameter of the matrix problem

$$
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
$$

Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi
maxWordLength - Maximum word length of fixed-point types
128 (default) | positive integer
Maximum word length of fixed-point types, specified as a positive integer.
If the word length of the fixed-point type exceeds the specified maximum word length, the default of 128 bits is used.

Data Types: single | double | int8 | int16|int32 |int64|uint8|uint16|uint32|uint64 | fi

## Output Arguments

## T - Fixed-point types for $A, B$, and $X$

struct

Fixed-point types for $A, B$, and $X$, returned as a struct. The struct T has fields T. A, T. B, and T.X. These fields contain fi objects that specify fixed-point types for

- $A$ and $B$ that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms $A$ in-place into upper-triangular $R$ where $Q R=A$ is the QR decomposition of $A$.

- $X$ such that there is a low probability of overflow.


## Tips

Use fixed. complexQlessQRMatrixSolveFixedpointTypes to compute fixed-point types for the inputs of these functions and blocks.

- fixed.qlessQRMatrixSolve
- Complex Burst Matrix Solve Using Q-less QR Decomposition
- Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
- Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor


## Algorithms

The fixed-point type for $A$ is computed using fixed.qlessqrFixedpointTypes. The required number of integer bits to prevent overflow is derived from the following bound on the growth of $R$ [1]. The required number of integer bits is added to the number of bits of precision, precisionBits, of the input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately 1.6468 [2].

The elements of $R$ are bounded in magnitude by

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)
$$

Matrix $B$ is not transformed, so it does not need any additional growth bits.
The elements of $X=R \backslash\left(R^{\prime} \backslash B\right)$ are bounded in magnitude by

$$
\max (|X(:)|) \leq \frac{n \cdot \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}
$$

Computing the singular value decomposition to derive the above bound on $X$ is more computationally intensive than the entire matrix solve, so the fixed. complexSingularValueLowerBound function is used to estimate a bound on min ( $\operatorname{svd}(A))$.

## Version History Introduced in R2021b

## R2022b: Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixedpoint types.

## R2022a: Support for Tikhonov regularization parameter

The fixed.complexQlessQRMatrixSolveFixedpointTypes function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0

## References

[1] "Perform QR Factorization Using CORDIC"
[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers EC-8 (1959): 330-334.

## See Also

## Functions

fixed.complexQuantizationNoiseStandardDeviation |
fixed.complexSingularValueLowerBound|fixed.qlessqrFixedpointTypes |
fixed.qlessQRMatrixSolve

## Blocks

Complex Burst Matrix Solve Using Q-less QR Decomposition | Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

## fixed.complexQRMatrixSolveFixedpointTypes

Determine fixed-point types for matrix solution of complex-valued $A X=B$ using $Q R$ decomposition

## Syntax

T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B, precisionBits)
T = fixed.complexQRMatrixSolveFixedpointTypes( $\qquad$ ,noiseStandardDeviation)
T = fixed.complexQRMatrixSolveFixedpointTypes( $\qquad$ , p_s)
T = fixed.complexQRMatrixSolveFixedpointTypes( $\qquad$ ,regularizationParameter)
T = fixed.complexQRMatrixSolveFixedpointTypes( $\qquad$ ,maxWordLength)

## Description

T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B, precisionBits) computes fixed-point types for the matrix solution of complex-valued $A X=B$ using QR decomposition. $T$ is returned as a struct with fields that specify fixed-point types for $A$ and $B$ that guarantee no overflow will occur in the QR algorithm, and $X$ such that there is a low probability of overflow.

The QR algorithm transforms $A$ in-place into upper-triangular $R$ and transforms $B$ in-place into $C=Q^{\prime} B$, where $Q R=A$ is the $Q R$ decomposition of $A$.

T = fixed.complexQRMatrixSolveFixedpointTypes( $\qquad$ ,noiseStandardDeviation) specifies the standard deviation of the additive random noise in $A$. noiseStandardDeviation is an optional parameter. If not supplied or empty, then the default value is used.
$\mathrm{T}=$ fixed.complexQRMatrixSolveFixedpointTypes( $\qquad$ , p s) specifies the probability that the estimate of the lower bound for the smallest singular value of $A$ is larger than the actual smallest singular value of the matrix. $p \_s$ is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.complexQRMatrixSolveFixedpointTypes( $\qquad$ , regularizationParameter) computes fixed-point types for the matrix solution of complex-valued $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right] X=\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$ where $\lambda$ is the regularizationParameter, $A$ is an $m$-by- $n$ matrix, $p$ is the number of columns in $B, I_{n}=\operatorname{eye}(n)$, and $0_{n, p}=\operatorname{zeros}(n, p)$. regularizationParameter is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.complexQRMatrixSolveFixedpointTypes( $\qquad$ ,maxWordLength) specifies the maximum word length of the fixed-point types. maxWordLength is an optional parameter. If not supplied or empty, then the default value is used.

## Examples

## Algorithms to Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B

This example shows the algorithms that the
fixed. complexQlessQRMatrixSolveFixedpointTypes function uses to analytically determine
fixed-point types for the solution of the complex matrix equation $A^{\prime} A X=B$, where $A$ is an $m$-by- $n$ matrix with $m \geq n, B$ is $n$-by- $p$, and $X$ is $n$-by- $p$.

## Overview

You can solve the fixed-point matrix equation $A^{\prime} A X=B$ using QR decomposition. Using a sequence of orthogonal transformations, QR decomposition transforms matrix $A$ in-place to upper triangular $R$, where $Q R=A$ is the economy-size $Q R$ decomposition. This reduces the equation to an uppertriangular system of equations $R^{\prime} R X=B$. To solve for $X$, compute $X=R \backslash\left(R^{\prime} \backslash B\right)$ through forward- and backward-substitution of $R$ into $B$.

You can determine appropriate fixed-point types for the matrix equation $A^{\prime} A X=B$ by selecting the fraction length based on the number of bits of precision defined by your requirements. The fixed. complexQlessQRMatrixSolveFixedpointTypes function analytically computes the following upper bounds on $R$, and $X$ to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of $R=Q^{\prime} A$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.
The upper bound for the magnitude of the elements of $X=\left(A^{\prime} A\right) \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.
Since computing $\operatorname{svd}(A)$ is more computationally expensive than solving the system of equations, the fixed. complexQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of $\min (\operatorname{svd}(A))$.

Fixed-point types for the solution of the matrix equation $\left(A^{\prime} A\right) X=B$ are generally well-bounded if the number of rows, $m$, of $A$ are much greater than the number of columns, $n$ (i.e. $m>n$ ), and $A$ is full rank. If $A$ is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a^{2} / b$ and $a, b \in[-1,1]$, then $x$ can be arbitrarily large if $b$ is close to 0 .

## Proofs of the Bounds

## Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms, where $Q$ is an orthogonal matrix, and $v$ is a vector of length $m$ [6].

$$
\begin{aligned}
&\|A v\|_{2} \leq\|A\|_{2}\|v\|_{2} \\
&\|Q\|_{2}=1 \\
&\|v\|_{\infty}=\max (|v(:)|) \\
&\|v\|_{\infty} \leq\|v\|_{2} \leq \sqrt{m}\|v\|_{\infty}
\end{aligned}
$$

If $A$ is an $m$-by- $n$ matrix and $Q R=A$ is the economy-size $Q R$ decomposition of $A$, where $Q$ is orthogonal and $m$-by- $n$ and $R$ is upper-triangular and $n$-by- $n$, then the singular values of $R$ are equal to the singular values of $A$. If $A$ is nonsingular, then

$$
\left\|R^{-1}\right\|_{2}=\left\|\left(R^{\prime}\right)^{-1}\right\|_{2}=\frac{1}{\min (\operatorname{svd}(R))}=\frac{1}{\min (\operatorname{svd}(A))}
$$

## Upper Bound for $\mathbf{R}=\mathbf{Q} \mathbf{A}$

The upper bound for the magnitude of the elements of $R$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.

## Proof of Upper Bound for $\mathbf{R}=\mathbf{Q} \mathbf{A}$

The $j$ th column of $R$ is equal to $R(:, j)=Q^{\prime} A(:, j)$, so

$$
\begin{aligned}
\max (|R(:, j)|) & =\|R(:, j)\|_{\infty} \\
& \leq\|R(:, j)\|_{2} \\
& =\left\|Q^{\prime} A(:, j)\right\|_{2} \\
& \leq\left\|Q^{\prime}\right\|_{2}\|A(:, j)\|_{2} \\
& =\|A(:, j)\|_{2} \\
& \leq \sqrt{m} \mid\|A(:, j)\|_{\infty} \\
& =\sqrt{m} \max (|A(:, j)|) \\
& \leq \sqrt{m} \max (|A(:)|)
\end{aligned}
$$

Since $\max (|R(:, j)|) \leq \sqrt{m} \max (|A(:)|)$ for all $1 \leq j$, then

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|) .
$$

## Upper Bound for $X=\left(A^{\prime} A\right) \backslash B$

The upper bound for the magnitude of the elements of $X=\left(A^{\prime} A\right) \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.

## Proof of Upper Bound for $X=\left(A^{\prime} A\right) \backslash B$

If $A$ is not full rank, then $\min (\operatorname{svd}(A))=0$, and if $B$ is not equal to zero, then $\sqrt{n} \max (|B(:)|) / \min (\operatorname{svd}(A))^{2}=\infty$ and so the inequality is true.

If $A^{\prime} A x=b$ and $Q R=A$ is the economy-size $Q R$ decomposition of $A$, then $A^{\prime} A x=R^{\prime} Q^{\prime} Q R x=R^{\prime} R x=b$. If $A$ is full rank then $x=R^{-1} \cdot\left(\left(R^{\prime}\right)^{-1} b\right)$. Let $x=X(:, j)$ be the $j$ th column of $X$, and $b=B(:, j)$ be the $j$ th column of $B$. Then

$$
\begin{aligned}
\max (|x(:)|) & =\|x\|_{\infty} \\
& \leq\|x\|_{2} \\
& =\left\|R^{-1} \cdot\left(\left(R^{\prime}\right)^{-1} b\right)\right\|_{2} \\
& \leq\left\|R^{-1}\left|\left\|_{2}\right\|\left(R^{\prime}\right)^{-1}\right|\right\|_{2}\|b\|_{2} \\
& =\left(1 / \min (\operatorname{svd}(A))^{2}\right) \cdot\|b\|_{2} \\
& =\|b\|_{2} / \min (\operatorname{svd}(A))^{2} \\
& \leq \sqrt{n}\||b|\|_{\infty} / \min (\operatorname{svd}(A))^{2} \\
& =\sqrt{n} \max (|b(:)|) / \min (\operatorname{svd}(A))^{2} .
\end{aligned}
$$

Since $\max (|x(:)|) \leq \sqrt{n} \max (|b(:)|) / \min (\operatorname{svd}(A))^{2}$ for all rows and columns of $B$ and $X$, then $\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.

## Lower Bound for $\min (\operatorname{svd}(A))$

You can estimate a lower bound $s$ of $\min (\operatorname{svd}(A))$ for complex-valued $A$ using the following formula,

$$
s=\frac{\sigma_{N}}{\sqrt{2}} \sqrt{\gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+2)^{2} \Gamma(n)}{\Gamma(m+1) \Gamma(m-n+1)(m-n+1)}, m-n+1\right)}
$$

where $\sigma_{N}$ is the standard deviation of random noise added to the elements of $A, 1-p_{s}$ is the probability that $s \leq \min (\operatorname{svd}(A)), \Gamma$ is the gamma function, and $\gamma^{-1}$ is the inverse incomplete gamma function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and rearranging terms.

Since $s \leq \min (\operatorname{svd}(A))$ with probability $1-p_{s}$, then you can bound the magnitude of the elements of $X$ without computing $\operatorname{svd}(A)$,

$$
\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}} \leq \frac{\sqrt{n} \max (|B(:)|)}{s^{2}} \text { with probability } 1-p_{s} .
$$

You can compute $s$ using the fixed. complexSingularValueLowerBound function which uses a default probability of 5 standard deviations below the mean,
$p_{s}=(1+\operatorname{erf}(-5 / \sqrt{2})) / 2 \approx 2.8665 \cdot 10^{-7}$, so the probability that the estimated bound for the smallest singular value $s$ is less than the actual smallest singular value of $A$ is $1-p_{s} \approx 0.9999997$.

## Example

This example runs a simulation with many random matrices and compares the analytical bounds with the actual singular values of $A$ and the actual largest elements of $R=Q^{\prime} A$, and $X=\left(A^{\prime} A\right) \backslash B$.

## Define System Parameters

Define the matrix attributes and system parameters for this example.
m is the number of rows in matrix A . In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
$\mathrm{m}=300$;
$n$ is the number of columns in matrix $A$ and rows in matrices $B$ and $X$. In a least-squares problem, $m$ is greater than $n$, and usually $m$ is much larger than $n$. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
n = 10;
$p$ is the number of columns in matrices $B$ and $X$. It corresponds to simultaneously solving a system with $p$ right-hand sides.
$\mathrm{p}=1 ;$
In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits $=24$;
In this example, complex-valued matrices $A$ and $B$ are constructed such that the magnitude of the real and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute value of any element is $|1+1 i|=\sqrt{2}$. Your own system requirements will define what those values are. If you don't know what they are, and $A$ and $B$ are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of $A$ and $B$.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = sqrt(2);
max_abs_B is an upper bound on the maximum magnitude element of $B$.
max_abs_B = sqrt(2);
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal is $2^{- \text {precisionBits }} / \sqrt{6}[4,5]$. Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.

## Compute Fixed-Point Types

In this example, assume that the designed system matrix $A$ does not have full rank (there are fewer signals of interest than number of columns of matrix $A$ ), and the measured system matrix $A$ has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix $A$ have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation $=$ thermalNoiseStandardDeviation;
Use fixed. complexQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

```
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)
T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]
```

T. A is the type computed for transforming $A$ to $R$ in-place so that it does not overflow.
T.A
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
FractionLength: 24
```

T. B is the type computed for $B$ so that it does not overflow.
Т.B
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 27
FractionLength: 24
```

T. X is the type computed for the solution $X=\left(A^{\prime} A\right) \backslash B$ so that there is a low probability that it overflows.

```
T.X
ans =
```

[]

```
DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
```


## WordLength: 40

FractionLength: 24

## Upper Bound for $\mathbf{R}$

The upper bound for $R$ is computed using the formula $\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$, where $m$ is the number of rows of matrix $A$. This upper bound is used to select a fixed-point type with the required number of bits of precision to avoid an overflow in the upper bound.

```
upperBoundR = sqrt(m)*max_abs_A
upperBoundR = 24.4949
```


## Lower Bound for $\boldsymbol{\operatorname { m i n }}(\operatorname{svd}(\mathbf{A})$ ) for Complex $A$

A lower bound for $\min (\operatorname{svd}(A))$ is estimated by the fixed.complexSingularValueLowerBound function using a probability that the estimate $s$ is not greater than the actual smallest singular value. The default probability is 5 standard deviations below the mean. You can change this probability by specifying it as the last input parameter to the fixed.complexSingularValueLowerBound function.

```
estimatedSingularValueLowerBound = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviati
estimatedSingularValueLowerBound = 0.0389
```


## Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the number of bits translates to a logarithmic scale relative to the range of values. Being within a factor of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run the simulation for more samples, then it is more likely that the simulated results will be closer to the bound. This example uses a limited number of simulations so it doesn't take too long to run. For realworld system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

```
numSamples = 1e4;
```

Run the simulation.

```
[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples
 noiseStandardDeviation,T);
```

You can see that the upper bound on $R$ compared to the measured simulation results of the maximum value of $R$ over all runs is within an order of magnitude.

```
upperBoundR
upperBoundR = 24.4949
max(actualMaxR)
ans = 9.4990
```

Finally, see that the estimated lower bound of $\min (\operatorname{svd}(A))$ compared to the measured simulation results of $\min (\operatorname{svd}(A))$ over all runs is also within an order of magnitude.
estimatedSingularValueLowerBound

```
estimatedSingularValueLowerBound = 0.0389
actualSmallestSingularValue = min(singularValues,[],'all')
actualSmallestSingularValue = 0.0443
```

Plot the distribution of the singular values over all simulation runs. The distributions of the largest singular values correspond to the signals that determine the rank of the matrix. The distributions of the smallest singular values correspond to the noise. The derivation of the estimated bound of the smallest singular value makes use of the random nature of the noise.

```
clf
fixed.example.plot.singularValueDistribution(m,n,rankA,...
 noiseStandardDeviation,singularValues,...
 estimatedSingularValueLowerBound,"complex");
```

Igular value distributions for 300-by-10 complex matrices of rank 3 with $\sigma_{\text {noise }}=0.1$
(

Zoom in to the smallest singular value to see that the estimated bound is close to it.

```
xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);
```



Estimate the largest value of the solution, X , and compare it to the largest value of X found during the simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual largest value of X will approach the estimated largest value of X .

```
estimated_largest_X = fixed.complexQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDevia
estimated_largest_X = 9.3348e+03
actual_largest_X = max(abs(X_values),[],'all')
actual_largest_X = 977.7440
```

Plot the distribution of X values and compare it to the estimated upper bound for X .
clf
fixed.example.plot.xValueDistribution(m,n,rankA, noiseStandardDeviation,...
X_values,estimated_largest_X,"complex normally distributed random");


## Supporting Functions

The runSimulations function creates a series of random matrices $A$ and $B$ of a given size and rank, quantizes them according to the computed types, computes the QR decomposition of $A$, and solves the equation $A^{\prime} A X=B$. It returns the maximum values of $R=Q^{\prime} A$, the singular values of $A$, and the values of $X$ so their distributions can be plotted and compared to the bounds.

```
function [actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
 % Adding random noise makes A non-singular.
 A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A WordLength,precisionBits);
 B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,n,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [~,R] = qr(A,0);
 X = R\(R'\B);
 actualMaxR(j) = max(abs(R(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;
```

end
end

## References

1 Thomas A. Bryan and Jenna L. Warren. "Systems and Methods for Design Parameter Selection". Patent pending. U.S. Patent Application No. 16/947,130. 2020.
2 "Perform QR Factorization Using CORDIC". Derivation of the bound on growth when computing QR. MathWorks. 2010.
3 Zizhong Chen and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices". In: SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603-620. issn: 0895-4798. doi: 10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
5 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns Hopkins University Press, 1989.

Suppress mlint warnings in this file.
\%\#ok<*NASGU>
\%\#ok<*ASGLU>

## Algorithms to Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B

This example shows the algorithms that the fixed. complexQRMatrixSolveFixedpointTypes function uses to analytically determine fixed-point types for the solution of the complex least-squares matrix equation $A X=B$, where $A$ is an $m$-by- $n$ matrix with $m \geq n, B$ is $m$-by- $p$, and $X$ is $n$-by- $p$.

## Overview

You can solve the fixed-point least-squares matrix equation $A X=B$ using QR decomposition. Using a sequence of orthogonal transformations, QR decomposition transforms matrix $A$ in-place to upper triangular $R$, and transforms matrix $B$ in-place to $C=Q^{\prime} B$, where $Q R=A$ is the economy-size QR decomposition. This reduces the equation to an upper-triangular system of equations $R X=C$. To solve for $X$, compute $X=R \backslash C$ through back-substitution of $R$ into $C$.

You can determine appropriate fixed-point types for the least-squares matrix equation $A X=B$ by selecting the fraction length based on the number of bits of precision defined by your requirements. The fixed. complexQRMatrixSolveFixedpointTypes function analytically computes the following upper bounds on $R=Q^{\prime} A, C=Q^{\prime} B$, and $X$ to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of $R=Q^{\prime} A$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.
The upper bound for the magnitude of the elements of $C=Q^{\prime} B$ is
$\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)$.

The upper bound for the magnitude of the elements of $X=A \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.
Since computing $\operatorname{svd}(A)$ is more computationally expensive than solving the system of equations, the fixed. complexQRMatrixSolveFixedpointTypes function estimates a lower bound of $\min (\operatorname{svd}(A))$.

Fixed-point types for the solution of the matrix equation $A X=B$ are generally well-bounded if the number of rows, $m$, of $A$ are much greater than the number of columns, $n$ (i.e. $m \gg n$ ), and $A$ is full rank. If $A$ is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a / b$ and $a, b \in[-1,1]$, then $x$ can be arbitrarily large if $b$ is close to 0 .

## Proofs of the Bounds

## Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms, where $Q$ is an orthogonal matrix, and $v$ is a vector of length $m$ [6].

$$
\begin{aligned}
& \|A v\|_{2} \leq\|A\|_{2}\|v\|_{2} \\
& \|Q\|_{2}=1 \\
& \|v\|_{\infty}=\max (|v(:)|) \\
& \|v\|_{\infty} \leq\|v\|_{2} \leq \sqrt{m}\|v\|_{\infty}
\end{aligned}
$$

If $A$ is an $m$-by-n matrix and $Q R=A$ is the economy-size $Q R$ decomposition of $A$, where $Q$ is orthogonal and $m$-by- $n$ and $R$ is upper-triangular and $n$-by- $n$, then the singular values of $R$ are equal to the singular values of $A$. If $A$ is nonsingular, then

$$
\left\|R^{-1}\right\|_{2}=\left\|\left(R^{\prime}\right)^{-1}\right\|_{2}=\frac{1}{\min (\operatorname{svd}(R))}=\frac{1}{\min (\operatorname{svd}(A))}
$$

Upper Bound for $\mathbf{R}=\mathbf{Q}^{\prime} \mathbf{A}$
The upper bound for the magnitude of the elements of $R$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.

## Proof of Upper Bound for $\mathbf{R}=\mathbf{Q} \mathbf{A}$

The $j$ th column of $R$ is equal to $R(:, j)=Q^{\prime} A(:, j)$, so

$$
\begin{aligned}
\max (|R(:, j)|) & =\|R(:, j)\|_{\infty} \\
& \leq\|R(:, j)\|_{2} \\
& =\left\|Q^{\prime} A(:, j)\right\|_{2} \\
& \leq\left\|Q^{\prime} \mid\right\|_{2}\|A(:, j)\|_{2} \\
& =\|A(:, j)\|_{2} \\
& \leq \sqrt{m}| | A(:, j) \|_{\infty} \\
& =\sqrt{m} \max (|A(:, j)|) \\
& \leq \sqrt{m} \max (|A(:)|)
\end{aligned}
$$

Since $\max (|R(:, j)|) \leq \sqrt{m} \max (|A(:)|)$ for all $1 \leq j$, then

```
max(|R(:)|) \leq\sqrt{}{m}max(|A(:)|).
```

Upper Bound for $C=Q^{\prime} B$
The upper bound for the magnitude of the elements of $C=Q^{\prime} B$ is
$\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)$.

## Proof of Upper Bound for $\mathbf{C =}$ Q'B

The proof of the upper bound for $C=Q^{\prime} B$ is the same as the proof of the upper bound for $R=Q^{\prime} A$ by substituting $C$ for $R$ and $B$ for $A$.

Upper Bound for $X=A \backslash B$
The upper bound for the magnitude of the elements of $X=A \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.

## Proof of Upper Bound for $X=A \backslash B$

If $A$ is not full rank, then $\min (\operatorname{svd}(A))=0$, and if $B$ is not equal to zero, then $\sqrt{m} \max (|B(:)|) / \min (\operatorname{svd}(A))=\infty$ and so the inequality is true.

If $A$ is full rank, then $x=R^{-1}\left(Q^{\prime} b\right)$. Let $x=X(:, j)$ be the $j$ th column of $X$, and $b=B(:, j)$ be the $j$ th column of $B$. Then

$$
\begin{aligned}
\max (|x(:)|) & =\|x\|_{\infty} \\
& \leq\|x\|_{2} \\
& =\left\|R^{-1} \cdot\left(Q^{\prime} b\right)\right\|_{2} \\
& \leq\left\|R ^ { - 1 } \left|\left\|_ { 2 } | | Q ^ { \prime } \left|\left\|_{2}| | b\right\|_{2}\right.\right.\right.\right. \\
& =(1 / \min (\operatorname{svd}(A))) \cdot 1 \cdot\|b\|_{2} \\
& =\|b\|_{2} / \min (\operatorname{svd}(A)) \\
& \leq \sqrt{m}| | b\| \|_{\infty} / \min (\operatorname{svd}(A)) \\
& =\sqrt{m} \max (|b(:)|) / \min (\operatorname{svd}(A)) .
\end{aligned}
$$

Since $\max (|x(:)|) \leq \sqrt{m} \max (|b(:)|) / \min (\operatorname{svd}(A))$ for all rows and columns of $B$ and $X$, then $\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.

## Lower Bound for $\min (\operatorname{svd}(A))$

You can estimate a lower bound $s$ of $\min (\operatorname{svd}(A))$ for complex-valued $A$ using the following formula,

$$
s=\frac{\sigma_{N}}{\sqrt{2}} \sqrt{\gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+2)^{2} \Gamma(n)}{\Gamma(m+1) \Gamma(m-n+1)(m-n+1)}, m-n+1\right)}
$$

where $\sigma_{N}$ is the standard deviation of random noise added to the elements of $A, 1-p_{s}$ is the probability that $s \leq \min (\operatorname{svd}(A)), \Gamma$ is the gamma function, and $\gamma^{-1}$ is the inverse incomplete gamma function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and rearranging terms.

Since $s \leq \min (\operatorname{svd}(A))$ with probability $1-p_{s}$, then you can bound the magnitude of the elements of $X$ without computing $\operatorname{svd}(A)$,
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))} \leq \frac{\sqrt{m} \max (|B(:)|)}{s}$ with probability $1-p_{s}$.
You can compute $s$ using the fixed.complexSingularValueLowerBound function which uses a default probability of 5 standard deviations below the mean,
$p_{s}=(1+\operatorname{erf}(-5 / \sqrt{2})) / 2 \approx 2.8665 \cdot 10^{-7}$, so the probability that the estimated bound for the smallest singular value $s$ is less than the actual smallest singular value of $A$ is $1-p_{s} \approx 0.9999997$.

## Example

This example runs a simulation with many random matrices and compares the analytical bounds with the actual singular values of $A$ and the actual largest elements of $R=Q^{\prime} A, C=Q^{\prime} B$, and $X=A \backslash B$.

## Define System Parameters

Define the matrix attributes and system parameters for this example.
$m$ is the number of rows in matrices $A$ and $B$. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrix X . In a least-squares problem, m is greater than $n$, and usually $m$ is much larger than $n$. In a problem such as beamforming or direction finding, $n$ corresponds to the number of sensors.
n = 10;
$p$ is the number of columns in matrices $B$ and $X$. It corresponds to simultaneously solving a system with p right-hand sides.

$$
p=1 ;
$$

In this example, set the rank of matrix $A$ to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, complex-valued matrices $A$ and $B$ are constructed such that the magnitude of the real and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute value of any element is $|1+1 i|=\sqrt{2}$. Your own system requirements will define what those values are. If you don't know what they are, and $A$ and $B$ are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of $A$ and $B$.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = sqrt(2);
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B $=\operatorname{sqrt}(2)$;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal is $2^{- \text {precisionBits }} / \sqrt{6}[4,5]$. Use the fixed. complexQuantizationNoiseStandardDeviation function to compute this. See that it is less than thermalNoiseStandardDeviation.

```
quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBi
```

quantizationNoiseStandardDeviation = 2.4333e-08

## Compute Fixed-Point Types

In this example, assume that the designed system matrix $A$ does not have full rank (there are fewer signals of interest than number of columns of matrix $A$ ), and the measured system matrix $A$ has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix $A$ have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed. complexQRMatrixSolveFixedpointTypes to compute fixed-point types.
$T=$ fixed. complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,... precisionBits, noiseStandardDeviation)

```
T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]
```

T. A is the type computed for transforming $A$ to $R$ in-place so that it does not overflow.
T.A
ans =
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
FractionLength: 24
```

T. B is the type computed for transforming $B$ to $Q^{\prime} B$ in-place so that it does not overflow.
T.B
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
FractionLength: 24
```

$\mathrm{T} . \mathrm{X}$ is the type computed for the solution $X=A \backslash B$ so that there is a low probability that it overflows.
T.X
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: }3
FractionLength: 24
```


## Upper Bounds for $\mathbf{R}$ and $\mathbf{C =}=\mathbf{Q} \mathbf{B}$

The upper bounds for $R$ and $C=Q^{\prime} B$ are computed using the following formulas, where $m$ is the number of rows of matrices $A$ and $B$.

$$
\begin{aligned}
& \max (|R(:)|) \leq \sqrt{\max } \max (|A(:)|) \\
& \max (|C(:)|) \leq \sqrt{\operatorname{m} \max (|B(:)|)}
\end{aligned}
$$

These upper bounds are used to select a fixed-point type with the required number of bits of precision to avoid overflows.

```
upperBoundR = sqrt(m)*max_abs_A
```

```
upperBoundR = 24.4949
upperBoundQB = sqrt(m)*max_abs_B
upperBoundQB = 24.4949
```


## Lower Bound for min(svd(A)) for Complex A

A lower bound for $\min (\operatorname{svd}(A))$ is estimated by the fixed.complexSingularValueLowerBound function using a probability that the estimate $s$ is not greater than the actual smallest singular value. The default probability is 5 standard deviations below the mean. You can change this probability by specifying it as the last input parameter to the fixed.complexSingularValueLowerBound function.

```
estimatedSingularValueLowerBound = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviati
estimatedSingularValueLowerBound = 0.0389
```


## Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the number of bits translates to a logarithmic scale relative to the range of values. Being within a factor of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run the simulation for more samples, then it is more likely that the simulated results will be closer to the bound. This example uses a limited number of simulations so it doesn't take too long to run. For realworld system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

```
numSamples = 1e4;
```

Run the simulation.

```
[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_
 numSamples,noiseStandardDeviation,T);
```

You can see that the upper bound on $R$ compared to the measured simulation results of the maximum value of $R$ over all runs is within an order of magnitude.

```
upperBoundR
```

upperBoundR $=24.4949$
$\max ($ actual MaxR)
ans $=9.6720$

You can see that the upper bound on $C=Q^{\prime} B$ compared to the measured simulation results of the maximum value of $C=Q^{\prime} B$ over all runs is also within an order of magnitude.

```
upperBoundQB
upperBoundQB = 24.4949
max(actualMaxQB)
ans = 4.4764
```

Finally, see that the estimated lower bound of $\min (\operatorname{svd}(A))$ compared to the measured simulation results of $\min (\operatorname{svd}(A))$ over all runs is also within an order of magnitude.

```
estimatedSingularValueLowerBound
estimatedSingularValueLowerBound = 0.0389
actualSmallestSingularValue = min(singularValues,[],'all')
actualSmallestSingularValue = 0.0443
```

Plot the distribution of the singular values over all simulation runs. The distributions of the largest singular values correspond to the signals that determine the rank of the matrix. The distributions of the smallest singular values correspond to the noise. The derivation of the estimated bound of the smallest singular value makes use of the random nature of the noise.

```
clf
```

fixed.example.plot.singularValueDistribution(m,n, rankA, noiseStandardDeviation,...
singularValues,estimatedSingularValueLowerBound, "complex");
Igular value distributions for 300-by-10 complex matrices of rank 3 with $\sigma_{\text {noise }}=0.1$


Zoom in to the smallest singular value to see that the estimated bound is close to it.

```
xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);
```



Estimate the largest value of the solution, X , and compare it to the largest value of X found during the simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual largest value of X will approach the estimated largest value of X .

```
estimated_largest_X = fixed.complexMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)
estimated_largest_X = 629.3194
actual_largest_X = max(abs(X_values),[],'all')
actual_largest_X = 70.2644
```

Plot the distribution of X values and compare it to the estimated upper bound for X .
clf
fixed.example.plot.xValueDistribution(m,n,rankA, noiseStandardDeviation,...
X_values,estimated_largest_X,"complex normally distributed random");


## Supporting Functions

The runSimulations function creates a series of random matrices $A$ and $B$ of a given size and rank, quantizes them according to the computed types, computes the QR decomposition of $A$, and solves the equation $A X=B$. It returns the maximum values of $R=Q^{\prime} A$ and $C=Q^{\prime} B$, the singular values of $A$, and the values of $X$ so their distributions can be plotted and compared to the bounds.

```
function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A
 numSamples,noiseStandardDeviation,T)
precisionBits = T.A.FractionLength;
A_WordLength = T.A.WordLength;
B_WordLength = T.B.WordLength;
actualMaxR = zeros(1,numSamples);
actualMaxQB = zeros(1,numSamples);
singularValues = zeros(n,numSamples);
X_values = zeros(n,numSamples);
for j = 1:numSamples
 A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
 % Adding normally distributed random noise makes A non-singular.
 A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,m,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [Q,R] = qr(A,0);
 C = Q'*B;
 X = R\C;
 actualMaxR(j) = max(abs(R(:)));
```

```
 actualMaxQB(j) = max(abs(C(:)));
 singularValues(:,j) = svd(A);
 X values(:,j) = X;
 end
end
```


## References

1 Thomas A. Bryan and Jenna L. Warren. "Systems and Methods for Design Parameter Selection". Patent pending. U.S. Patent Application No. 16/947,130. 2020.
2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing QR. MathWorks. 2010.

3 Zizhong Chen and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices". In: SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603-620. issn: 0895-4798. doi: 10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
5 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns Hopkins University Press, 1989.

Suppress mlint warnings in this file.
\%\#ok<*NASGU>
\%\#ok<*ASGLU>

## Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B

This example shows how to use the fixed.complexQRMatrixSolveFixedpointTypes function to analytically determine fixed-point types for the solution of the complex least-squares matrix equation $A X=B$, where $A$ is an $m$-by- $n$ matrix with $m \geq n, B$ is $m$-by- $p$, and $X$ is $n$-by- $p$.

Fixed-point types for the solution of the matrix equation $A X=B$ are well-bounded if the number of rows, $m$, of $A$ are much greater than the number of columns, $n$ (i.e. $m \gg n$ ), and $A$ is full rank. If $A$ is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a / b$ and $a, b \in[-1,1]$, then $x$ can be arbitrarily large if $b$ is close to 0 .

## Define System Parameters

Define the matrix attributes and system parameters for this example.
$m$ is the number of rows in matrices $A$ and $B$. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrix X . In a least-squares problem, m is greater than $n$, and usually $m$ is much larger than $n$. In a problem such as beamforming or direction finding, $n$ corresponds to the number of sensors.
n = 10;
$p$ is the number of columns in matrices $B$ and $X$. It corresponds to simultaneously solving a system with p right-hand sides.
$\mathrm{p}=1$;
In this example, set the rank of matrix $A$ to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, complex-valued matrices $A$ and $B$ are constructed such that the magnitude of the real and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute value of any element is $|1+1 i|=\sqrt{2}$. Your own system requirements will define what those values are. If you don't know what they are, and $A$ and $B$ are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = sqrt(2);
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = sqrt(2);
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The quantization noise standard deviation is a function of the required number of bits of precision. Use fixed. complexQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.
quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBi
quantizationNoiseStandardDeviation $=2.4333 e-08$

## Compute Fixed-Point Types

In this example, assume that the designed system matrix $A$ does not have full rank (there are fewer signals of interest than number of columns of matrix $A$ ), and the measured system matrix $A$ has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix $A$ have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed. complexQRMatrixSolveFixedpointTypes to compute fixed-point types.
T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,... precisionBits, noiseStandardDeviation)

T = struct with fields:
A: [0x0 embedded.fi]
B: [0x0 embedded.fi]
X: [0x0 embedded.fi]
T. A is the type computed for transforming $A$ to $R=Q^{\prime} A$ in-place so that it does not overflow.
T.A
ans =
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
FractionLength: 24
```

T. $B$ is the type computed for transforming $B$ to $C=Q^{\prime} B$ in-place so that it does not overflow.
T.B
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
FractionLength: 24
```

T. X is the type computed for the solution $X=A \backslash B$ so that there is a low probability that it overflows.
T.X
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 37
FractionLength: 24
```

Use the Specified Types to Solve the Matrix Equation AX=B
Create random matrices $A$ and $B$ such that $B$ is in the range of $A$, and $\operatorname{rank} A=\operatorname{rank}(A)$. Add random measurement noise to $A$ which will make it become full rank, but it will also affect the solution so that $B$ is only close to the range of $A$.

```
rng('default');
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
```

Cast the inputs to the types determined by fixed. complexQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent to adding random noise.

```
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
```

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB executable (MEX) function.

```
fiaccel fixed.qrMatrixSolve -args {A,B,T.X} -o qrComplexMatrixSolve_mex
```

Specify the output type T.X and compute fixed-point $X=A \backslash B$ using the QR method.
$X=$ qrComplexMatrixSolve_mex (A, B, T.X);
Compute the relative error to verify the accuracy of the output.

```
relative_error = norm(double(A*X - B))/norm(double(B))
relative error = 0.0056
```

Suppress mlint warnings in this file.

```
%#ok<*NASGU>
%#ok<*ASGLU>
```


## Determine Fixed-Point Types for Complex Least-Squares Matrix Solve with Tikhonov Regularization

This example shows how to use the fixed. complexQRMatrixSolveFixedpointTypes function to analytically determine fixed-point types for the solution of the complex least-squares matrix equation

$$
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left[\begin{array}{c}
0_{n, p} \\
B
\end{array}\right]
$$

where $A$ is an $m$-by- $n$ matrix with $m \geq n, B$ is $m$-by- $p, X$ is $n$-by- $p, I_{n}=\operatorname{eye}(n), 0_{n, p}=\operatorname{zeros}(n, p)$, and $\lambda$ is a regularization parameter.

The least-squares solution is

$$
X_{L S}=\left(\lambda^{2} I_{n}+A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} B
$$

but is computed without squares or inverses.

## Define System Parameters

Define the matrix attributes and system parameters for this example.
$m$ is the number of rows in matrices $A$ and $B$. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
$n$ is the number of columns in matrix $A$ and rows in matrix $X$. In a least-squares problem, $m$ is greater than $n$, and usually $m$ is much larger than $n$. In a problem such as beamforming or direction finding, $n$ corresponds to the number of sensors.
n = 10;
$p$ is the number of columns in matrices $B$ and $X$. It corresponds to simultaneously solving a system with p right-hand sides.
p = 1;
In this example, set the rank of matrix $A$ to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 32;
Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

```
regularizationParameter = 0.01;
```

In this example, complex-valued matrices $A$ and $B$ are constructed such that the magnitude of the real and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute value of any element is $|1+1 i|=\sqrt{2}$. Your own system requirements will define what those values are. If you don't know what they are, and $A$ and $B$ are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of $A$ and $B$.
max_abs_A is an upper bound on the maximum magnitude element of $A$.
max_abs_A = sqrt(2);
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = sqrt(2);
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.
thermalNoiseStandardDeviation $=\operatorname{sqrt}\left(10^{\wedge}(-50 / 10)\right)$
thermalNoiseStandardDeviation $=0.0032$
The quantization noise standard deviation is a function of the required number of bits of precision. Use fixed. complexQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.
quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBi
quantizationNoiseStandardDeviation = 9.5053e-11

## Compute Fixed-Point Types

In this example, assume that the designed system matrix $A$ does not have full rank (there are fewer signals of interest than number of columns of matrix $A$ ), and the measured system matrix $A$ has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix $A$ have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types.

```
T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation,[],regularizationParameter)
T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]
```

T. A is the type computed for transforming $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ to $R=Q^{\mathrm{T}}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ in-place so that it does not overflow.
T.A
ans =
[]
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 40
FractionLength: 32
T.B is the type computed for transforming $\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$ to $C=Q^{T}\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$ in-place so that it does not overflow.
T.B
ans =
[]

> DataTypeMode: Fixed-point: binary point scaling
> Signedness: Signed
> WordLength: 40
> FractionLength: 32
$\mathrm{T} . \mathrm{X}$ is the type computed for the solution $X=\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right] \backslash\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$, so that there is a low probability that it overflows.
T.X

```
ans =
```

[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 44
FractionLength: 32
```


## Use the Specified Types to Solve the Matrix Equation

Create random matrices $A$ and $B$ such that $B$ is in the range of $A$, and rankA=rank (A). Add random measurement noise to $A$ which will make it become full rank, but it will also affect the solution so that $B$ is only close to the range of $A$.

```
rng('default');
```

[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,rankA);
$A=A+$ fixed.example.complexNormalRandomArray (0, noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed. complexQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent to adding random noise $[4,5]$.

```
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
```

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB executable (MEX) function.
fiaccel fixed.qrMatrixSolve -args \{A, B, T.X,regularizationParameter\} -o qrMatrixSolve_mex
Specify output type T. X and compute fixed-point $X=A \backslash B$ using the QR method.
$X=$ qrMatrixSolve_mex(A,B,T.X,regularizationParameter);

## Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and the output from MATLAB using the default double-precision floating-point values is small.

$$
X_{\text {double }}=\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right]\left[\begin{array}{c}
0_{n, p} \\
B
\end{array}\right]
$$

```
A_lambda = double([regularizationParameter*eye(n);A]);
B_0 = [zeros(n,p);double(B)];
X double = A lambda\B 0;
rēlativeError \(\bar{r}=\) norm \((\bar{X}\) double - double \((X)) / n o r m\left(X _d o u b l e\right)\)
relativeError = 5.2634e-06
```

Suppress mlint warnings in this file.

```
%#ok<*NASGU>
%#ok<*ASGLU>
```


## Input Arguments

m - Number of rows in $A$ and $B$
positive integer-valued scalar
Number of rows in $A$ and $B$, specified as a positive integer-valued scalar.
Data Types: double
n - Number of columns in $\boldsymbol{A}$
positive integer-valued scalar
Number of columns in $A$, specified as a positive integer-valued scalar.
Data Types: double

## max_abs_A - Maximum of absolute value of $A$

scalar
Maximum of the absolute value of $A$, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double
max_abs_B - Maximum of absolute value of $B$
scalar
Maximum of the absolute value of $B$, specified as a scalar.
Example: $\max (\operatorname{abs}(\mathrm{B}(:)))$
Data Types: double
precisionBits - Required number of bits of precision
positive integer-valued scalar
Required number of bits of precision of the input and output, specified as a positive integer-valued scalar.
Data Types: double
noiseStandardDeviation - Standard deviation of additive random noise in $A$
scalar
Standard deviation of additive random noise in $A$, specified as a scalar.
If noiseStandardDeviation is not specified, then the default is the standard deviation of the complex-valued quantization noise $\sigma_{q}=\left(2^{- \text {precisionBits }}\right) /(\sqrt{6})$, which is calculated by fixed.complexQuantizationNoiseStandardDeviation.
Data Types: double
p_s - Probability that estimate of lower bound $s$ is larger than the actual smallest singular value of the matrix
$\approx 3 \cdot 10^{-7}$ (default) | scalar
Probability that estimate of lower bound $s$ is larger than the actual smallest singular value of the matrix, specified as a scalar. Use fixed. complexSingularValueLowerBound to estimate the smallest singular value, $s$, of $A$. If $p \_s$ is not specified, the default value is
$p_{s}=(1 / 2) \cdot(1+\operatorname{erf}(-5 / \sqrt{2})) \approx 3 \cdot 10^{-7}$ which is 5 standard deviations below the mean, so the probability that the estimated bound for the smallest singular value is less than the actual smallest singular value is $1-p_{s} \approx 0.9999997$.
Data Types: double
regularizationParameter - Regularization parameter
0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
regularizationParameter is the Tikhonov regularization parameter of the least-squares problem $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right] X=\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi

## maxWordLength - Maximum word length of fixed-point types

128 (default) | positive integer
Maximum word length of fixed-point types, specified as a positive integer.
If the word length of the fixed-point type exceeds the specified maximum word length, the default of 128 bits is used.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi

## Output Arguments

## T - Fixed-point types for $A, B$, and $X$ <br> struct

Fixed-point types for $A, B$, and $X$, returned as a struct. The struct T has fields T.A, T.B, and T.X. These fields contain fi objects that specify fixed-point types for

- $A$ and $B$ that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms $A$ in-place into upper-triangular $R$ and transforms $B$ in-place into $C=Q^{\prime} B$, where $Q R=A$ is the $Q R$ decomposition of $A$.

- $X$ such that there is a low probability of overflow.


## Tips

Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types for the inputs of these functions and blocks.

- fixed.qrMatrixSolve
- Complex Burst Matrix Solve Using QR Decomposition
- Complex Partial-Systolic Matrix Solve Using QR Decomposition


## Algorithms

T.A and T.B are computed using fixed.qrFixedpointTypes. The number of integer bits required to prevent overflow is derived from the following bounds on the growth of $R$ and $C=Q^{\prime} B$ [1]. The required number of integer bits is added to the number of bits of precision, precisionBits, of the input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately 1.6468 [2].

The elements of $R$ are bounded in magnitude by

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)
$$

The elements of $C=Q^{\prime} B$ are bounded in magnitude by

$$
\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)
$$

T. X is computed by bounding the output, $X$, in the least-squares solution of $A X=B$ using the following formula [3] [4].

The elements of $X=R \backslash\left(Q^{\prime} B\right)$ are bounded in magnitude by

$$
\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))} .
$$

Computing the singular value decomposition to derive the above bound on $X$ is more computationally expensive than the entire matrix solve, so the fixed. complexSingularValueLowerBound function is used to estimate a bound on $\min (\operatorname{svd}(A))$.

## Version History

## Introduced in R2021b

## R2022b: Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixedpoint types.

## R2022a: Support for Tikhonov regularization parameter

The fixed. complexQRMatrixSolveFixedpointTypes function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0 .

## References

[1] "Perform QR Factorization Using CORDIC"
[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers EC-8 (1959): 330-334.
[3] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2020.
[4] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620.

## See Also

## Functions

fixed.complexQuantizationNoiseStandardDeviation|
fixed.complexSingularValueLowerBound|fixed.qrFixedpointTypes |
fixed.qrMatrixSolve
Blocks
Complex Burst Matrix Solve Using QR Decomposition | Complex Partial-Systolic Matrix Solve Using QR Decomposition

## fixed.complexQuantizationNoiseStandardDeviation

Estimate standard deviation of quantization noise of complex-valued signal

## Syntax

noiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation( precisionBits)

## Description

noiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation( precisionBits) returns an estimate of the quantization noise standard deviation of a complexvalued signal with a quantization level $q=2$-precisionBits, where precisionBits is the required number of bits of precision.

## Examples

## Estimate Standard Deviation of Quantization Noise of Complex-Valued Signal

Quantizing a complex signal to $p$ bits of precision can be modeled as a linear system that adds normally distributed noise with a standard deviation of $\zeta_{\text {noise }}=\frac{2^{-p}}{\sqrt{6}}[1,2]$.

Compute the theoretical quantization noise standard deviation with $p$ bits of precision using the fixed.complexQuantizationNoiseStandardDeviation function.

```
p = 14;
```

theoreticalQuantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(
The returned value is $\zeta_{\text {noise }}=\frac{2^{-p}}{\sqrt{6}}$.
Create a complex signal with $n$ samples.

```
rng('default');
```

n = 1e6;
$x=\operatorname{complex}(\operatorname{rand}(1, n), r a n d(1, n))$;

Quantize the signal with $p$ bits of precision.

```
wordLength = 16;
```

x_quantized $=$ quantizenumeric (x,1,wordLength,p);

Compute the quantization noise by taking the difference between the quantized signal and the original signal.

```
quantizationNoise = x_quantized - x;
```

Compute the measured quantization noise standard deviation.
measuredQuantizationNoiseStandardDeviation = std(quantizationNoise)
measuredQuantizationNoiseStandardDeviation $=2.4902 \mathrm{e}-05$
Compare the actual quantization noise standard deviation to the theoretical and see that they are close for large values of $n$.
theoreticalQuantizationNoiseStandardDeviation
theoreticalQuantizationNoiseStandardDeviation $=2.4917 e-05$

## References

1 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
2 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

## Input Arguments

## precisionBits - Required number of bits of precision

positive integer-valued scalar
Required number of bits of precision, specified as a positive integer-valued scalar.
Data Types: double

## Output Arguments

noiseStandardDeviation - Noise standard deviation
scalar
Noise standard deviation, returned as a scalar.

## Tips

fixed.complexQuantizationNoiseStandardDeviation is used in these functions.

- fixed.complexQRMatrixSolveFixedpointTypes
- fixed.complexQlessQRMatrixSolveFixedpointTypes


## Algorithms

The variance of a complex-valued error sequence $e(k)$ with quantization level $q=2^{\text {-precisionBits }}$ [1][2] is

$$
\sigma_{q}^{2}=\frac{2}{q} \int_{-q / 2}^{q / 2} e^{2} d e=\frac{q^{2}}{6}=\frac{2^{-2 \text { precisionBits }}}{6} .
$$

The standard deviation of a real error sequence $e(k)$ is

$$
\sigma_{q}=\frac{2^{- \text {precisionBits }}}{\sqrt{6}} .
$$

## Version History

Introduced in R2021b

## References

[1] Widrow, Bernard. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory." IRE Transactions on Circuit Theory 3, no. 4 (December 1956): 266-276.
[2] Widrow, Bernard, and Kollár, István. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

## See Also

fixed.complexQRMatrixSolveFixedpointTypes |
fixed.complexQlessQRMatrixSolveFixedpointTypes

## fixed.complexSingularValueLowerBound

Estimate lower bound for smallest singular value of complex-valued matrix

## Syntax

s_n = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n)
 regularizationParameter)

## Description

s_n = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n) returns an estimate of a lower bound, $s \_n$, for the smallest singular value of a complex-valued matrix with $m$ rows and $n$ columns, where $m \geq n$.

$$
s_{\_} \mathrm{n}=\text { fixed.complexSingularValueLowerBound }(\mathrm{m}, \mathrm{n}, \text { noiseStandardDeviation,p_s_n, }
$$ regularizationParameter) returns an estimate of a lower bound, $s \_n$, for the smallest singular value of a complex-valued matrix $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ where $\lambda$ is the regularizationParameter, $A$ is an $m$-by- $n$ matrix with $m>=n$, and $I_{n}=\operatorname{eye}(n)$.

$\mathrm{p} s$ s_n and regularizationParameter are optional parameters. If not supplied or empty, then their default values are used.

## Examples

## Algorithms to Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B

This example shows the algorithms that the
fixed.complexQlessQRMatrixSolveFixedpointTypes function uses to analytically determine fixed-point types for the solution of the complex matrix equation $A^{\prime} A X=B$, where $A$ is an $m$-by- $n$ matrix with $m \geq n, B$ is $n$-by- $p$, and $X$ is $n$-by- $p$.

## Overview

You can solve the fixed-point matrix equation $A^{\prime} A X=B$ using $Q R$ decomposition. Using a sequence of orthogonal transformations, QR decomposition transforms matrix $A$ in-place to upper triangular $R$, where $Q R=A$ is the economy-size $Q R$ decomposition. This reduces the equation to an uppertriangular system of equations $R^{\prime} R X=B$. To solve for $X$, compute $X=R \backslash\left(R^{\prime} \backslash B\right)$ through forward- and backward-substitution of $R$ into $B$.

You can determine appropriate fixed-point types for the matrix equation $A^{\prime} A X=B$ by selecting the fraction length based on the number of bits of precision defined by your requirements. The fixed.complexQlessQRMatrixSolveFixedpointTypes function analytically computes the following upper bounds on $R$, and $X$ to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of $R=Q^{\prime} A$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.
The upper bound for the magnitude of the elements of $X=\left(A^{\prime} A\right) \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.
Since computing $\operatorname{svd}(A)$ is more computationally expensive than solving the system of equations, the fixed.complexQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of $\min (\operatorname{svd}(A))$.

Fixed-point types for the solution of the matrix equation $\left(A^{\prime} A\right) X=B$ are generally well-bounded if the number of rows, $m$, of $A$ are much greater than the number of columns, $n$ (i.e. $m \gg n$ ), and $A$ is full rank. If $A$ is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a^{2} / b$ and $a, b \in[-1,1]$, then $x$ can be arbitrarily large if $b$ is close to 0 .

## Proofs of the Bounds

## Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms, where $Q$ is an orthogonal matrix, and $v$ is a vector of length $m$ [6].

$$
\begin{aligned}
& \|A v\|_{2} \leq\|A\|\left\|_{2}\right\| v \|_{2} \\
& \|Q\|_{2}=1 \\
& \|v\|_{\infty}=\max (|v(:)|) \\
& \|v\|_{\infty} \leq\|v\|_{2} \leq \sqrt{m}\|v\|_{\infty}
\end{aligned}
$$

If $A$ is an $m$-by-n matrix and $Q R=A$ is the economy-size $Q R$ decomposition of $A$, where $Q$ is orthogonal and $m$-by- $n$ and $R$ is upper-triangular and $n$-by- $n$, then the singular values of $R$ are equal to the singular values of $A$. If $A$ is nonsingular, then

$$
\left\|R^{-1} \mid\right\|_{2}=\left\|\left(R^{\prime}\right)^{-1}\right\|_{2}=\frac{1}{\min (\operatorname{svd}(R))}=\frac{1}{\min (\operatorname{svd}(A))}
$$

## Upper Bound for $R=Q^{\prime} \mathbf{A}$

The upper bound for the magnitude of the elements of $R$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.

## Proof of Upper Bound for $\mathbf{R}=\mathbf{Q} \mathbf{A}$

The $j$ th column of $R$ is equal to $R(:, j)=Q^{\prime} A(:, j)$, so

$$
\begin{aligned}
\max (|R(:, j)|) & =\|R(:, j)\|_{\infty} \\
& \leq\|R(:, j)\|_{2} \\
& =\left\|Q^{\prime} A(:, j)\right\|_{2} \\
& \leq\left\|Q^{\prime} \mid\right\|_{2}\|A(:, j)\|_{2} \\
& =\|A(:, j)\|_{2} \\
& \leq \sqrt{m}| | A(:, j) \|_{\infty} \\
& =\sqrt{m} \max (|A(:, j)|) \\
& \leq \sqrt{m} \max (|A(:)|)
\end{aligned}
$$

Since $\max (|R(:, j)|) \leq \sqrt{m} \max (|A(:)|)$ for all $1 \leq j$, then

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)
$$

## Upper Bound for $X=\left(A^{\prime} A\right) \backslash B$

The upper bound for the magnitude of the elements of $X=\left(A^{\prime} A\right) \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.

## Proof of Upper Bound for $X=\left(A^{\prime} A\right) \backslash B$

If $A$ is not full rank, then $\min (\operatorname{svd}(A))=0$, and if $B$ is not equal to zero, then $\sqrt{n} \max (|B(:)|) / \min (\operatorname{svd}(A))^{2}=\infty$ and so the inequality is true.

If $A^{\prime} A x=b$ and $Q R=A$ is the economy-size $Q R$ decomposition of $A$, then $A^{\prime} A x=R^{\prime} Q^{\prime} Q R x=R^{\prime} R x=b$. If $A$ is full rank then $x=R^{-1} \cdot\left(\left(R^{\prime}\right)^{-1} b\right)$. Let $x=X(:, j)$ be the $j$ th column of $X$, and $b=B(:, j)$ be the $j$ th column of $B$. Then

$$
\begin{aligned}
\max (|x(:)|) & =\|x\|_{\infty} \\
& \leq\|x\|_{2} \\
& =\left\|R^{-1} \cdot\left(\left(R^{\prime}\right)^{-1} b\right)\right\|_{2} \\
& \leq\left\|R^{-1}\left|\left\|_{2}\right\|\left(R^{\prime}\right)^{-1}\right|\right\|_{2}\|b\|_{2} \\
& =\left(1 / \min (\operatorname{svd}(A))^{2}\right) \cdot\|b\|_{2} \\
& =\|b\|_{2} / \min (\operatorname{svd}(A))^{2} \\
& \leq \sqrt{n}| | b \|_{\infty} / \min (\operatorname{svd}(A))^{2} \\
& =\sqrt{n} \max (|b(:)|) / \min (\operatorname{svd}(A))^{2}
\end{aligned}
$$

Since $\max (|x(:)|) \leq \sqrt{n} \max (|b(:)|) / \min (\operatorname{svd}(A))^{2}$ for all rows and columns of $B$ and $X$, then $\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.

## Lower Bound for $\min (\operatorname{svd}(A))$

You can estimate a lower bound $s$ of $\min (\operatorname{svd}(A))$ for complex-valued $A$ using the following formula,

$$
s=\frac{\sigma_{N}}{\sqrt{2}} \sqrt{\gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+2)^{2} \Gamma(n)}{\Gamma(m+1) \Gamma(m-n+1)(m-n+1)}, m-n+1\right)}
$$

where $\sigma_{N}$ is the standard deviation of random noise added to the elements of $A, 1-p_{s}$ is the probability that $s \leq \min (\operatorname{svd}(A)), \Gamma$ is the gamma function, and $\gamma^{-1}$ is the inverse incomplete gamma function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and rearranging terms.

Since $s \leq \min (\operatorname{svd}(A))$ with probability $1-p_{s}$, then you can bound the magnitude of the elements of $X$ without computing $\operatorname{svd}(A)$,
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}} \leq \frac{\sqrt{n} \max (|B(:)|)}{s^{2}}$ with probability $1-p_{s}$.
You can compute $s$ using the fixed. complexSingularValueLowerBound function which uses a default probability of 5 standard deviations below the mean,
$p_{s}=(1+\operatorname{erf}(-5 / \sqrt{2})) / 2 \approx 2.8665 \cdot 10^{-7}$, so the probability that the estimated bound for the smallest singular value $s$ is less than the actual smallest singular value of $A$ is $1-p_{s} \approx 0.9999997$.

## Example

This example runs a simulation with many random matrices and compares the analytical bounds with the actual singular values of $A$ and the actual largest elements of $R=Q^{\prime} A$, and $X=\left(A^{\prime} A\right) \backslash B$.

## Define System Parameters

Define the matrix attributes and system parameters for this example.
$m$ is the number of rows in matrix A. In a problem such as beamforming or direction finding, $m$ corresponds to the number of samples that are integrated over.
$\mathrm{m}=300$;
n is the number of columns in matrix A and rows in matrices B and X . In a least-squares problem, m is greater than $n$, and usually $m$ is much larger than $n$. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
$\mathrm{n}=10$;
$p$ is the number of columns in matrices $B$ and $X$. It corresponds to simultaneously solving a system with $p$ right-hand sides.
$\mathrm{p}=1$;
In this example, set the rank of matrix $A$ to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, complex-valued matrices $A$ and $B$ are constructed such that the magnitude of the real and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute value of any element is $|1+1 i|=\sqrt{2}$. Your own system requirements will define what those values are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of $A$ and $B$.
max_abs_A is an upper bound on the maximum magnitude element of $A$.
max_abs_A = sqrt(2);
max_abs_B is an upper bound on the maximum magnitude element of B.

```
max_abs_B = sqrt(2);
```

Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal is $2^{- \text {precisionBits }} / \sqrt{6}[4,5]$. Use fixed. complexQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.

```
quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBi
```

quantizationNoiseStandardDeviation $=2.4333 e-08$

## Compute Fixed-Point Types

In this example, assume that the designed system matrix $A$ does not have full rank (there are fewer signals of interest than number of columns of matrix $A$ ), and the measured system matrix $A$ has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix $A$ have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed. complexQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

```
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)
T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]
```

T. A is the type computed for transforming $A$ to $R$ in-place so that it does not overflow.

```
T.A
ans =
[]
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: }3
FractionLength: 24
```

T. $B$ is the type computed for $B$ so that it does not overflow.
T.B
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 27
FractionLength: 24
```

T. X is the type computed for the solution $X=\left(A^{\prime} A\right) \backslash B$ so that there is a low probability that it overflows.

```
T.X
```

ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
FractionLength: 24
```


## Upper Bound for R

The upper bound for $R$ is computed using the formula $\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$, where $m$ is the number of rows of matrix $A$. This upper bound is used to select a fixed-point type with the required number of bits of precision to avoid an overflow in the upper bound.

```
upperBoundR = sqrt(m)*max_abs_A
upperBoundR = 24.4949
```


## Lower Bound for $\boldsymbol{m i n}(\mathbf{s v d}(\mathbf{A}))$ for Complex A

A lower bound for $\min (\operatorname{svd}(A))$ is estimated by the fixed.complexSingularValueLowerBound function using a probability that the estimate $s$ is not greater than the actual smallest singular value. The default probability is 5 standard deviations below the mean. You can change this probability by specifying it as the last input parameter to the fixed.complexSingularValueLowerBound function.
estimatedSingularValueLowerBound $=$ fixed.complexSingularValueLowerBound $(\mathrm{m}, \mathrm{n}$, noiseStandardDeviati،
estimatedSingularValueLowerBound = 0.0389

## Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the number of bits translates to a logarithmic scale relative to the range of values. Being within a factor of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run the simulation for more samples, then it is more likely that the simulated results will be closer to the bound. This example uses a limited number of simulations so it doesn't take too long to run. For realworld system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

```
numSamples = le4;
```

Run the simulation.

```
[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples
 noiseStandardDeviation,T);
```

You can see that the upper bound on $R$ compared to the measured simulation results of the maximum value of $R$ over all runs is within an order of magnitude.

```
upperBoundR
upperBoundR = 24.4949
max(actualMaxR)
ans = 9.4990
```

Finally, see that the estimated lower bound of $\min (\operatorname{svd}(A))$ compared to the measured simulation results of $\min (\operatorname{svd}(A))$ over all runs is also within an order of magnitude.

```
estimatedSingularValueLowerBound
estimatedSingularValueLowerBound = 0.0389
actualSmallestSingularValue = min(singularValues,[],'all')
actualSmallestSingularValue = 0.0443
```

Plot the distribution of the singular values over all simulation runs. The distributions of the largest singular values correspond to the signals that determine the rank of the matrix. The distributions of the smallest singular values correspond to the noise. The derivation of the estimated bound of the smallest singular value makes use of the random nature of the noise.

```
clf
fixed.example.plot.singularValueDistribution(m,n,rankA,...
 noiseStandardDeviation,singularValues,...
 estimatedSingularValueLowerBound,"complex");
```

Igular value distributions for 300-by-10 complex matrices of rank $\mathbf{3}$ with $\sigma_{\text {noise }}=\mathbf{0 . 1}$


Zoom in to the smallest singular value to see that the estimated bound is close to it. xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);


Estimate the largest value of the solution, X , and compare it to the largest value of X found during the simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual largest value of X will approach the estimated largest value of X .

```
estimated_largest_X = fixed.complexQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDevia
estimated_largest_X = 9.3348e+03
actual_largest_X = max(abs(X_values),[],'all')
actual_largest_X = 977.7440
```

Plot the distribution of X values and compare it to the estimated upper bound for X .
clf
fixed.example.plot.xValueDistribution(m,n,rankA, noiseStandardDeviation,...
X_values,estimated_largest_X,"complex normally distributed random");


## Supporting Functions

The runSimulations function creates a series of random matrices $A$ and $B$ of a given size and rank, quantizes them according to the computed types, computes the QR decomposition of $A$, and solves the equation $A^{\prime} A X=B$. It returns the maximum values of $R=Q^{\prime} A$, the singular values of $A$, and the values of $X$ so their distributions can be plotted and compared to the bounds.

```
function [actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
 % Adding random noise makes A non-singular.
 A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,n,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [~,R] = qr(A,0);
 X = R\(R'\B);
 actualMaxR(j) = max(abs(R(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;
```

end
end

## References

1 Thomas A. Bryan and Jenna L. Warren. "Systems and Methods for Design Parameter Selection". Patent pending. U.S. Patent Application No. 16/947,130. 2020.
2 "Perform QR Factorization Using CORDIC". Derivation of the bound on growth when computing QR. MathWorks. 2010.

3 Zizhong Chen and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices". In: SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603-620. issn: 0895-4798. doi: 10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
5 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns Hopkins University Press, 1989.

Suppress mlint warnings in this file.
\%\#ok<*NASGU>
\%\#ok<*ASGLU>

## Algorithms to Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B

This example shows the algorithms that the fixed. complexQRMatrixSolveFixedpointTypes function uses to analytically determine fixed-point types for the solution of the complex least-squares matrix equation $A X=B$, where $A$ is an $m$-by- $n$ matrix with $m \geq n, B$ is $m$-by- $p$, and $X$ is $n$-by- $p$.

## Overview

You can solve the fixed-point least-squares matrix equation $A X=B$ using QR decomposition. Using a sequence of orthogonal transformations, QR decomposition transforms matrix $A$ in-place to upper triangular $R$, and transforms matrix $B$ in-place to $C=Q^{\prime} B$, where $Q R=A$ is the economy-size QR decomposition. This reduces the equation to an upper-triangular system of equations $R X=C$. To solve for $X$, compute $X=R \backslash C$ through back-substitution of $R$ into $C$.

You can determine appropriate fixed-point types for the least-squares matrix equation $A X=B$ by selecting the fraction length based on the number of bits of precision defined by your requirements. The fixed. complexQRMatrixSolveFixedpointTypes function analytically computes the following upper bounds on $R=Q^{\prime} A, C=Q^{\prime} B$, and $X$ to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of $R=Q^{\prime} A$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.
The upper bound for the magnitude of the elements of $C=Q^{\prime} B$ is
$\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)$.

The upper bound for the magnitude of the elements of $X=A \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.
Since computing $\operatorname{svd}(A)$ is more computationally expensive than solving the system of equations, the fixed. complexQRMatrixSolveFixedpointTypes function estimates a lower bound of $\min (\operatorname{svd}(A))$.

Fixed-point types for the solution of the matrix equation $A X=B$ are generally well-bounded if the number of rows, $m$, of $A$ are much greater than the number of columns, $n$ (i.e. $m \gg n$ ), and $A$ is full rank. If $A$ is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a / b$ and $a, b \in[-1,1]$, then $x$ can be arbitrarily large if $b$ is close to 0 .

## Proofs of the Bounds

## Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms, where $Q$ is an orthogonal matrix, and $v$ is a vector of length $m$ [6].

$$
\begin{aligned}
& \|A v\|_{2} \leq\|A\|_{2}\|v\|_{2} \\
& \|Q\|_{2}=1 \\
& \|v\|_{\infty}=\max (|v(:)|) \\
& \|v\|_{\infty} \leq\|v\|_{2} \leq \sqrt{m}\|v\|_{\infty}
\end{aligned}
$$

If $A$ is an $m$-by-n matrix and $Q R=A$ is the economy-size $Q R$ decomposition of $A$, where $Q$ is orthogonal and $m$-by- $n$ and $R$ is upper-triangular and $n$-by- $n$, then the singular values of $R$ are equal to the singular values of $A$. If $A$ is nonsingular, then

$$
\left\|R^{-1}\right\|_{2}=\left\|\left(R^{\prime}\right)^{-1}\right\|_{2}=\frac{1}{\min (\operatorname{svd}(R))}=\frac{1}{\min (\operatorname{svd}(A))}
$$

Upper Bound for $\mathbf{R}=\mathbf{Q}^{\prime} \mathbf{A}$
The upper bound for the magnitude of the elements of $R$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.

## Proof of Upper Bound for $\mathbf{R}=\mathbf{Q} \mathbf{A}$

The $j$ th column of $R$ is equal to $R(:, j)=Q^{\prime} A(:, j)$, so

$$
\begin{aligned}
\max (|R(:, j)|) & =\|R(:, j)\|_{\infty} \\
& \leq\|R(:, j)\|_{2} \\
& =\left\|Q^{\prime} A(:, j)\right\|_{2} \\
& \leq\left\|Q ^ { \prime } \left|\left\|_{2} \mid\right\| A(:, j) \|_{2}\right.\right. \\
& =\|A(:, j)\|_{2} \\
& \leq \sqrt{m}| | A(:, j) \|_{\infty} \\
& =\sqrt{m} \max (|A(:, j)|) \\
& \leq \sqrt{m} \max (|A(:)|)
\end{aligned}
$$

Since $\max (|R(:, j)|) \leq \sqrt{m} \max (|A(:)|)$ for all $1 \leq j$, then

```
max(|R(:)|) \leq\sqrt{}{m}max(|A(:)|).
```

Upper Bound for $C=Q^{\prime} B$
The upper bound for the magnitude of the elements of $C=Q^{\prime} B$ is
$\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)$.

## Proof of Upper Bound for $\mathbf{C =}$ Q'B

The proof of the upper bound for $C=Q^{\prime} B$ is the same as the proof of the upper bound for $R=Q^{\prime} A$ by substituting $C$ for $R$ and $B$ for $A$.

Upper Bound for $X=A \backslash B$
The upper bound for the magnitude of the elements of $X=A \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.

## Proof of Upper Bound for $X=A \backslash B$

If $A$ is not full $\operatorname{rank}$, then $\min (\operatorname{svd}(A))=0$, and if $B$ is not equal to zero, then $\sqrt{m} \max (|B(:)|) / \min (\operatorname{svd}(A))=\infty$ and so the inequality is true.

If $A$ is full rank, then $\chi=R^{-1}\left(Q^{\prime} b\right)$. Let $\chi=X(:, j)$ be the $j$ th column of $X$, and $b=B(:, j)$ be the $j$ th column of $B$. Then

$$
\begin{aligned}
\max (|x(:)|) & =\|x\|_{\infty} \\
& \leq\|x\|_{2} \\
& =\left\|R^{-1} \cdot\left(Q^{\prime} b\right)\right\|_{2} \\
& \leq\left\|R ^ { - 1 } \left|\left\|_ { 2 } | | Q ^ { \prime } \left|\left\|_{2}| | b\right\|_{2}\right.\right.\right.\right. \\
& =(1 / \min (\operatorname{svd}(A))) \cdot 1 \cdot\|b\|_{2} \\
& =\|b\|_{2} / \min (\operatorname{svd}(A)) \\
& \leq \sqrt{m}| | b\| \|_{\infty} / \min (\operatorname{svd}(A)) \\
& =\sqrt{m} \max (|b(:)|) / \min (\operatorname{svd}(A)) .
\end{aligned}
$$

Since $\max (|x(:)|) \leq \sqrt{m} \max (|b(:)|) / \min (\operatorname{svd}(A))$ for all rows and columns of $B$ and $X$, then $\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.

## Lower Bound for $\min (\operatorname{svd}(A))$

You can estimate a lower bound $s$ of $\min (\operatorname{svd}(A))$ for complex-valued $A$ using the following formula,

$$
s=\frac{\sigma_{N}}{\sqrt{2}} \sqrt{\gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+2)^{2} \Gamma(n)}{\Gamma(m+1) \Gamma(m-n+1)(m-n+1)}, m-n+1\right)}
$$

where $\sigma_{N}$ is the standard deviation of random noise added to the elements of $A, 1-p_{s}$ is the probability that $s \leq \min (\operatorname{svd}(A)), \Gamma$ is the gamma function, and $\gamma^{-1}$ is the inverse incomplete gamma function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and rearranging terms.

Since $s \leq \min (\operatorname{svd}(A))$ with probability $1-p_{s}$, then you can bound the magnitude of the elements of $X$ without computing $\operatorname{svd}(A)$,
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))} \leq \frac{\sqrt{m} \max (|B(:)|)}{s}$ with probability $1-p_{s}$.
You can compute $s$ using the fixed.complexSingularValueLowerBound function which uses a default probability of 5 standard deviations below the mean,
$p_{s}=(1+\operatorname{erf}(-5 / \sqrt{2})) / 2 \approx 2.8665 \cdot 10^{-7}$, so the probability that the estimated bound for the smallest singular value $s$ is less than the actual smallest singular value of $A$ is $1-p_{s} \approx 0.9999997$.

## Example

This example runs a simulation with many random matrices and compares the analytical bounds with the actual singular values of $A$ and the actual largest elements of $R=Q^{\prime} A, C=Q^{\prime} B$, and $X=A \backslash B$.

## Define System Parameters

Define the matrix attributes and system parameters for this example.
$m$ is the number of rows in matrices $A$ and $B$. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrix X . In a least-squares problem, m is greater than $n$, and usually $m$ is much larger than $n$. In a problem such as beamforming or direction finding, $n$ corresponds to the number of sensors.
n = 10;
$p$ is the number of columns in matrices $B$ and $X$. It corresponds to simultaneously solving a system with p right-hand sides.

$$
p=1 ;
$$

In this example, set the rank of matrix $A$ to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, complex-valued matrices $A$ and $B$ are constructed such that the magnitude of the real and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute value of any element is $|1+1 i|=\sqrt{2}$. Your own system requirements will define what those values are. If you don't know what they are, and $A$ and $B$ are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of $A$ and $B$.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = sqrt(2);
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B $=\operatorname{sqrt}(2)$;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal is $2^{- \text {precisionBits }} / \sqrt{6}[4,5]$. Use the fixed. complexQuantizationNoiseStandardDeviation function to compute this. See that it is less than thermalNoiseStandardDeviation.

```
quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBi
```

quantizationNoiseStandardDeviation = 2.4333e-08

## Compute Fixed-Point Types

In this example, assume that the designed system matrix $A$ does not have full rank (there are fewer signals of interest than number of columns of matrix $A$ ), and the measured system matrix $A$ has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix $A$ have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed. complexQRMatrixSolveFixedpointTypes to compute fixed-point types.
$T=$ fixed. complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,... precisionBits, noiseStandardDeviation)

```
T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]
```

T. A is the type computed for transforming $A$ to $R$ in-place so that it does not overflow.
T.A
ans =
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
FractionLength: 24
```

T. B is the type computed for transforming $B$ to $Q^{\prime} B$ in-place so that it does not overflow.
T.B
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
FractionLength: 24
```

$\mathrm{T} . \mathrm{X}$ is the type computed for the solution $X=A \backslash B$ so that there is a low probability that it overflows.
T.X
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: }3
FractionLength: 24
```


## Upper Bounds for $\mathbf{R}$ and $\mathbf{C =}=\mathbf{Q} \mathbf{B}$

The upper bounds for $R$ and $C=Q^{\prime} B$ are computed using the following formulas, where $m$ is the number of rows of matrices $A$ and $B$.

$$
\begin{aligned}
& \max (|R(:)|) \leq \sqrt{\max } \max (|A(:)|) \\
& \max (|C(:)|) \leq \sqrt{\operatorname{m} \max (|B(:)|)}
\end{aligned}
$$

These upper bounds are used to select a fixed-point type with the required number of bits of precision to avoid overflows.

```
upperBoundR = sqrt(m)*max_abs_A
```

```
upperBoundR = 24.4949
upperBoundQB = sqrt(m)*max_abs_B
upperBoundQB = 24.4949
```


## Lower Bound for min(svd(A)) for Complex A

A lower bound for $\min (\operatorname{svd}(A))$ is estimated by the fixed.complexSingularValueLowerBound function using a probability that the estimate $s$ is not greater than the actual smallest singular value. The default probability is 5 standard deviations below the mean. You can change this probability by specifying it as the last input parameter to the fixed.complexSingularValueLowerBound function.

```
estimatedSingularValueLowerBound = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviati
estimatedSingularValueLowerBound = 0.0389
```


## Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the number of bits translates to a logarithmic scale relative to the range of values. Being within a factor of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run the simulation for more samples, then it is more likely that the simulated results will be closer to the bound. This example uses a limited number of simulations so it doesn't take too long to run. For realworld system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

```
numSamples = 1e4;
```

Run the simulation.

```
[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_
 numSamples,noiseStandardDeviation,T);
```

You can see that the upper bound on $R$ compared to the measured simulation results of the maximum value of $R$ over all runs is within an order of magnitude.

```
upperBoundR
```

upperBoundR $=24.4949$
$\max ($ actualMaxR)
ans $=9.6720$

You can see that the upper bound on $C=Q^{\prime} B$ compared to the measured simulation results of the maximum value of $C=Q^{\prime} B$ over all runs is also within an order of magnitude.

```
upperBoundQB
upperBoundQB = 24.4949
max(actualMaxQB)
ans = 4.4764
```

Finally, see that the estimated lower bound of $\min (\operatorname{svd}(A))$ compared to the measured simulation results of $\min (\operatorname{svd}(A))$ over all runs is also within an order of magnitude.

```
estimatedSingularValueLowerBound
estimatedSingularValueLowerBound = 0.0389
actualSmallestSingularValue = min(singularValues,[],'all')
actualSmallestSingularValue = 0.0443
```

Plot the distribution of the singular values over all simulation runs. The distributions of the largest singular values correspond to the signals that determine the rank of the matrix. The distributions of the smallest singular values correspond to the noise. The derivation of the estimated bound of the smallest singular value makes use of the random nature of the noise.

```
clf
```

fixed.example.plot.singularValueDistribution(m,n, rankA, noiseStandardDeviation,...
singularValues,estimatedSingularValueLowerBound, "complex");
Igular value distributions for 300-by-10 complex matrices of rank 3 with $\sigma_{\text {noise }}=0.1$


Zoom in to the smallest singular value to see that the estimated bound is close to it.
xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);


Estimate the largest value of the solution, X , and compare it to the largest value of X found during the simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual largest value of X will approach the estimated largest value of X .

```
estimated_largest_X = fixed.complexMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)
estimated_largest_X = 629.3194
actual_largest_X = max(abs(X_values),[],'all')
actual_largest_X = 70.2644
```

Plot the distribution of X values and compare it to the estimated upper bound for X .
clf
fixed.example.plot.xValueDistribution(m,n,rankA, noiseStandardDeviation,...
X_values,estimated_largest_X,"complex normally distributed random");


## Supporting Functions

The runSimulations function creates a series of random matrices $A$ and $B$ of a given size and rank, quantizes them according to the computed types, computes the QR decomposition of $A$, and solves the equation $A X=B$. It returns the maximum values of $R=Q^{\prime} A$ and $C=Q^{\prime} B$, the singular values of $A$, and the values of $X$ so their distributions can be plotted and compared to the bounds.

```
function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 actualMaxQB = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
 % Adding normally distributed random noise makes A non-singular.
 A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A WordLength,precisionBits);
 B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,m,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [Q,R] = qr(A,0);
 C = Q'*B;
 X = R\C;
 actualMaxR(j) = max(abs(R(:)));
```

```
 actualMaxQB(j) = max(abs(C(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;
 end
end
```


## References

1 Thomas A. Bryan and Jenna L. Warren. "Systems and Methods for Design Parameter Selection". Patent pending. U.S. Patent Application No. 16/947,130. 2020.
2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing QR. MathWorks. 2010.

3 Zizhong Chen and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices". In: SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603-620. issn: 0895-4798. doi: 10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
5 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns Hopkins University Press, 1989.

Suppress mlint warnings in this file.
\%\#ok<*NASGU>
\%\#ok<*ASGLU>

## Input Arguments

m - Number of rows in matrix
positive integer-valued scalar
Number of rows in matrix, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, $n$.

## Data Types: double

## $\mathbf{n}$ - Number of columns in matrix

positive integer-valued scalar
Number of columns in matrix, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, $n$.

Data Types: double
noiseStandardDeviation - Standard deviation of additive random noise in matrix scalar

Standard deviation of additive random noise in matrix, specified as a scalar.
Data Types: double
p_s_n - Probability that estimate of lower bound is larger than actual smallest singular value of matrix
2.8665e-07 (default) | scalar

Probability that estimate of lower bound is larger than actual smallest singular value of matrix, specified as a scalar.

If $p \_s \_n$ is not supplied or empty, then the default of $p \_s=(1 / 2) *(1+e r f(-5 / \operatorname{sqrt}(2)))=$ $2.8665 \mathrm{e}-07$ is used, which is 5 standard deviations below the mean, so the probability that the estimated lower bound for the smallest singular value is less than the actual smallest singular value is 1 - p_s = 0.99999971 - p_s = 0.9999997 .
Data Types: double

## regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
regularizationParameter is the Tikhonov regularization parameter of the matrix $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ where $\lambda$ is the regularizationParameter, $A$ is an $m$-by- $n$ matrix with $m>=n$, and $I=\operatorname{eye}(n)$..
Data Types: single | double | int8 | int16| int32 | int64 | uint8 |uint16|uint32|uint64 | fi

## Output Arguments

## s_n - Estimate of lower bound for smallest singular value of complex-valued matrix <br> scalar

Estimate of lower bound for smallest singular value of complex-valued matrix, returned as a scalar.

## Tips

- Use fixed.complexSingularValueLowerBound to used estimate the smallest singular value of a matrix to estimate a bound for $\max (|X(:)|)$. For example, in fixed.complexQRMatrixSolveFixedpointTypes, the elements of $X=R \backslash\left(Q^{\prime} B\right)$ are bounded in magnitude by

$$
\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))} \leq \frac{\sqrt{m} \max (|B(:)|)}{s}
$$

with probability $1-p_{s}$.

- $\max (|X(:)|)$ is smaller when the denominator in the above equation is larger.
- If nothing else is known about a matrix, then in general the smallest singular value will be larger if:
- there is additive random noise.
- the number of rows, $m$, is much larger than the number of columns, $n$.
- If the noise standard deviation is not known, you can approximate it as the standard deviation of the quantization error. You can compute the quantization error using fixed. complexQuantizationNoiseStandardDeviation.
- For $s$ to be a useful bound on the smallest singular value of $A$, the probability that $s$ is greater than the smallest singular value of $A$ should be small. A practical value to use is

$$
p_{s}=(1 / 2) \cdot(1+\operatorname{erf}(-5 / \sqrt{2})) \approx 3 \cdot 10^{-7}
$$

which is 5 standard deviations below the mean, so the probability that the estimated bound for the smallest singular value is less than the actual smallest singular value is $1-p_{s} \approx 0.9999997$.

- fixed. complexSingularValueLowerBound is used in these functions.
- fixed. complexQRMatrixSolveFixedpointTypes
- fixed. complexQlessQRMatrixSolveFixedpointTypes


## Algorithms

Given a m-by-n complex-valued matrix $A$ and standard deviation $\sigma_{N}$ of additive random noise on the elements of $A$, you can compute an estimate of a lower bound for the smallest singular value of $A, s$, such that the probability, $p_{s}$, of $s$ being greater than the smallest singular value of $A$ using this formula [1][2].

$$
s=\frac{\sigma_{N}}{\sqrt{2}} \sqrt{\gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+2)^{2} \Gamma(n)}{\Gamma(m+1) \Gamma(m-n+1)(m-n+1)}, m-n+1\right)}
$$

## Version History

Introduced in R2021b

## R2022a: Support for Tikhonov regularization parameter

The fixed. complexSingularValueLowerBound function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0

## References

[1] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2020.
[2] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/ 10.1137/040616413.

## See Also

fixed.complexQRMatrixSolveFixedpointTypes |
fixed. complexQuantizationNoiseStandardDeviation|
fixed.complexQRMatrixSolveFixedpointTypes |
fixed.complexQlessQRMatrixSolveFixedpointTypes

## fixed.cordicDivide

Fixed-point divide using CORDIC

## Syntax

y = fixed.cordicDivide(num,den,OutputType)

## Description

y = fixed.cordicDivide(num, den,OutputType) divides num by den using the output data type specified by OutputType.

## Examples

## Divide Using CORDIC

```
num = fi(1);
den = fi(10);
OutputType = fi([],1,16,15);
y = fixed.cordicDivide(num,den,OutputType)
y =
 0.1000
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15
```


## Input Arguments

## num - Numerator

scalar | vector | matrix | multidimensional array
Numerator, specified as a real-valued scalar, vector, matrix, or multidimensional array.

- If num is a floating-point type, den must also be a floating-point type and OutputType must specify a floating-point data type.
- If num is a built-in integer type, den must also be a built-in integer type and OutputType must specify a built-in integer data type.
- If num is a fixed-point type, den must also be a fixed-point type and OutputType must specify a fixed-point data type.

Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi
Complex Number Support: Yes

## den - Denominator

scalar | vector | matrix | multidimensional array
Numerator, specified as a real-valued scalar, vector, matrix, or multidimensional array.

- If num is a floating-point type, den must also be a floating-point type and OutputType must specify a floating-point data type.
- If num is a built-in integer type, den must also be a built-in integer type and OutputType must specify a built-in integer data type.
- If num is a fixed-point type, den must also be a fixed-point type and OutputType must specify a fixed-point data type.

Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi
Complex Number Support: Yes

## OutputType - Data type of output

fi object | numerictype object | Simulink.NumericType object
Data type of the output, specified as a fi object, numerictype, or Simulink. NumericType object.

- If num is a floating-point type, den must also be a floating-point type and OutputType must specify a floating-point data type.
- If num is a built-in integer type, den must also be a built-in integer type and OutputType must specify a built-in integer data type.
- If num is a fixed-point type, den must also be a fixed-point type and OutputType must specify a fixed-point data type.

Example: fi([],1,16,15)
Example: numerictype (1,16,15)
Example: fixdt(1,16,15)

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## Algorithms

For fixed-point inputs num and den, fixed.cordicDivide wraps on overflow for division by zero. The behavior for fixed-point division by zero is summarized in the table below.

Wrap Overflow	Saturate Overflow
$0 / 0=0$	$0 / 0=0$
$1 / 0=0$	$1 / 0=$ upper bound
$-1 / 0=0$	$-1 / 0=$ lower bound

For floating-point inputs, fixed.cordicDivide follows IEEE Standard 754.

## Version History

Introduced in R2020b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.

## See Also

fixed.cordicReciprocal | Real Divide HDL Optimized | Complex Divide HDL Optimized | Real Reciprocal HDL Optimized

## fixed.cordicReciprocal

Fixed-point reciprocal using CORDIC

## Syntax

y = fixed.cordicReciprocal(u,OutputType)

## Description

$y=$ fixed.cordicReciprocal(u,OutputType) returns 1./u with the output cast to the data type specified by OutputType.

## Examples

## Reciprocal Using CORDIC

```
u = fi(10);
outputType = fi([],1,32,24);
y = fixed.cordicReciprocal(u,outputType)
y =
 0.1000
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: }3
 FractionLength: 24
```


## Input Arguments

$u$ - Value to take reciprocal of
scalar | vector | matrix | multidimensional array
Value to take reciprocal of, specified as a scalar, vector, matrix, or multidimensional array.

- If $u$ is a floating-point type, then OutputType must specify a floating-point data type.
- If $u$ is a built-in integer type, then OutputType must specify a built-in integer data type.
- If $u$ is a fixed-point type, then OutputType must specify a fixed-point data type.

Data Types: single | double | int8|int16|int32 | int64|uint8|uint16|uint32|uint64 | fi
Complex Number Support: Yes

## OutputType - Data type of output

fi object | numerictype object | Simulink.NumericType object
Data type of the output, specified as a fi object, numerictype, or Simulink.NumericType object.

- If num is a floating-point type, den must also be a floating-point type and OutputType must specify a floating-point data type.
- If num is a built-in integer type, den must also be a built-in integer type and OutputType must specify a built-in integer data type.
- If num is a fixed-point type, den must also be a fixed-point type and OutputType must specify a fixed-point data type.

Example: fi([],1,16,15)
Example: numerictype (1,16,15)
Example: fixdt(1,16,15)

## More About

## CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms available because it requires only iterative shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root, hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so increases the expense of the computation and adds latency.

## Algorithms

For fixed-point input u, fixed. cordicReciprocal wraps on overflow for division by zero. The behavior for fixed-point division by zero is summarized in the table below.

Wrap Overflow	Saturate Overflow
$0 / 0=0$	$0 / 0=0$
$1 / 0=0$	$1 / 0=$ upper bound
$-1 / 0=0$	$-1 / 0=$ lower bound

For floating-point inputs, fixed.cordicReciprocal follows IEEE Standard 754.

## Version History

## Introduced in R2021b

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
Slope-bias representation is not supported for fixed-point data types.

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.

## See Also

fixed.cordicDivide \| Real Reciprocal HDL Optimized \| Real Divide HDL Optimized | Complex Divide HDL Optimized

## fixed.fimathLike

Return fimath object like the input

## Syntax

$F=$ fixed.fimathLike(X)
$F=$ fixed.fimathLike(X, roundingMethod)
F = fixed.fimathLike(X,roundingMethod,overflowAction)

## Description

$F=$ fixed.fimathLike (X) returns fimath object $F$ with ProductMode and SumMode set to the same fixed-point arithmetic properties as the input $X$, where $X$ is a fi object or numerictype object.

By default, RoundingMethod is set to 'Floor' and OverflowAction is set to 'Wrap'. For fixedpoint inputs, this function supports binary-point scaling and slope-bias scaling. If $X$ is not a fi object or numerictype object, then empty is returned.

F = fixed.fimathLike(X,roundingMethod) specifies the rounding method to use.
F = fixed.fimathLike(X, roundingMethod,overflowAction) specifies the rounding method and overflow action to use.

## Examples

## Set fimath to be Like Input

Use fixed.fimathLike and setfimath to set the fimath fixed-point math settings to be like the input.

Define a fixed-point fi object.
$X=f i(1,1,8,0)$
Create a fimath object with the same fixed-point math settings as the input.

```
F = fixed.fimathLike(X)
F =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: SpecifyPrecision
 ProductWordLength: 8
ProductFractionLength: 0
 SumMode: SpecifyPrecision
 SumWordLength: 8
 SumFractionLength: 0
 CastBeforeSum: true
```

Apply the fixed-point math settings.

```
X(:) = setfimath(X,F) + 1
X =
 2
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
FractionLength: 0
```


## Input Arguments

X - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array.
If X is a fi object or numerictype object, then fixed.fimathLike returns a fimath object. Otherwise, fixed.fimathLike returns empty.

Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64 | fi
Complex Number Support: Yes
roundingMethod - Rounding method to use
'Floor' (default)|'Ceiling'|'Convergent'|'Nearest'|'Round'|'Zero'
Rounding method to use, specified as one of these values:

- 'Ceiling' - Round toward positive infinity.
- 'Convergent ' - Round toward nearest. Ties round to the nearest even stored integer (least biased).
- 'Floor' - Round toward negative infinity.
- 'Nearest ' - Round toward nearest. Ties round toward positive infinity.
- 'Round ' - Round toward nearest. Ties round toward negative infinity for negative numbers, and toward positive infinity for positive numbers.
- 'Zero' - Round toward zero.

Data Types: char | string
overflowAction - Action to take on overflow
'Wrap' (default)|'Saturate'
Action to take on overflow, specified as one of these values:

- 'Wrap ' - Wrap on overflow. This mode is also known as two's complement overflow.
- 'Saturate' - Saturate to the maximum or minimum value of the fixed-point range on overflow.

Data Types: char|string

## Output Arguments

## F - Fixed-point math settings

fimath object
Fixed-point math settings, returned as a fimath object.
If $X$ is not a fi object or numerictype object, then fixed.fimathLike returns empty.

## Version History

Introduced in R2022b

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## See Also <br> setfimath|fimath|fi|numerictype

## fixed.forgettingFactor

Compute forgetting factor required for streaming input data

## Syntax

alpha = fixed.forgettingFactor(m)

## Description

alpha $=$ fixed.forgettingFactor( $m$ ) returns the forgetting factor $\alpha$ for an infinite number of rows with the equivalent gain of a matrix $A$ with $m$ rows.

## Examples

## Compute Forgetting Factor Required for Streaming Input Data

This example shows how to use the fixed.forgettingFactor and fixed.forgettingFactorInverse functions.

The growth in the QR decomposition can be seen by looking at the magnitude of the first element $R(1,1)$ of the upper-triangular factor $R$, which is equal to the Euclidean norm of the first column of matrix $A$,
$|R(1,1)|=| | A(:, 1) \|_{2}$.
To see this, create matrix $A$ as a column of ones of length $n$ and compute $R$ of the economy-size QR decomposition.

```
n = 1e4;
A = ones(n,1);
```

Then $|R(1,1)|=\left||A(:, 1)| \|_{2}=\sqrt{\sum_{i=1}^{n} 1^{2}}=\sqrt{n}\right.$.
$R=$ fixed.qlessQR(A)
$R=100.0000$
norm(A)
ans $=100$
sqrt(n)
ans $=100$

The diagonal elements of the upper-triangular factor $R$ of the $Q R$ decomposition may be positive, negative, or zero, but fixed.qlessQR and fixed.qrAB always return the diagonal elements of $R$ as non-negative.

In a real-time application, such as when data is streaming continuously from a radar array, you can update the QR decomposition with an exponential forgetting factor $\alpha$ where $0<\alpha<1$. Use the fixed.forgettingFactor function to compute a forgetting factor $\alpha$ that acts as if the matrix were being integrated over $m$ rows to maintain a gain of about $\sqrt{m}$. The relationship between $\alpha$ and $m$ is $\alpha=e^{-1 /(2 m)}$.
m = 16;
alpha = fixed.forgettingFactor(m);
R_alpha = fixed.qlessQR(A,alpha)
R_alpha = 3.9377
sqrt(m)
ans $=4$
If you are working with a system and have been given a forgetting factor $\alpha$, and want to know the effective number of rows $m$ that you are integrating over, then you can use the
fixed.forgettingFactorInverse function. The relationship between $m$ and $\alpha$ is $m=\frac{-1}{2 \log (\alpha)}$.
fixed.forgettingFactorInverse(alpha)
ans $=16$

## Input Arguments

m - Number of rows in matrix $A$
positive integer-valued scalar
Number of rows in matrix $A$, specified as a positive integer-valued scalar.

```
Data Types: double
```


## Output Arguments

alpha - Forgetting factor
scalar
Forgetting factor, returned as a scalar.

## Tips

Use fixed.forgettingFactor to compute a forgetting factor for these functions and blocks.

- fixed.qlessQR
- fixed.qlessQRMatrixSolve
- Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor
- Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor
- Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
- Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor


## Algorithms

In real-time applications, such as when data is streaming continuously from a radar array [1], the QR decomposition is often computed continuously as each new row of data arrives. In these systems, the previously computed upper-triangular matrix, $R$, is updated and weighted by forgetting factor $\alpha$, where $0<\alpha<1$. This computation treats the matrix $A$ as if it is infinitely tall. The series of transformations is as follows.

$$
\begin{aligned}
& R_{0}=\operatorname{zeros}(n, n) \\
& {\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right] \rightarrow\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]} \\
& {\left[\begin{array}{c}
\alpha R_{1} \\
A(2,:)
\end{array}\right] \rightarrow\left[\begin{array}{c}
R_{2} \\
0
\end{array}\right]} \\
& \vdots \\
& {\left[\begin{array}{c}
\alpha R_{k} \\
A(k,:)
\end{array}\right] \rightarrow\left[\begin{array}{c}
R_{k}+1 \\
0
\end{array}\right]}
\end{aligned}
$$

Without the forgetting factor $\alpha$, the values of $R$ would grow without bound.
With the forgetting factor, the gain in $R$ is

$$
g=\sqrt{\frac{1}{2} \int_{0}^{\infty} \alpha^{\chi} d x}=\sqrt{\frac{-1}{2 \log (\alpha)}} .
$$

The gain of computing $R$ without a forgetting factor from an $m$-by- $n$ matrix $A$ is $\sqrt{m}$. Therefore,

$$
\begin{aligned}
& \sqrt{m}=\sqrt{\frac{-1}{2 \log (\alpha)}} \\
& m=\frac{-1}{2 \log (\alpha)} \\
& \alpha=e^{-1 /(2 m)} .
\end{aligned}
$$

## Version History

## Introduced in R2021b

## References

[1] Rader, C.M. "VLSI Systolic Arrays for Adaptive Nulling." IEEE Signal Processing Magazine (July 1996): 29-49.

## See Also

## Functions

fixed.qlessQR|fixed.qlessQRMatrixSolve|fixed.forgettingFactorInverse

## Blocks

Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Real Partial-Systolic Matrix Solve Using Q-less QR

Decomposition with Forgetting Factor | Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

## fixed.forgettingFactorInverse

Compute the inverse of the forgetting factor required for streaming input data

## Syntax

m = fixed.forgettingFactorInverse(alpha)

## Description

$\mathrm{m}=$ fixed.forgettingFactorInverse(alpha) returns the number of rows with the equivalent gain of a matrix $A$ with $m$ rows, given a forgetting factor $\alpha$.

## Examples

## Compute Forgetting Factor Required for Streaming Input Data

This example shows how to use the fixed.forgettingFactor and fixed.forgettingFactorInverse functions.

The growth in the QR decomposition can be seen by looking at the magnitude of the first element $R(1,1)$ of the upper-triangular factor $R$, which is equal to the Euclidean norm of the first column of matrix $A$,
$|R(1,1)|=| | A(:, 1) \|_{2}$.
To see this, create matrix $A$ as a column of ones of length $n$ and compute $R$ of the economy-size QR decomposition.

```
n = 1e4;
A = ones(n,1);
```

Then $|R(1,1)|=||A(:, 1)||_{2}=\sqrt{\sum_{i=1}^{n} 1^{2}}=\sqrt{n}$.
$R=$ fixed.qlessQR(A)
$R=100.0000$
norm(A)
ans $=100$
sqrt(n)
ans $=100$

The diagonal elements of the upper-triangular factor $R$ of the $Q R$ decomposition may be positive, negative, or zero, but fixed.qlessQR and fixed.qrAB always return the diagonal elements of $R$ as non-negative.

In a real-time application, such as when data is streaming continuously from a radar array, you can update the QR decomposition with an exponential forgetting factor $\alpha$ where $0<\alpha<1$. Use the fixed.forgettingFactor function to compute a forgetting factor $\alpha$ that acts as if the matrix were being integrated over $m$ rows to maintain a gain of about $\sqrt{m}$. The relationship between $\alpha$ and $m$ is $\alpha=e^{-1 /(2 m)}$.
$\mathrm{m}=16$;
alpha = fixed.forgettingFactor(m);
R_alpha = fixed.qlessQR(A,alpha)
R_alpha = 3.9377
sqrt(m)
ans $=4$
If you are working with a system and have been given a forgetting factor $\alpha$, and want to know the effective number of rows $m$ that you are integrating over, then you can use the
fixed.forgettingFactorInverse function. The relationship between $m$ and $\alpha$ is $m=\frac{-1}{2 \log (\alpha)}$.
fixed.forgettingFactorInverse(alpha)
ans $=16$

## Input Arguments

## alpha - Forgetting factor

scalar
Forgetting factor, specified as a scalar.
Data Types: double

## Output Arguments

## m - Number of rows in matrix $A$

positive integer-valued scalar
Number of rows in matrix $A$ with the equivalent gain, returned as a positive integer-valued scalar.

## Algorithms

In real-time applications, such as when data is streaming continuously from a radar array [1], the QR decomposition is often computed continuously as each new row of data arrives. In these systems, the previously computed upper-triangular matrix, $R$, is updated and weighted by forgetting factor $\alpha$, where $0<\alpha<1$. This computation treats the matrix $A$ as if it is infinitely tall. The series of transformations is as follows.

$$
\begin{aligned}
& R_{0}=\operatorname{zeros}(n, n) \\
& {\left[\begin{array}{c}
R_{0} \\
A(1,:)
\end{array}\right] \rightarrow\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]} \\
& {\left[\begin{array}{c}
\alpha R_{1} \\
A(2,:)
\end{array}\right] \rightarrow\left[\begin{array}{c}
R_{2} \\
0
\end{array}\right]} \\
& \vdots \\
& {\left[\begin{array}{c}
\alpha R_{k} \\
A(k,:)
\end{array}\right] \rightarrow\left[\begin{array}{c}
R_{k}+1 \\
0
\end{array}\right]}
\end{aligned}
$$

Without the forgetting factor $\alpha$, the values of $R$ would grow without bound.
With the forgetting factor, the gain in $R$ is

$$
g=\sqrt{\frac{1}{2} \int_{0}^{\infty} \alpha^{\chi} d x}=\sqrt{\frac{-1}{2 \log (\alpha)}} .
$$

The gain of computing $R$ without a forgetting factor from an $m$-by-n matrix $A$ is $\sqrt{m}$. Therefore,

$$
\begin{aligned}
& \sqrt{m}=\sqrt{\frac{-1}{2 \log (\alpha)}} \\
& m=\frac{-1}{2 \log (\alpha)} \\
& \alpha=e^{-1 /(2 m)} .
\end{aligned}
$$

## Version History <br> Introduced in R2021b

## References

[1] Rader, C.M. "VLSI Systolic Arrays for Adaptive Nulling." IEEE Signal Processing Magazine (July 1996): 29-49.

## See Also

## Functions

fixed.qlessQR|fixed.qlessQRMatrixSolve|fixed.forgettingFactor

## Blocks

Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

## fixed.forwardSubstitute

Solve lower-triangular system of equations through forward substitution

## Syntax

$x=$ fixed.forwardSubstitute( $R$, B)
x = fixed.forwardSubstitute(R, B, outputType)

## Description

$x=$ fixed.forwardSubstitute(R, B) performs forward substitution on upper-triangular matrix R to compute $x=R^{\prime} \backslash B$.
$x=$ fixed.forwardSubstitute( $R, B$, outputType) returns $x=R^{\prime} \backslash B$, where the data type of output variable, x , is specified by outputType.

## Examples

## Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations $\left(A^{\prime} A\right) x=B$ using forward and backward substitution.

Specify the input variables, A and B .

```
rng default;
A = gallery('randsvd', [5,3], 1000);
b = [1; 1; 1; 1; 1];
```

Compute the upper-triangular factor, R , of A , where $A=Q R$.
$R=$ fixed.qlessQR(A);
Use forward and backward substitution to compute the value of X .
X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)
$X=5 \times 1$
$10^{5} \times$
-0.9088
2.7123
-0.8958
0
0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.
$x=$ fixed.qlessQRMatrixSolve(A,b)

```
x = 5x1
105 x
 -0.9088
 2.7123
 -0.8958
 0
 0
```


## Input Arguments

R-Upper-triangular input matrix
matrix
Upper triangular input, specified as a matrix.
Data Types: single|double|fi
Complex Number Support: Yes

## B - Linear system factor

matrix
Linear system factor, specified as a matrix.
Data Types: single|double|fi
Complex Number Support: Yes
outputType - Output data type
numerictype object | numeric variable
Output data type, specified as a numerictype object or a numeric variable. If outputType is specified as a numerictype object, the output, $x$, will have the specified data type. If outputType is specified as a numeric variable, x will have the same data type as the numeric variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64 | logical|fi|numerictype

## Output Arguments

x - Solution
matrix
Solution, returned as a matrix satisfying the equation $x=R^{\prime} \backslash B$.

## Version History

Introduced in R2020b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.

Generate code for double-precision, single-precision, and fixed-point data types.

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
$R$ and $B$ must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

## See Also

fixed.backwardSubstitute|fixed.qlessQR|fixed.qlessQRUpdate|fixed.qrAB| fixed.qrMatrixSolve|fixed.qlessQRMatrixSolve

## fixed.jacobiSVD

Fixed-point Jacobi singular value decomposition

## Syntax

S = fixed.jacobiSVD(A)
$[U, s, V]=$ fixed.jacobiSVD(A)
[___] = fixed.jacobiSVD( $\qquad$ , numberOfSweeps)

## Description

$S=$ fixed. $j$ acobiSVD $(A)$ returns a vector containing the singular values of matrix $A$ in descending order.
$[U, S, V]=$ fixed.jacobiSVD(A) performs a singular value decomposition of matrix $A$ such that $A$ $=U * \operatorname{diag}(s) * V '$. s is a vector of nonnegative elements in decreasing order. U and V are unitary matrices.
[___] = fixed.jacobiSVD(__ , numberOfSweeps) performs numberOfSweeps Jacobi iterations. If numberOfSweeps is not supplied, the default is 10 .

## Examples

## Compute Singular Values of Fixed-Point Matrix

Compute the singular values of a full rank scaled-double matrix.
$A=f i([101 ;-1-20 ; 01-1]) ;$
Define fixed-point types that will never overflow. First, use the fixed.singularValueUpperBound function to determine the upper bound on the singular values. Then, define the integer length based on the value of the upper bound, with one additional bit for the sign, another additional bit for intermediate CORDIC growth, and one more bit for intermediate growth to compute the Jacobi rotations. Compute the fraction length based on the integer length and the desired word length.

```
svdUpperBound = fixed.singularValueUpperBound(3,3,max(abs(A(:))));
additionalBitGrowth = 3;
integerLength = ceil(log2(svdUpperBound)) + additionalBitGrowth;
wordLength = 16;
fractionLength = wordLength - integerLength;
```

Cast the matrix A to the signed fixed-point type.

```
T.A = fi([],1,wordLength,fractionLength,'DataType','Fixed');
A = cast(A,'like',T.A)
A =
 1
```

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
FractionLength: 10
```

Compute the singular values of the fixed-point matrix A .

```
s = fixed.jacobiSVD(A)
S =
 2.4502
 1.6904
 0.2295
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10
```

The singular values are returned in a column vector in decreasing order with the same data type as the input matrix $A$.

## Find Fixed-Point Singular Value Decomposition

Find the singular value decomposition of the fixed-point matrix A.

```
m = 4;
n = 2;
rng('default');
A = 10*randn(m,n)
A = 4×2
 5.3767 3.1877
 18.3389 -13.0769
 -22.5885 -4.3359
 8.6217 3.4262
```

Define fixed-point types that will never overflow. First, use the fixed. singularValueUpperBound function to determine the upper bound on the singular values. Then, define the integer length based on the value of the upper bound, with one additional bit for the sign, another additional bit for intermediate CORDIC growth, and one more bit for intermediate growth to compute the Jacobi rotations. Compute the fraction length based on the integer length and the desired word length.

```
svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))));
additionalBitGrowth = 3;
integerLength = ceil(log2(svdUpperBound)) + additionalBitGrowth;
wordLength = 16;
fractionLength = wordLength - integerLength;
Cast the matrix A to the signed fixed-point type.
T.A = fi([],1,wordLength,fractionLength,'DataType','Fixed');
A = cast(A,'like',T.A)
```

```
A =
 5.3750 3.1875
 18.3359 -13.0781
 -22.5859 -4.3359
 8.6250 3.4297
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 7
```

Find the singular value decomposition of the fixed-point matrix $A$.

```
[U,s,V] = fixed.jacobiSVD(A)
U =
 -0.1583 0.2714
 -0.6411 -0.7532
 0.7036 -0.5067
 -0.2615 0.3201
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14
S =
 31.0312
 14.1484
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 7
V =
 -0.9918 0.1267
 0.1267 0.9918
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14
```

Confirm the relation $A=U^{*}$ diag(s)*V'.
U*diag(s)*V'
ans =
$5.3593 \quad 3.1854$
18.3815-13.0908
-22.5638 -4.3440
$8.6213 \quad 3.4633$
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 50
FractionLength: 35

## Control Number of Jacobi Iterations

Use the number0fSweeps parameter to control the number of iterations performed.

```
m = 5;
n = 3;
rng('default');
A = 10* randn(m,n)
A=5\times3
\begin{tabular}{rrr}
5.3767 & -13.0769 & -13.4989 \\
18.3389 & -4.3359 & 30.3492 \\
-22.5885 & 3.4262 & 7.2540 \\
8.6217 & 35.7840 & -0.6305 \\
3.1877 & 27.6944 & 7.1474
\end{tabular}
```

Define fixed-point types that will never overflow. First, use the fixed. singularValueUpperBound function to determine the upper bound on the singular values. Then, define the integer length based on the value of the upper bound, with one additional bit for the sign, another additional bit for intermediate CORDIC growth, and one more bit for intermediate growth to compute the Jacobi rotations. Compute the fraction length based on the integer length and the desired word length.

```
svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))));
additionalBitGrowth = 3;
integerLength = ceil(log2(svdUpperBound)) + additionalBitGrowth;
wordLength = 16;
fractionLength = wordLength - integerLength;
```

Cast the matrix A to the signed fixed-point type.

```
T.A = fi([],1,wordLength,fractionLength,'DataType','Fixed');
A = cast(A,'like',T.A)
A =
 5.3750 -13.0625 -13.5000
 18.3438 -4.3438 30.3438
 -22.5938 3.4375 7.2500
 8.6250 35.7812 -0.6250
 3.1875 27.6875 7.1562
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 5
```

Find the singular value decomposition of the fixed-point matrix $A$ and calculate the relative error.

```
[U,s,V] = fixed.jacobiSVD(A);
relativeError = norm(double(U*diag(s)*V' - A))/norm(double(A))
relativeError = 0.0060
```

Recalculate the singular value decomposition using only two Jacobi iterations and compute the relative error.

```
[U,s,V] = fixed.jacobiSVD(A,1);
relativeError = norm(double(U*diag(s)*V' - A))/norm(double(A))
relativeError = 0.0707
```

Compare the relative error between the default 10 iterations and 2 iterations.

## Input Arguments

## A - Input matrix

matrix
Input matrix, specified as a matrix. A can be a signed fixed-point fi, a signed scaled double fi, double, or single data type.
Data Types: single | double | fi
Complex Number Support: Yes
numberOfSweeps - Number of Jacobi iterations
10 (default) | positive integer-valued scalar
Number of Jacobi iterations, specified as a positive integer-valued scalar. Increasing the number of Jacobi iterations improves the accuracy of the singular value decomposition.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64 | fi

## Output Arguments

## U - Left singular vectors

columns of matrix
Left singular vectors, returned as the columns of a matrix.
For fixed-point and scaled-double inputs, U is returned as a signed fixed-point or scaled-double fi with the same word length as A and fraction length equal to two less than the word length. One of these integer bits is used for the sign. The other integer bit allows +1 to be represented exactly.

For floating-point input, U has the same data type as A .

## s-Singular values

column vector
Singular values, returned as a column vector. The singular values are nonnegative and returned in decreasing order. The singular values $S$ have the same data type as $A$.

## V - Right singular vectors

columns of matrix
Right singular vectors, returned as the columns of a matrix.
For fixed-point input and scaled-double inputs, V is returned as a signed fixed-point or scaled-double fi with the same word length as A and fraction length equal to two less than the word length. One of these integer bits is used for the sign. The other integer bit allows +1 to be represented exactly.

For floating-point input, V has the same data type as A . One of these integer bits is used for the sign, and the other integer bit is so that +1 can be represented exactly.

## Tips

- The fixed.jacobiSVD function generates an economy sized vector output of the singular value decomposition. [ $\mathrm{U}, \mathrm{s}, \mathrm{V}$ ] = fixed.jacobiSVD(A) produces a vector s and unitary matrices U and $V$ such that the dimensions of $U, s$ and $V$ are the same as the dimensions of svd with the "econ" and "vector" flags: $[\mathrm{U}, \mathrm{s}, \mathrm{V}]=$ svd(A,"econ", "vector").
- The behavior of the Square Jacobi SVD HDL Optimized block is equivalent to [ $\mathrm{U}, \mathrm{s}, \mathrm{V}$ ] = fixed.jacobiSVD(A). The fixed. JacobiSVD function uses the same algorithm as the Square Jacobi SVD HDL Optimized block, with the same output data types. However, small numerical differences may exist in the least significant bit between the function and the block.


## Algorithms

The fixed.jacobiSVD function uses the two-sided Jacobi algorithm for singular value decomposition (SVD) [1][2][3]. Compared to the sequential Golub-Kahan-Reinsch algorithm for SVD [4], the Jacobi algorithm has inherent parallelism and performs better for FPGA and ASIC applications [5]. The Jacobi method is an iterative algorithm. The numberOfSweeps parameter determines the number of iterations performed. Most sources indicate that 10 iterations is sufficient for the Jacobi algorithm to converge.

## Version History <br> Introduced in R2023a

## References

[1] Jacobi, Carl G. J. "Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen." Journal fur die reine und angewandte Mathematik 30 (1846): 51-94.
[2] Forsythe, George E., and Peter Henrici. "The Cyclic Jacobi Method for Computing the Principal Values of a Complex Matrix." Transactions of the American Mathematical Society 94, no. 1 (January 1960): 1-23. https://doi.org/10.1090/S0002-9947-1960-0109825-2.
[3] Shiri, Aidin and Ghader Khosroshahi. 2019. "An FPGA Implementation of Singular Value Decomposition." ICEE 2019:27th Iranian Conference on Electrical Engineering, Yazd, Iran, April 30-May 2, 2019, 416-22. IEEE. https://doi.org/10.1109/IranianCEE.2019.8786719.
[4] Golub, Gene H., and Charles F. Van Loan. Matrix Computations, 4th ed. Baltimore, MD: Johns Hopkins University Press, 2013.
[5] Athi, Mrudula V., Seyed R. Zekavat, and Allan A. Struthers. "Real-Time Signal Processing of Massive Sensor Arrays via a Parallel Fast Converging SVD Algorithm: Latency, Throughput, and Resource Analysis." IEEE Sensors Journal 16, no. 8 (January 2016): 2519-26.https:// doi.org/10.1109/JSEN.2016.2517040.

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
fixed.jacobiSVD generates efficient, purely integer C code.

## See Also

fixed.svd | svd | Square Jacobi SVD HDL Optimized

## Topics

"Singular Values"

## fixed.qlessQR

Q-less QR decomposition

## Syntax

$R=$ fixed.qlessQR(A)
$R=$ fixed.qless $Q$ (A,forgettingFactor)
$R=$ fixed.qless $Q R(A,[], r e g u l a r i z a t i o n P a r a m e t e r) ~$
$R=$ fixed.qlessQR(A,forgettingFactor, regularizationParameter)

## Description

$R=$ fixed.qless $Q R(A)$ returns the upper-triangular $R$ factor of the $Q R$ decomposition $A=Q R$.
This is equivalent to computing
$[\sim, R]=\operatorname{qr}(A)$
$R=$ fixed.qlessQR(A,forgettingFactor) returns the upper-triangular $R$ factor of the $Q R$ decomposition and multiplies $R$ by the forgettingFactor before each row of $A$ is processed.
$R=$ fixed.qless $Q R(A,[]$, regularizationParameter $)$ returns the upper-triangular $R$ factor of the QR decomposition of $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ where A is an $m$-by- $n$ matrix and $\lambda$ is the regularizationParameter.
$R=$ fixed.qlessQR(A,forgettingFactor, regularizationParameter) returns the uppertriangular $R$ factor of the QR decomposition of

where $\alpha$ is the forgettingFactor, $\lambda$ is the regularizationParameter, and $A$ is an $m$-by- $n$ matrix.

## Examples

## Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations $\left(A^{\prime} A\right) x=B$ using forward and backward substitution.

Specify the input variables, $A$ and $B$.

```
rng default;
A = gallery('randsvd', [5,3], 1000);
b = [1; 1; 1; 1; 1];
```

Compute the upper-triangular factor, R , of A , where $A=Q R$.
$R=$ fixed.qlessQR(A);
Use forward and backward substitution to compute the value of $X$.

```
X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)
X = 5x1
105 x
 -0.9088
 2.7123
 -0.8958
 0
 0
```

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

```
x = fixed.qlessQRMatrixSolve(A,b)
x = 5x1
105 x
 -0.9088
 2.7123
 -0.8958
 0
 0
```


## Compute Upper-Triangular Matrix Factor Using Forgetting Factor

Using a forgetting factor with the fixed.qlessQR function is roughly equivalent to the Complexand Real Partial-Systolic Q-less QR with Forgetting Factor blocks. These blocks process one row of the input matrix at a time and apply the forgetting factor before each row is processed. The fixed.qlessQR function takes in all rows of A at once, but carries out the computation in the same way as the blocks. The forgetting factor is applied before each row is processed.

Specifying a forgetting factor is useful when you want to stream an indefinite number of rows continuously, such as reading values from a sensor array continuously, without accumulating the data without bound.

Without using a forgetting factor, the accumulation is the square root of the number of rows, so 10000 rows would accumulate to $\sqrt{10000}=100$.

```
A = ones(10000,3);
R = fixed.qlessQR(A)
```

```
R = 3\times3
\begin{tabular}{rrr}
100.0000 & 100.0000 & 100.0000 \\
0 & 0.0000 & 0.0000 \\
0 & 0 & 0.0000
\end{tabular}
```

To accrue with the effective height of $\mathrm{m}=16$ rows, set the forgetting factor to the following.

```
m=16;
forgettingFactor = exp(-1/(2*m))
forgettingFactor = 0.9692
```

Using the forgetting factor, fixed.qlessQR would accumulate to about square root of 16.

```
R = fixed.qlessQR(A,forgettingFactor)
```

$R=3 \times 3$

3.9377	3.9377	3.9377
0	0.0000	0.0000
0	0	0.0000

## Input Arguments

A - Input matrix
matrix
Input matrix, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

## forgettingFactor - Forgetting factor

nonnegative scalar
Forgetting factor, specified as a nonnegative scalar between 0 and 1 . The forgetting factor determines how much weight past data is given. The forgettingFactor value is multiplied by $R$ before each row of A is processed.

```
Data Types: single|double| int8| int16| int32| int64|uint8| uint16|uint32|uint64 |
fi
```


## regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
Data Types: single | double| int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi

## Output Arguments

## R - Upper-triangular factor <br> matrix

Upper-triangular factor, returned as a matrix that satisfies $\mathrm{A}=Q R$.

## Version History

Introduced in R2020b

## R2022a: Support for Tikhonov regularization parameter

The fixed.qlessqr function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder ${ }^{\text {rm }}$.
Generate code for double-precision, single-precision, and fixed-point data types.

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixedpoint data types.

## See Also

fixed.backwardSubstitute|fixed.forwardSubstitute|fixed.qlessQRUpdate|
fixed.qrAB|fixed.qrMatrixSolve|fixed.qlessQRMatrixSolve
Topics
"Determine Fixed-Point Types for Q-less QR Decomposition"
"Compute Forgetting Factor Required for Streaming Input Data"

## fixed.qlessQRMatrixSolve

Solve system of linear equations ( $\left.A^{\prime} A\right) X=B$ for $X$ using Q -less QR decomposition

## Syntax

```
X = fixed.qlessQRMatrixSolve(A,B)
X = fixed.qlessQRMatrixSolve(A,B,outputType)
X = fixed.qlessQRMatrixSolve(A,B,outputType,forgettingFactor)
X = fixed.qlessQRMatrixSolve(A,B,outputType,[],regularizationParameter)
X = fixed.qlessQRMatrixSolve(A,B,outputType,forgettingFactor,
regularizationParameter)
```


## Description

$X=$ fixed.qlessQRMatrixSolve( $\mathrm{A}, \mathrm{B}$ ) solves the system of linear equations $\left(A^{\prime} A\right) X=B$ using QR decomposition, without computing the $Q$ value.

The result of this code is equivalent to computing
$[\sim, R]=\operatorname{qr}(A, 0) ;$
$X=R \backslash\left(R^{\prime} \backslash B\right)$
or
$X=\left(A^{\prime} * A\right) \backslash B$
$X=$ fixed.qlessQRMatrixSolve( $A, B$, outputType) returns the solution to the system of linear equations $\left(A^{\prime} A\right) X=B$ as a variable with the output type specified by outputType.

X = fixed.qlessQRMatrixSolve(A, B, outputType,forgettingFactor) returns the solution to the system of linear equations, with the forgettingFactor multiplied by $R$ after each row of $A$ is processed.
$X=$ fixed.qlessQRMatrixSolve(A, B, outputType, [],regularizationParameter) solves the matrix equation $\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B$ where $\lambda$ is the regularizationParameter.

X = fixed.qlessQRMatrixSolve(A, B, outputType,forgettingFactor, regularizationParameter) solves the matrix equation $A^{\prime}{ }_{\alpha, \lambda} A_{\alpha, \lambda} X=B$ where

$$
A_{\alpha, \lambda}=\left[\begin{array}{llll} 
& \alpha^{m} \lambda I_{n} & & \\
{\left[\begin{array}{llll}
\alpha^{m} & & & \\
& \alpha^{m-1} & & \\
& & \ddots & \\
& & & \alpha
\end{array}\right]}
\end{array}\right] \text {, }
$$

$\alpha$ is the forgettingFactor, $\lambda$ is the regularizationParameter, and $m$ is the number of rows in $A$.

## Examples

## Solve a System of Equations Using Q-Less QR Decomposition

This example shows how to solve the system of linear equations $\left(A^{\prime} A\right) X=B$ using QR decomposition, without explicitly calculating the Q factor of the QR decomposition.

```
rng('default');
m = 6;
n = 3;
p = 1;
A = randn(m,n);
B = randn(n,p);
X = fixed.qlessQRMatrixSolve(A,B)
X = 3\times1
 0.2991
 0.0523
 0.4182
```

The fixed.qlessQRMatrixSolve function is equivalent to the following code, however the fixed.qlessQRMatrixSolve function is more efficient and supports fixed-point data types.
$X=\left(A^{\prime} * A\right) \backslash B$
$x=3 \times 1$
0.2991
0.0523
0.4182

## Solve System of Equations Specifying an Output Data Type

This example shows how to specify an output data type to solve a system of equations with fixed-point data.

Define the data representing the system of equations. Define the matrix A as a zero-mean, normally distributed random matrix with a standard deviation of 1 .

```
rng('default');
m = 6;
n = 3;
p = 1;
A0 = randn(m,n);
B0 = randn(n,p);
```

Specify fixed-point data types for $A$ and $B$ as to avoid overflow during the computation of $Q R$.

```
T.A = fi([],1,22,16);
T.B = fi([],1,22,16);
A = cast(A0,'like',T.A)
```

```
A =
 0.5377 -0.4336 0.7254
 1.8339 0.3426 -0.0630
 -2.2589 3.5784 0.7147
 0.8622 2.7694 -0.2050
 0.3188 -1.3499 -0.1241
 -1.3077 3.0349 1.4897
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 22
 FractionLength: 16
B = cast(B0,'like',T.B)
B =
 1.4090
 1.4172
 0.6715
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 22
 FractionLength: 16
```

Specify an output data type to avoid overflow in the back-substitution.
T.X = fi([],1,29,12);

Use the fixed.qlessQRMatrixSolve function to compute the solution, $X$.
$X=$ fixed.qlessQRMatrixSolve(A, B,T.X)
$X=$
0.2988
0.0522
0.4180

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 29
FractionLength: 12
Compare this result to the result of the built-in MATLAB ${ }^{\circledR}$ operations in double-precision floatingpoint.
$X 0=\left(A 0^{\prime *} A 0\right) \backslash B 0$
$X 0=3 \times 1$
0.2991
0.0523
0.4182

## Input Arguments

A - Coefficient matrix
matrix
Coefficient matrix in the linear system of equations $\left(A^{\prime} A\right) X=B$.
Data Types: single |double | fi
Complex Number Support: Yes
B - Input array
vector | matrix
Input vector or matrix representing $B$ in the linear system of equations $\left(A^{\prime} A\right) X=B$.
Data Types: single | double|fi
Complex Number Support: Yes

## outputType - Output data type

numerictype object | numeric variable
Output data type, specified as a numerictype object or a numeric variable. If outputType is specified as a numerictype object, the output, X , will have the specified data type. If outputType is specified as a numeric variable, $X$ will have the same data type as the numeric variable.

```
Data Types: single | double | int8| int16| int32 | int64 | uint8|uint16|uint32 | uint64 |
fi|numerictype
```

forgettingFactor - Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1 . The forgetting factor determines how much weight past data is given. The forgettingFactor value is multiplied by the output of the QR decomposition, $R$ after each row of $A$ is processed.

```
Data Types: single| double| int8| int16| int32| int64|uint8|uint16|uint32|uint64|
fi
```

regularizationParameter - Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

```
Data Types: single | double| int8| int16| int32 | int64|uint8|uint16|uint32|uint64 |
```

fi

## Output Arguments

## X - Solution

vector | matrix
Solution, returned as a vector or matrix. If A is an $m-b y-n$ matrix and B is an $m-b y-p$ matrix, then X is an n -by-p matrix.

## Version History

Introduced in R2020b

## R2022a: Support for Tikhonov regularization parameter

The fixed.qlessqrmatrixsolve function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
Generate code for double-precision, single-precision, and fixed-point data types.

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
$A$ and $B$ must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

## See Also

fixed.backwardSubstitute|fixed.forwardSubstitute|fixed.qlessQR|
fixed.qlessQRUpdate|fixed.qrAB|fixed.qrMatrixSolve

## Topics

"Algorithms to Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B"
"Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B"
"Algorithms to Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B"
"Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B"
"Compute Forgetting Factor Required for Streaming Input Data"

## fixed.qlessqrFixedpointTypes

Determine fixed-point types for transforming $A$ to $R$ in-place, where $R$ is upper-triangular factor of QR decomposition of $A$, without computing $Q$

## Syntax

T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits)
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits, regularizationParameter)
T = fixed.qlessqrFixedpointTypes( __ , maxWordLength)

## Description

T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits) computes fixed-point types for transforming $A$ to $R$ in-place, where $R$ is the upper-triangular factor of the QR decomposition of $A$, without computing $Q$. T is returned as a struct with field T . A containing a fi object that specifies the fixed-point type for $A$, which guarantees no overflow will occur in the QR algorithm.

The QR algorithm transforms $A$ in-place into upper-triangular $R$, where $Q R=A$ is the QR decomposition of $A$.

T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits, regularizationParameter) computes fixed-point types for transforming $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ in-place to $R=Q^{\prime}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ where $\lambda$ is the regularizationParameter, $Q R$ is the economy size $Q R$ decomposition of $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right], A$ is an $m$-by- $n$ matrix, and $I_{n}=$ eye $(n)$. regularizationParameter is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.qlessqrFixedpointTypes( $\qquad$ , maxWordLength) specifies the maximum word length of the fixed-point types. maxWordLength is an optional parameter. If not supplied or empty, then the default value is used.

## Examples

## Determine Fixed-Point Types for Q-less QR Decomposition

This example shows how to use fixed.qlessqrFixedpointTypes to analytically determine a fixedpoint type for the computation of the Q -less QR decomposition.

## Define Matrix Dimensions

Specify the number of rows and columns in matrix $A$.

```
m = 10; % Number of rows in matrix A
n = 3; % Number of columns in matrix A
```


## Generate Matrix A

Use the helper function realUniformRandomArray to generate a random matrix $A$ such that the elements of $A$ are between -1 and +1 .
rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);

## Select Fixed-Point Type

Use the fixed.qlessqrFixedpointTypes function to select the fixed-point data type for matrix $A$ that guarantees no overflow will occur in the transformation of $A$ in-place to $R=Q^{\prime} A$.

```
max_abs_A = 1; % Upper bound on max(abs(A(:))
precisionBits = 24; % Number of bits of precision
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits)
T = struct with fields:
 A: [0x0 embedded.fi]
```

T. A is the type computed for transforming $A$ to $R=Q^{\prime} A$ in-place so that it does not overflow.

## T.A

ans $=$
[]
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 29
FractionLength: 24
Use the Specified Type to Compute the Q-less QR Decomposition
Cast the input to the type determined by fixed.qlessqrFixedpointTypes.

```
A = cast(A,'like',T.A);
```

Accelerate fixed.qlessQR by using fiaccel to generate a MATLAB executable (MEX) function.
fiaccel fixed.qlessQR -args \{A\} -o qlessQR_mex
Compute the QR decomposition.
$R=q l e s s Q R \_m e x(A) ;$

## Verify that $\mathbf{R}$ is Upper-Triangular

$R$ is an upper-triangular matrix.

```
R
R =
 2.2180
```

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
FractionLength: 24
```

isequal( $R$,triu( $R$ ))
ans = logical
1

## Verify the Accuracy of the Output

To evaluate the accuracy of the fixed.qlessQR function, compute the relative error.
$R=Q^{\prime} A$, and $Q$ is orthogonal, so $R^{\prime} R=A^{\prime} Q Q^{\prime} A=A^{\prime} A$, within rounding error.
relative_error = norm(double(R'*R - A'*A))/norm(double(A'*A))
relative_error $=9.3865 \mathrm{e}-07$
Suppress mlint warnings.
\%\#ok<*NOPTS>

## Input Arguments

m - Number of rows in $A$
positive integer-valued scalar
Number of rows in $A$, specified as a positive integer-valued scalar.
Data Types: double
max_abs_A - Maximum of absolute value of $A$
scalar
Maximum of the absolute value of $A$, specified as a scalar.
Example: max (abs(A(: )) )
Data Types: double
precisionBits - Required number of bits of precision
positive integer-valued scalar
Required number of bits of precision, specified as a positive integer-valued scalar.
Data Types: double

## regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

Data Types: single|double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi
maxWordLength - Maximum word length of fixed-point types
128 (default) | positive integer
Maximum word length of fixed-point types, specified as a positive integer.
If the word length of the fixed-point type exceeds the specified maximum word length, the default of 128 bits is used.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi

## Output Arguments

## T - Fixed-point type for $\boldsymbol{A}$

struct
Fixed-point type for $A$, returned as a struct. The struct T has field T.A that contains a fi object that specifies a fixed-point type for $A$ that guarantees no overflow will occur in the QR algorithm.

## Tips

Use fixed.qlessqrFixedpointTypes to compute fixed-point types for the inputs of these functions and blocks.

- fixed.qlessQR
- Complex Burst Q-less QR Decomposition
- Complex Partial-Systolic Q-less QR Decomposition
- Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor
- Real Burst Q-less QR Decomposition
- Real Partial-Systolic Q-less QR Decomposition
- Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor


## Algorithms

The number of integer bits required to prevent overflow is derived from the following bound on the growth of $R[1]$. The required number of integer bits is added to the number of bits of precision, precisionBits, of the input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately 1.6468 [2].

The elements of $R$ are bounded in magnitude by

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|) .
$$

## Version History <br> Introduced in R2021b

## R2022b: Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixedpoint types.

## R2022a: Support for Tikhonov regularization parameter

The fixed.qlessqrfixedpointtypes function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0

## References

[1] "Perform QR Factorization Using CORDIC"
[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers EC-8 (1959): 330-334.

## See Also

## Functions

fixed.qlessQR

## Blocks

Complex Burst Q-less QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Real Burst Q-less QR Decomposition | Real Partial-Systolic Q-less QR Decomposition | Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

## fixed.qlessQRUpdate

Update QR factorization

## Syntax

$R=$ fixed.qlessQRUpdate( $R, y$ )
$R=$ fixed.qlessQRUpdate( $R, y$, forgettingFactor)

## Description

$R=$ fixed.qlessQRUpdate( $R, y$ ) updates upper-triangular $R$ with vector $y$.
This syntax is equivalent to
[~,R] = qr([R;y],0);
$R=$ fixed.qlessQRUpdate( $R$, $y$, forgettingFactor) updates upper-triangular $R$ with vector $y$ and multiplies the result by the value specified by forgettingFactor.

This syntax is equivalent to
$[\sim, R]=\operatorname{rr}([R ; y], 0)$;
R(:) = forgettingFactor * R;

## Examples

## Update the Upper-Triangular Factor of a Matrix

This example shows how to update the upper-triangular factor of a matrix as new data streams in.
Define a matrix and compute the upper-triangular factor, $R$, using the fixed.qlessQR function.

```
rng('default');
m = 20;
n = 4;
A = randn(m,n)
A = 20\times4
\begin{tabular}{rrrr}
0.5377 & 0.6715 & -0.1022 & -1.0891 \\
1.8339 & -1.2075 & -0.2414 & 0.0326 \\
-2.2588 & 0.7172 & 0.3192 & 0.5525 \\
0.8622 & 1.6302 & 0.3129 & 1.1006 \\
0.3188 & 0.4889 & -0.8649 & 1.5442 \\
-1.3077 & 1.0347 & -0.0301 & 0.0859 \\
-0.4336 & 0.7269 & -0.1649 & -1.4916 \\
0.3426 & -0.3034 & 0.6277 & -0.7423 \\
3.5784 & 0.2939 & 1.0933 & -1.0616 \\
2.7694 & -0.7873 & 1.1093 & 2.3505
\end{tabular}
```

```
R = fixed.qlessQR(A)
R=4\times4
 7.1017 -2.0103 1.1646 0.7999
 0 4.8784 0.5745 -0.3222
 0
```

As new data arrives, for example new values from a sensor array, you can use the fixed.qlessQRUpdate function to update the upper-triangular factor with the new data.

```
y1 = [1,1,1,1];
R = fixed.qlessQRUpdate(R,yl)
R = 4×4
\begin{tabular}{rrrr}
7.1718 & -1.8513 & 1.2927 & 0.9315 \\
0 & 5.0412 & 0.7646 & -0.0904 \\
0 & 0 & 3.2332 & -0.2584 \\
0 & 0 & 0 & 4.6074
\end{tabular}
y2 = [1,1,1,1];
R = fixed.qlessQRUpdate(R,y2)
R=4\times4
 7.2411 -1.6954 1.4184 1.0607
 0 5.1929 0.9371 0.1191
 0
```

The result of updating the upper-triangular factor as new data arrives is equivalent to computing the upper-triangular factor with all of the data.
$R=$ fixed.qlessQR([A;y1;y2])
$R=4 \times 4$

7.2411	-1.6954	1.4184	1.0607
0	5.1929	0.9371	0.1191
0	0	3.2892	-0.0962
0	0	0	4.6928

When you want to stream an indefinite number of rows continuously, such as reading values from a sensor array continuously, without accumulating the data without bound, specify a forgetting factor.

```
forgettingFactor = exp(-1/(2*m))
forgettingFactor = 0.9753
y3 = [1, 1, 1, 1];
R = fixed.qlessQRUpdate(R,y3,forgettingFactor)
R=4\times4
```

7.1294	-1.5046	1.5038	1.1582
0	5.2031	1.0676	0.3020
0	0	3.2543	0.0379
0	0	0	4.6431

## Input Arguments

$R$ - Upper-triangular input matrix matrix

Upper triangular input, specified as a matrix.
Data Types: single| double|fi
Complex Number Support: Yes
y - Measurement vector
vector
Measurement input, specified as a vector.
Data Types: single | double | fi
Complex Number Support: Yes

## forgettingFactor - Forgetting factor <br> nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1 . The forgetting factor determines how much weight past data is given. The forgettingFactor value is multiplied by $R$ after each row of $R$ is processed.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi

## Output Arguments

R - Updated upper-triangular matrix
matrix
Updated upper-triangular factor, returned as a matrix.

## Version History

## Introduced in R2020b

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
Generate code for double-precision, single-precision, and fixed-point data types.

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
$R$ and $y$ must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

## See Also

fixed.backwardSubstitute|fixed.forwardSubstitute|fixed.qlessQR|fixed.qrAB| fixed.qrMatrixSolve|fixed.qlessQRMatrixSolve

## Topics

"Compute Forgetting Factor Required for Streaming Input Data"

## fixed.qrAB

Compute $C=Q^{\prime} B$ and upper-triangular factor $R$

## Syntax

$[C, R]=$ fixed. $9 r A B(A, B)$
$[C, R]=$ fixed. $\operatorname{qrAB}(A, B$, regularizationParameter $)$

## Description

$[\mathrm{C}, \mathrm{R}]=$ fixed. $\operatorname{qrAB}(\mathrm{A}, \mathrm{B})$ computes $C=Q^{\prime} B$ and upper-triangular factor $R$. The function simultaneously performs Givens rotations to $A$ and $B$ to transform $A$ into $R$ and $B$ into $C$.

This syntax is equivalent to
$[C, R]=\operatorname{rr}(A, B)$
$[C, R]=$ fixed. $q$ rAB( $A, B$, regularizationParameter) computes $C$ and $R$ using a regularization parameter value specified by regularizationParameter. When a regularization parameter is specified, the function simultaneously performs Givens rotations to transform

$$
\left[\begin{array}{l}
\lambda I_{n} \\
A
\end{array}\right] \rightarrow R
$$

and

$$
\left[\begin{array}{l}
0_{n, p} \\
B
\end{array}\right] \rightarrow C
$$

where $A$ is an $m$-by- $n$ matrix, $B$ is a $m$-by- $p$ matrix, and $\lambda$ is the regularization parameter.
This syntax is equivalent to
$[Q, R]=\operatorname{qr}([r e g u l a r i z a t i o n P a r a m e t e r * e y e(n) ; ~ A], ~ 0) ;$
C = Q'[zeros(n,p);B];

## Examples

## Compute C and R Factors

This example shows how to compute the upper-triangular factor $R$, and $C=Q^{\prime} b$.
Define the input matrices, A , and b .

```
rng('default');
m = 6;
n = 3;
p = 1;
A = randn(m,n)
```

```
A=6\times3
 0.5377 -0.4336 0.7254
 1.8339 0.3426 -0.0631
 -2.2588 3.5784 0.7147
 0.8622 2.7694 -0.2050
 0.3188 -1.3499 -0.1241
 -1.3077 3.0349 1.4897
b = randn(m,p)
b = 6 x 1
 1.4090
 1.4172
 0.6715
 -1.2075
 0.7172
 1.6302
```

The fixed. qrAB function returns the upper-triangular factor, $R$, and $C=Q^{\prime} b$.
$[C, R]=$ fixed.grAB $(A, b)$
$C=3 \times 1$
-0. 3284
0.4055
2.5481
$R=3 \times 3$

3.3630	-2.8841	-1.0421
0	4.8472	0.6885
0	0	1.3258

## Solve System of Linear Equations Using Regularization

This example shows how to solve a system of linear equations, $A x=b$, by computing the uppertriangular factor $R$, and $C=Q^{\prime} b$. A regularization parameter can improve the conditioning of least squares problems, and reduce the variance of the estimates when solving linear systems of equations.

Define input matrices, A , and b .

```
rng('default');
```

m = 50;
$\mathrm{n}=5$;
$\mathrm{p}=1$;
$\mathrm{A}=\operatorname{randn}(\mathrm{m}, \mathrm{n})$;
b $=\operatorname{randn}(m, p)$;
Use the fixed. qrAB function to compute the upper-triangular factor, $R$, and $C=Q^{\prime} b$.
$[C, R]=$ fixed.grAB(A, b, 0.01)
$C=5 \times 1$
-0.6361
1.7663
1.5892
-2.0638
-0.1327
$R=5 \times 5$

9.0631	0.7471	0.4126	-0.3606	0.1883
0	7.2515	-1.1145	0.6011	-0.7544
0	0	7.6132	-0.9460	-0.7062
0	0	0	6.3065	-2.3238
0	0	0	0	5.9297

Use this result to solve $A x=b$ using $\mathrm{x}=\mathrm{R} \backslash \mathrm{C}$. Compute $\mathrm{x}=\mathrm{R} \backslash \mathrm{C}$ using the fixed. qrMatrixSolve function.

```
x = fixed.qrMatrixSolve(R,C)
x = 5x1
 -0.1148
 0.2944
 0.1650
 -0.3355
 -0.0224
```

Compare the result to computing $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$ directly.

$$
x=A \backslash b
$$

$x=5 \times 1$
-0. 1148
0.2944
0.1650
$-0.3355$
-0.0224

## Input Arguments

A - Input coefficient matrix
matrix
Input coefficient matrix, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

## $B$ - Right-hand side matrix matrix

Right-hand side matrix, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

## regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi

## Output Arguments

## C - Linear system factor <br> matrix

Linear system factor, returned as a matrix that satisfies $C=Q^{\prime} B$.
R - Upper-triangular factor
matrix
Upper-triangular factor, returned as a matrix that satisfies $A=Q R$.

## Version History

## Introduced in R2020b

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Generate code for double-precision, single-precision, and fixed-point data types.

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
$A$ and $B$ must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

## See Also

fixed.backwardSubstitute|fixed.forwardSubstitute|fixed.qlessQR|
fixed.qlessQRUpdate|fixed.qrMatrixSolve|fixed.qlessQRMatrixSolve

## Topics

"Determine Fixed-Point Types for QR Decomposition"

## fixed.qrFixedpointTypes

Determine fixed-point types for transforming $A$ and $R$ and $B$ to $C=Q^{\prime} B$ in-place, where $Q R=A$ is QR decomposition of $A$

## Syntax

T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits) T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits, regularizationParameter) T = fixed.qrFixedpointTypes( $\qquad$ , maxWordLength)

## Description

$T=$ fixed.qrFixedpointTypes(m, max_abs_A,max_abs_B,precisionBits) returns fixedpoint types for $A$ and $B$ that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms $A$ in-place into upper-triangular $R$ and transforms $B$ in-place into $C=Q^{\prime} B$, where $Q R=A$ is the $Q R$ decomposition of $A$.

T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits, regularizationParameter) returns fixed-point types for transforming $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ in-place to $R=Q^{\prime}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ and $\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$ in-place to $C=Q^{\prime}\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$ where $\lambda$ is the regularizationParameter, $Q R$ is the economy size QR decomposition of $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right], A$ is an $m$-by- $n$ matrix, $p$ is the number of columns in $B, I_{n}=\operatorname{eye}(n)$, and $0_{n, p}=\operatorname{zeros}(n, p)$. regularizationParameter is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.qrFixedpointTypes( $\qquad$ , maxWordLength) specifies the maximum word length of the fixed-point types. maxWordLength is an optional parameter. If not supplied or empty, then the default value is used.

## Examples

## Determine Fixed-Point Types for QR Decomposition

This example shows how to use fixed.qrFixedpointTypes to analytically determine fixed-point types for the computation of the QR decomposition.

## Define Matrix Dimensions

Specify the number of rows in matrices $A$ and $B$, the number of columns in matrix $A$, and the number of columns in matrix $B$. This example sets $B$ to be the identity matrix the same size as the number of rows of $A$.

```
m = 10; % Number of rows in matrices A and B
n = 3; % Number of columns in matrix A
```


## Generate Matrices A and B

Use the helper function realUniformRandomArray to generate a random matrix $A$ such that the elements of $A$ are between -1 and +1 . Matrix $B$ is the identity matrix.

```
rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);
B = eye(m);
```


## Select Fixed-Point Types

Use fixed.qrFixedpointTypes to select fixed-point data types for matrices $A$ and $B$ that guarantee no overflow will occur in the transformation of $A$ in-place to $R=Q^{\prime} A$ and $B$ in-place to $C=Q^{\prime} B$.

```
max_abs_A = 1; % Upper bound on max(abs(A(:))
max_abs_B = 1; % Upper bound on max(abs(B(:))
pre\overline{cisio}nBits = 24; % Number of bits of precision
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits)
T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
```

T.A is the type computed for transforming $A$ to $R=Q^{\prime} A$ in-place so that it does not overflow.
T.A
ans $=$
[]
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 29
FractionLength: 24
T.B is the type computed for transforming $B$ to $C=Q^{\prime} B$ in-place so that it does not overflow.
Т.B
ans $=$
[]

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
FractionLength: 24
```


## Use the Specified Types to Compute the QR Decomposition

Cast the inputs to the types determined by fixed.qrFixedpointTypes.

```
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
```

Accelerate fixed. qrAB by using fiaccel to generate a MATLAB executable (MEX) function.

```
fiaccel fixed.qrAB -args {A,B} -o qrAB_mex
```

Compute the QR decomposition.
$[C, R]=q r A B \_m e x(A, B) ;$
Extract the Economy-Size Q
The function fixed.qrAB transforms $A$ to $R=Q^{\prime} A$ and $B$ to $C=Q^{\prime} B$. In this example, $B$ is the identity matrix, so $Q=C^{\prime}$ is the economy-size orthogonal factor of the QR decomposition.

Q = C';

## Verify that $\mathbf{Q}$ is Orthogonal and $\mathbf{R}$ is Upper-Triangular

$Q$ is orthogonal, so $Q^{\prime} Q$ is the identity matrix within rounding error.

```
I = Q'*Q
I =
 1.0000 -0.0000 -0.0000
 -0.0000 1.0000 -0.0000
 -0.0000 -0.0000 1.0000
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 62
 FractionLength: 48
```

$R$ is an upper-triangular matrix.

```
R
R =
 2.2180 0.8559 -0.5607
 0 2.0578 -0.4017
 0 0 1.7117
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
 FractionLength: 24
isequal(R,triu(R))
ans = logical
 1
```


## Verify the Accuracy of the Output

To evaluate the accuracy of the fixed. qrAB function, compute the relative error.

```
relative_error = norm(double(Q*R - A))/norm(double(A))
relative_error = 1.5886e-06
```

Suppress mlint warnings.
\%\#ok<*NOPTS>

## Input Arguments

m - Number of rows in $A$
positive integer-valued scalar
Number of rows in $A$, specified as a positive integer-valued scalar.
Data Types: double
max_abs_A - Maximum of absolute value of $A$
scalar
Maximum of the absolute value of $A$, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double
max_abs_B - Maximum of absolute value of $B$
scalar
Maximum of the absolute value of $B$, specified as a scalar.
Example: max(abs(B(:)))
Data Types: double
precisionBits - Required number of bits of precision
positive integer-valued scalar
Required number of bits of precision, specified as a positive integer-valued scalar.
Data Types: double

## regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| fi

## maxWordLength - Maximum word length of fixed-point types

128 (default) | positive integer
Maximum word length of fixed-point types, specified as a positive integer.
If the word length of the fixed-point type exceeds the specified maximum word length, the default of 128 bits is used.

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi

## Output Arguments

## T - Fixed-point types for $A$ and $B$

struct
Fixed-point types for $A$ and $B$, returned as a struct. The struct T has fields T. A and T.B. These fields contain fi objects that specify fixed-point types for $A$ and $B$ that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms $A$ in-place into upper-triangular $R$ and transforms $B$ in-place into $C=Q^{\prime} B$ where $Q R=A$ is the QR decomposition of $A$.

## Tips

Use fixed.qrFixedpointTypes to compute fixed-point types for the inputs of these functions and blocks.

- fixed.qrAB
- Complex Burst QR Decomposition
- Complex Partial-Systolic QR Decomposition
- Real Burst QR Decomposition
- Real Partial-Systolic QR Decomposition


## Algorithms

The number of integer bits required to prevent overflow is derived from the following bounds on the growth of $R$ and $C=Q^{\prime} B[1]$. The required number of integer bits is added to the number of bits of precision, precisionBits, of the input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately 1.6468 [2].

The elements of $R$ are bounded in magnitude by

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|) .
$$

The elements of $C=Q^{\prime} B$ are bounded in magnitude by

$$
\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|) .
$$

## Version History

Introduced in R2021b

## R2022b: Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixedpoint types.

## R2022a: Support for Tikhonov regularization parameter

The fixed.qrfixedpointtypes function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0

## References

[1] "Perform QR Factorization Using CORDIC"
[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers EC-8 (1959): 330-334.

## See Also

## Functions

fixed.qrAB

## Blocks

Complex Burst QR Decomposition | Complex Partial-Systolic QR Decomposition | Real Burst QR Decomposition | Real Partial-Systolic QR Decomposition

## fixed.qrMatrixSolve

Solve system of linear equations $A x=B$ for $x$ using QR decomposition

## Syntax

x = fixed.qrMatrixSolve(A,B)
$x$ = fixed.qrMatrixSolve(A, B, outputType)
x = fixed.qrMatrixSolve(A,B,outputType,regularizationParameter)

## Description

$\mathrm{x}=$ fixed.qrMatrixSolve( $\mathrm{A}, \mathrm{B})$ solves the system of linear equations $A x=B$ using QR decomposition.
$x=$ fixed.qrMatrixSolve(A, B, outputType) returns the solution to the system of linear equations $A x=B$ as a variable with the output type specified by outputType.
$x=$ fixed.qrMatrixSolve(A, B,outputType, regularizationParameter) returns the solution to the system of linear equations

$$
\left[\begin{array}{l}
\lambda I_{n} \\
A
\end{array}\right] x=\left[\begin{array}{l}
0_{n, p} \\
B
\end{array}\right]
$$

where $A$ is an $m$-by- $n$ matrix, $B$ is an $m$-by- $p$ matrix, and $\lambda$ is the regularization parameter.

## Examples

## Solve a System of Equations Using QR Decomposition

This example shows how to solve a simple system of linear equations $A x=b$, using QR decomposition.

In this example, define A as a 5-by-3 matrix with a large condition number. To solve a system of linear equations involving ill-conditioned (large condition number) non-square matrices, you must use QR decomposition.

```
rng default;
A = gallery('randsvd', [5,3], 1000000);
b = [1; 1; 1; 1; 1];
x = fixed.qrMatrixSolve(A,b)
x = 3x1
104 x
 -2.3777
 7.0686
 -2.2703
```

Compare the result of the fixed.qrMatrixSolve function with the result of the mldivide or $\backslash$ function.

```
x = A\b
x = 3x1
104 x
 -2.3777
 7.0686
 -2.2703
```


## Specify Regularization Parameter in an Overdetermined System

This example shows the effect of a regularization parameter when solving an overdetermined system. In this example, a quantity $y$ is measured at several different values of time $t$ to produce the following observations.

```
t = [0 . 3 . 8 1.1 1.6 2.3]';
y = [. 82 . 72 . 63 . 60 .55 .50]';
```

Model the data with a decaying exponential function
$y(t)=c_{1}+c_{2} e^{-t}$.
The preceding equation says that the vector y should be approximated by a linear combination of two other vectors. One is a constant vector containing all ones and the other is the vector with components $\exp (-\mathrm{t})$. The unknown coefficients, $c_{1}$ and $c_{2}$, can be computed by doing a least-squares fit, which minimizes the sum of the squares of the deviations of the data from the model. There are six equations and two unknowns, represented by a 6-by-2 matrix.

```
E = [ones(size(t)) exp(-t)]
E = 6 <2
 1.0000 1.0000
 1.0000 0.7408
 1.0000 0.4493
 1.0000 0.3329
 1.0000 0.2019
 1.0000 0.1003
```

Use the fixed.qrMatrixSolve function to get the least-squares solution.
$c=$ fixed.qrMatrixSolve(E, y)
c $=2 \times 1$
0.4760
0.3413

In other words, the least-squares fit to the data is

$$
y(t)=0.4760+0.3413 e^{-t} .
$$

The following statements evaluate the model at regularly spaced increments in $t$, and then plot the result together with the original data:

```
T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')
```



In cases where the input matrices are ill-conditioned, small positive values of a regularization parameter can improve the conditioning of the least squares problem, and reduce the variance of the estimates. Explore the effect of the regularization parameter on the least squares solution for this data.

```
figure;
lambda = [0:0.1:0.5];
plot(t,y,'o', 'DisplayName', 'Original Data');
for i = 1:length(lambda)
 c = fixed.qrMatrixSolve(E, y, numerictype('double'), lambda(i));
 Y = [ones(size(T)) exp(-T)]*c;
 hold on
 plot(T,Y,'-', 'DisplayName', ['lambda =', num2str(lambda(i))])
end
legend('Original Data', 'lambda = 0', 'lambda = 0.1', 'lambda = 0.2', 'lambda = 0.3', 'lambda =
```



## Input Arguments

## A - Coefficient matrix

matrix
Coefficient matrix in the linear system of equations $A x=B$.
Data Types: single|double|fi
Complex Number Support: Yes

## B - Input array

vector | matrix
Input vector or matrix representing $B$ in the linear system of equations $A x=B$.
Data Types: single|double|fi
Complex Number Support: Yes
outputType - Output data type
numerictype object | numeric variable
Output data type, specified as a numerictype object or a numeric variable. If outputType is specified as a numerictype object, the output, $x$, will have the specified data type. If outputType is specified as a numeric variable, x will have the same data type as the numeric variable.

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|fi|numerictype
regularizationParameter - Regularization parameter
0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi

## Output Arguments

x - Solution
vector | matrix
Solution, returned as a vector or matrix. If $A$ is an $m$-by- $n$ matrix and $B$ is an $m$-by- $p$ matrix, then $x$ is an $n$-by-p matrix.

## Version History

Introduced in R2020b

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{8}$ Coder $^{\text {TM }}$.
Generate code for double-precision, single-precision, and fixed-point data types.

## Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\text {rM }}$.
$A$ and $B$ must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

## See Also

fixed.backwardSubstitute|fixed.forwardSubstitute|fixed.qlessQR|
fixed.qlessQRUpdate|fixed.qrAB|fixed.qlessQRMatrixSolve
Topics
"Algorithms to Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B"
"Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B"
"Algorithms to Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B"
"Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B"

## fixed.Quantizer

Quantize fixed-point numbers

Note fixed.Quantizer is not recommended. Use cast, zeros, ones, eye, or subsasgn instead. For more information, see Compatibility Considerations.

## Description

The fixed.Quantizer object describes data type properties to use for quantization. After you create a fixed.Quantizer object, use quantize to quantize fi values.

## Creation

## Syntax

q = fixed.Quantizer
q = fixed.Quantizer(nt,rm,oa)
$q=$ fixed.Quantizer(s,wl,fl,rm,oa)
q = fixed.Quantizer(Name,Value)

## Description

$\mathrm{q}=$ fixed.Quantizer creates a quantizer object q that quantizes fixed-point numbers using the fixed-point settings of $q$.
$\mathrm{q}=\mathrm{fixed} . Q u a n t i z e r(\mathrm{nt}, \mathrm{rm}, \mathrm{oa})$ creates a fixed-point quantizer object with numerictype nt , rounding method rm , and overflow action oa.

The numerictype, rounding method, and overflow action apply only during the quantization. The output $q$ does not have an attached fimath.
$q$ = fixed.Quantizer(s,wl,fl,rm,oa) creates a binary-point scaled fixed-point quantizer object with signedness $s$, word length $w l$, fraction length $f l$, rounding method $r m$, and overflow action oa.
q = fixed.Quantizer(Name,Value) creates a quantizer object with the property options specified by one or more property Name, Value arguments.

## Input Arguments

## nt - numerictype object

numerictype(true,16,15) (default) | numerictype object
numerictype object that describes a binary-point scaled or a slope-bias scaled fixed-point data type, specified as a numerictype object.

If fixed. Quantizer uses a numerictype object that has either a Signedness of Auto or unspecified Scaling, an error occurs.

## rm - Rounding method

'Floor' (default)|'Ceiling'|'Convergent' |'Nearest' |'Round '|'Zero'
Rounding method to use for quantization, specified as one of the following:

- 'Ceiling ' - Round up to the next allowable quantized value.
- 'Convergent ' - Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit after rounding would be set to 0 .
- 'Floor' - Round down to the next allowable quantized value.
- 'Nearest ' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.
- 'Round ' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up in absolute value.
- 'Zero' - Round negative numbers up and positive numbers down to the next allowable quantized value.


## oa - Action to take on overflow

'Wrap ' (default)|'Saturate'
Action to take on overflow, specified as one of these values:

- 'Saturate' - Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers as specified by the numeric type properties, these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.

- 'Wrap' - Overflows wrap.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers as specified by the numeric type properties, these values are wrapped back into that range using modular arithmetic relative to the smallest representable number.

## s - Whether output is signed

1 or true (default) | 0 or false
Whether output is signed, specified as one of the following:

- 1 or true - Signed
- 0 or false - Unsigned


## wl - Word length

16 (default) | positive scalar integer
Word length of the stored integer value of the output data in bits, specified as a positive scalar integer.

## fl - Fraction length

15 (default) | scalar integer
Fraction length of the stored integer value of the output data in bits, specified as a scalar integer.

## Properties

## Bias - Bias

0 (default) | scalar integer
Bias associated with the quantizer object, specified as a scalar integer.
The bias is a part of the numerical representation used to interpret a fixed-point number. Along with the slope, the bias forms the scaling of the number. For more information, see "Fixed-point numbers" on page 4-576.

## FixedExponent - Fixed-point exponent

-15 (default) | scalar integer
Fixed-point exponent associated with the quantizer object, specified as a scalar integer. The exponent is part of the numerical representation used to interpret a fixed-point number. The exponent of a fixed-point number is equal to the negative of the fraction length. For more information, see "Fixedpoint numbers" on page 4-576.

## FractionLength - Fraction length

15 (default) | scalar integer
Fraction length of the stored integer value of the object, in bits, specified as a scalar integer.
The fraction length automatically defaults to the best precision possible based on the value of the word length and the real-world value of the fi object being quantized.

## OverflowAction - Action to take on overflow <br> 'Wrap ' (default)|'Saturate'

Action to take on overflow, specified as one of these values:

- 'Saturate' - Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers, as specified by the numeric type properties, these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.

- 'Wrap' - Overflows wrap.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers, as specified by the numeric type properties, these values are wrapped back into that range using modular arithmetic relative to the smallest representable number.

Data Types: char

## RoundingMethod - Rounding method

'Floor' (default)|'Ceiling'|'Convergent'|'Nearest'|'Round'|'Zero'
Rounding method to use for quantization, specified as one of the following:

- 'Ceiling' - Round up to the next allowable quantized value.
- 'Convergent ' - Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit after rounding would be set to 0 .
- 'Floor' - Round down to the next allowable quantized value.
- 'Nearest' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.
- 'Round ' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up in absolute value.
- 'Zero' - Round negative numbers up and positive numbers down to the next allowable quantized value.

Data Types: char

## Signed - Whether output is signed

1 or true (default) | 0 or false
Whether output is signed, specified as one of the following:

- 1 or true - Signed
- 0 or false - Unsigned

Note Although the Signed property is still supported, the Signedness property always appears in the fixed.Quantizer object display. If you choose to change or set the signedness of your fixed.Quantizer object using the Signed property, MATLAB updates the corresponding value of the Signedness property.

## Signedness - Whether output is signed <br> 'Signed' (default)|'Unsigned '

Whether output is signed, specified as 'Signed ' or 'Unsigned '.

## Slope - Slope associated with object

2^-15 (default) | positive scalar
Slope associated with the object. The slope is part of the numerical representation used to express a fixed-point number. Along with the bias, the slope forms the scaling of a fixed-point number. For more information, see "Fixed-point numbers" on page 4-576.

## SlopeAdjustmentFactor - Slope adjustment associated with object

1 (default) | scalar greater than or equal to 1 and less than 2
Slope adjustment associated with the object, specified as a scalar greater than or equal to 1 and less than 2. The slope adjustment is equivalent to the fractional slope of a fixed-point number. The fractional slope is part of the numerical representation used to express a fixed-point number. For more information, see "Fixed-point numbers" on page 4-576.

## WordLength - Word Iength

16 (default) | positive scalar integer
Word length of the stored integer value of the output data, in bits, specified as a positive scalar integer.

## Object Functions

quantize Quantize fi values using fixed.Quantizer object

## Examples

## Reduce Word Length Resulting From Adding Two Fixed-Point Numbers

Use fixed. Quantizer to reduce the word length that results from adding two fixed-point numbers.

```
q = fixed.Quantizer
x1 = fi(0.1,1,16,15);
x2 = fi(0.8,1,16,15);
y = quantize(q,x1+x2)
q =
 fixed.Quantizer with properties:
```

                                    Signed: 1
            WordLength: 16
        SlopeAdjustmentFactor: 1
            FixedExponent: -15
                Bias: 0
                    Signedness: 'Signed'
                            Slope: 3.0518e-05
            FractionLength: 15
            RoundingMethod: 'Floor'
            OverflowAction: 'Wrap'
    $y=$
0.9000
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

## Quantize Binary-Point Scaled Fixed-Point fi to Slope-Bias Scaled Fixed-Point fi

Use a fixed.Quantizer object to change a binary-point scaled fixed-point fi to a slope-bias scaled fixed-point fi.

```
x = fi(pi,1,16,13)
q = fixed.Quantizer(numerictype(1,7,1.6,0.2),'Round','Saturate')
y = quantize(q,x)
x =
3.1416
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed
```

```
 WordLength: 16
 FractionLength: 13
q =
 fixed.Quantizer with properties:
 Signed: 1
 WordLength: 7
 SlopeAdjustmentFactor: 1.6000
 FixedExponent: 0
 Bias: 0.2000
 Signedness: 'Signed'
 Slope: 1.6000
 FractionLength: 0
 RoundingMethod: 'Round'
 OverflowAction: 'Saturate'
y =
 3.4000
 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 7
 Slope: 1.6
 Bias: 0.2
```


## More About

## Fixed-point numbers

Fixed-point numbers can be represented as

$$
\text { real-worldvalue }=(\text { slope } \times \text { storedinteger })+\text { bias }
$$

where the slope can be expressed as

$$
\text { slope }=\text { fractionalslope } \times 2^{\text {fixedexponent }}
$$

## Tips

- Use $y=$ quantize $(q, x)$ to quantize input array $x$ using the fixed-point settings of the quantizer object $q$. $x$ can be any fixed-point fi number, except a Boolean value. If $x$ is a scaled double, the $x$ and $y$ data will be the same, but $y$ will have fixed-point settings. If $x$ is a double or single, then $y$ $=x$. This functionality lets you share the same code for both floating-point data types and fi objects when quantizers are present.
- Use $\mathrm{n}=$ numerictype(q) to get a numerictype for the current settings of the quantizer object q.
- Use clone (q) to create a quantizer object with the same property values as $q$.


## Version History

Introduced in R2011b
R2013a: fixed.Quantizer is not recommended
Not recommended starting in R2013a
fixed.Quantizer is not recommended. Use cast, zeros, ones, eye, or subsasgn instead. There are no plans to remove fixed.Quantizer.

Starting in R2013a, use cast, zeros, ones, eye, or subsasgn instead. The cast, zeros, ones, eye, and subsasgn functions can quantize other data types in addition to fi objects.

Not Recommended	Recommended
```x = fi(pi,1,16,13); q = fixed.Quantizer(numerictype(1,7,1.6, y = quantize(q,x) y = 3.4000 DataTypeMode: Fixed-point: slo Signedness: Signed WordLength: 7 Slope: 1.6 Bias: 0.2```	```x = fi(pi,1,16,13); 0F. 2# ,fimmathl(' ',R'S&italuimgl/&e't)\|;od ' , 'Round ' , ' OverflowA nt = fi([],1,7,1.6,0.2,F); y = cast(x,'like',nt) y = 3.4000 pe and bias scaling DataTypeMode: Fixed-point: slope and Signedness: Signed WordLength: 7 Slope: 1.6 Bias: 0.2```

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
fixed.Quantizer is a handle object and must be declared as persistent in code generation.

See Also

quantize|fi|numerictype

fixed.realConditionNumberUpperBound

Estimate of upper bound for 2-norm condition number of real-valued matrix

Syntax

$C=$ fixed.realConditionNumberUpperBound(m, n, max_abs_A, noiseStandardDeviation)
C = fixed.realConditionNumberUpperBound(\qquad , p_s)
C = fixed.realConditionNumberUpperBound(\qquad , regularizationParameter)

Description

C = fixed.realConditionNumberUpperBound(m,n,max_abs_A,noiseStandardDeviation) returns an estimate of an upper bound for the 2-norm condition number of a real-valued m-by-n matrix A, where max_abs_A >= max(abs(A(:))) and noiseStandardDeviation is the standard deviation of the additive random noise in A.

C = fixed.realConditionNumberUpperBound(\qquad , $\mathrm{p} \_\mathrm{s}$) uses the probability $\mathrm{p} \_\mathrm{s}$ that the estimate of the lower bound of the smallest singular value is larger than the actual smallest singular value. $p \_s$ is an optional parameter. If not supplied or empty, then the default value is used.

C = fixed.realConditionNumberUpperBound(\qquad , regularizationParameter) returns an estimate of an upper bound for the 2-norm condition number of a real-valued matrix $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$, where λ is the regularizationParameter, A is an m-by- n matrix with $m>=n$, and $I_{n}=\operatorname{eye}(n)$. regularizationParameter is an optional parameter. If not supplied or empty, then the default value is used.

Examples

Condition Number of Low Rank Matrix with Additive Noise

Estimate an upper bound for the 2-norm condition number of a low rank, real-valued matrix with additive noise.

Define a real matrix A with additive noise.

```
m = 300;
n = 10;
rankA = 3;
A = fixed.example.realRandomLowRankMatrix(m,n,rankA);
noiseStandardDeviation = sqrt(10^(-50/10));
A = A + fixed.example.realNormalRandomArray(0,...
    noiseStandardDeviation,m,n);
```

Estimate an upper bound for the condition number of the matrix A.

```
C = fixed.realConditionNumberUpperBound(m,n,...
    max(abs(A(:))), noiseStandardDeviation)
```

C =
$1.4780 \mathrm{e}+03$
Compare to the actual condition number of the matrix.
C_actual $=$ cond (A)
C_actual =
275.5870

Condition Number of Low Rank Matrix with Regularization Parameter

Estimate an upper bound for the 2-norm condition number of a low rank, real-valued matrix with additive noise, using the regularization parameter.

Define a real matrix A with additive noise.

```
m = 300;
n = 10;
rankA = 3;
A = fixed.example.realRandomLowRankMatrix(m,n,rankA);
noiseStandardDeviation = sqrt(10^(-50/10));
A = A + fixed.example.realNormalRandomArray(0,...
    noiseStandardDeviation,m,n);
```

Define the regularization parameter.

```
regularizationParameter = 0.01;
A = [regularizationParameter*eye(n);A];
```

Estimate an upper bound for the condition number of the matrix A with the regularization parameter.
Use the default value for p_s.

```
C = fixed.realConditionNumberUpperBound(m,n,...
    max(abs(A(:))),noiseStandardDeviation,[],...
    regularizationParameter)
C =
    1.4343e+03
```

Compare to the actual condition number of the matrix.
C_actual = cond(A)
C_actual =
293.4647

Condition Number of Full Rank Matrix

Estimate an upper bound for the 2-norm condition number of a full rank random matrix with normally distributed elements.

Define a full rank, random, real matrix A with normally distributed elements.

```
m = 300;
n = 10;
noiseStandardDeviation = 1;
A = fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
```

Estimate an upper bound for the condition number of the matrix A.

```
C = fixed.realConditionNumberUpperBound(m,n,...
    max(abs(A(:))),noiseStandardDeviation)
C =
    19.0850
```

Compare to the actual condition number of the matrix.

```
C_actual = cond(A)
C_actual =
    1.2801
```


Input Arguments

m - Number of rows in matrix A

positive integer-valued scalar
Number of rows in matrix A, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, n.
Data Types: single | double | int8 | int16| int32 | int64 | uint8 | uint16| uint32 | uint64

n - Number of columns in matrix A

positive integer-valued scalar
Number of columns in matrix A, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, n.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64

max_abs_A - Maximum of absolute value of matrix A

scalar
Maximum of absolute value of matrix A, specified as a scalar.
Example: max_abs_A >= max(abs(A(:)))
Data Types: single | double | int8 | int16 | int32 | int64 | uint8|uint16|uint32|uint64
noiseStandardDeviation - Standard deviation of additive random noise in matrix A (2^- precisionBits)/(sqrt(12)) (default)| scalar

Standard deviation of additive random noise in matrix A, specified as a scalar.
If noiseStandardDeviation is not supplied or empty, then the default value is used, which is the standard deviation of the quantization noise,

$$
\sigma_{q}=\frac{2^{- \text {precisionBits }}}{\sqrt{12}} .
$$

This value is calculated by the function fixed.realQuantizationNoiseStandardDeviation.
If noiseStandardDeviation is zero, then fixed.singularValueLowerBound will return zero for the estimate of the smallest singular value, and fixed. realConditionNumberUpperBound will return an infinite condition number.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64
$p_{-} s$ - Probability that estimate of lower bound of smallest singular value is larger than actual smallest singular value of matrix A
2.8665e-07 (default) | scalar

Probability that estimate of lower bound of smallest singular value is larger than actual smallest singular value of matrix A, specified as a scalar.

If $p \_s$ is not supplied or empty, then the default of $p \_s=(1 / 2) *(1+\operatorname{erf}(-5 / \operatorname{sqrt}(2)))=$ $2.8665 \mathrm{e}-07$ is used, which is five standard deviations below the mean. So, the probability that the estimated lower bound for the smallest singular value is less than the actual smallest singular value is 1 - p_s = 0.99999971 - p_s = 0.9999997 .

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32|uint64

regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
regularizationParameter is the Tikhonov regularization parameter of the matrix [regularizationParameter*eye(n); A], where A is an m -by- n matrix with $\mathrm{m}>=\mathrm{n}$.
Data Types: single | double

More About

Condition Number for Inversion

A condition number for a matrix and computational task measures how sensitive the answer is to changes in the input data and roundoff errors in the solution process. The condition number for inversion of a matrix measures the sensitivity of the solution of a system of linear equations to errors in the data. The condition number for inversion gives an indication of the accuracy of the results from matrix inversion and the linear equation solution.

A large condition number indicates that a small change in the coefficient matrix A can lead to larger changes in the output b in the linear equation $A x=b$. The extreme case is when A is so poorly
conditioned that it is singular (an infinite condition number), in which case it has no inverse and the linear equation has no unique solution.

Algorithms

The condition number with respect to the inversion of matrix A is the ratio of the largest singular value of A to the smallest singular value of A. The fixed. realSingularValueLowerBound function estimates the lower bound of the smallest singular value, $s \_n$, of A. The fixed.singularValueUpperBound function determines an upper bound for the largest singular value, svdUpperBound, of A. A bound on the condition number of A is then cond $(A)=$ $\max (\operatorname{svd}(A)) / \min (\operatorname{svd}(A))$ <= svdUpperBound/s_n[1][2][3].

Version History

Introduced in R2022b

References

[1] Bryan, Thomas A., Jenna L. Warren, Brenda Zhuang, and Jessica Clayton. Continuation in Part for "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2022.
[2] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2020.
[3] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/ 10.1137/040616413.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also

fixed.singularValueUpperBound | fixed.complexConditionNumberUpperBound |
fixed.realSingularValueLowerBound|
fixed.realQuantizationNoiseStandardDeviation|cond

fixed.realQlessQRMatrixSolveFixedpointTypes

Determine fixed-point types for matrix solution of real-valued $A^{\prime} A X=B$ using $Q R$ decomposition

Syntax

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B, precisionBits)
T = fixed.realQlessQRMatrixSolveFixedpointTypes(\qquad ,noiseStandardDeviation) T = fixed.realQlessQRMatrixSolveFixedpointTypes(\qquad , p s)
T = fixed.realQlessQRMatrixSolveFixedpointTypes(\qquad , regularizationParameter)
T = fixed.realQlessQRMatrixSolveFixedpointTypes(\qquad ,maxWordLength)

Description

$T=$ fixed.realQlessQRMatrixSolveFixedpointTypes(m, n, max_abs_A,max_abs_B, precisionBits) computes fixed-point types for the matrix solution of real-valued $A^{\bar{A}} \bar{A}=\bar{B}$ using QR decomposition. T is returned as a struct with fields that specify fixed-point types for A and B that guarantee no overflow will occur in the QR algorithm transforming A in-place into upper-triangular R, where $Q R=A$ is the $Q R$ decomposition of X, and X such that there is a low probability of overflow.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(\qquad ,noiseStandardDeviation) specifies the standard deviation of the additive random noise in A. noiseStandardDeviation is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(\qquad , p_s) specifies the probability that the estimate of the lower bound for the smallest singular value of \bar{A} is larger than the actual smallest singular value of the matrix. $p \_s$ is an optional parameter. If not supplied or empty, then the default value is used.
T = fixed.realQlessQRMatrixSolveFixedpointTypes(, regularizationParameter) computes fixed-point types for the matrix solution of real-valued

$$
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B
$$

where λ is the regularizationParameter, A is an m-by- n matrix, and $I_{n}=$ eye (n). regularizationParameter is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(\qquad , maxWordLength) specifies the maximum word length of the fixed-point types. maxWordLength is an optional parameter. If not supplied or empty, then the default value is used.

Examples

Algorithms to Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B

This example shows the algorithms that the fixed. realQlessQRMatrixSolveFixedpointTypes function uses to analytically determine fixed-point types for the solution of the real matrix equation $A^{\prime} A X=B$, where A is an m-by- n matrix with $m>n, B$ is n-by- p, and X is n-by- p.

Overview

You can solve the fixed-point matrix equation $A^{\prime} A X=B$ using QR decomposition. Using a sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R, where $Q R=A$ is the economy-size QR decomposition. This reduces the equation to an uppertriangular system of equations $R^{\prime} R X=B$. To solve for X, compute $X=R \backslash\left(R^{\prime} \backslash B\right)$ through forward- and backward-substitution of R into B.

You can determine appropriate fixed-point types for the matrix equation $A^{\prime} A X=B$ by selecting the fraction length based on the number of bits of precision defined by your requirements. The fixed.realQlessQRMatrixSolveFixedpointTypes function analytically computes the following upper bounds on R, and X to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of $R=Q^{\prime} A$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.
The upper bound for the magnitude of the elements of $X=\left(A^{\prime} A\right) \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.
Since computing $\operatorname{svd}(A)$ is more computationally expensive than solving the system of equations, the fixed. realQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of $\min (\operatorname{svd}(A))$.

Fixed-point types for the solution of the matrix equation $\left(A^{\prime} A\right) X=B$ are generally well-bounded if the number of rows, m, of A are much greater than the number of columns, n (i.e. $m>n$), and A is full rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a^{2} / b$ and $a, b \in[-1,1]$, then x can be arbitrarily large if b is close to 0 .

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms, where Q is an orthogonal matrix, and v is a vector of length m [6].

$$
\begin{aligned}
& \|A v\|_{2} \leq\|A\|\left\|_{2}\right\| v \|_{2} \\
& \|Q\|_{2}=1 \\
& \|v\|_{\infty}=\max (|v(:)|) \\
& \|v\|_{\infty} \leq\|v\|_{2} \leq \sqrt{m} \mid\|v\|_{\infty}
\end{aligned}
$$

If A is an m-by- n matrix and $Q R=A$ is the economy-size $Q R$ decomposition of A, where Q is orthogonal and m-by- n and R is upper-triangular and n-by- n, then the singular values of R are equal to the singular values of A. If A is nonsingular, then

$$
\left\|R^{-1} \mid\right\|_{2}=\left\|\left(R^{\prime}\right)^{-1}\right\|_{2}=\frac{1}{\min (\operatorname{svd}(R))}=\frac{1}{\min (\operatorname{svd}(A))}
$$

Upper Bound for $R=Q^{\prime} \mathbf{A}$

The upper bound for the magnitude of the elements of R is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.

Proof of Upper Bound for $R=Q^{\prime} A$

The j th column of R is equal to $R(:, j)=Q^{\prime} A(:, j)$, so

$$
\begin{aligned}
\max (|R(:, j)|) & =\|R(:, j)\|_{\infty} \\
& \leq\|R(:, j)\|_{2} \\
& =\left\|Q^{\prime} A(:, j)\right\|_{2} \\
& \leq\left\|Q^{\prime} \mid\right\|_{2}\|A(:, j)\|_{2} \\
& =\|A(:, j)\|_{2} \\
& \leq \sqrt{m}| | A(:, j) \|_{\infty} \\
& =\sqrt{m} \max (|A(:, j)|) \\
& \leq \sqrt{m} \max (|A(:)|)
\end{aligned}
$$

Since $\max (|R(:, j)|) \leq \sqrt{m} \max (|A(:)|)$ for all $1 \leq j$, then
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.

Upper Bound for $X=\left(A^{\prime} A\right) \backslash B$

The upper bound for the magnitude of the elements of $X=\left(A^{\prime} A\right) \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.

Proof of Upper Bound for $X=\left(A^{\prime} A\right) \backslash B$

If A is not full rank, then $\min (\operatorname{svd}(A))=0$, and if B is not equal to zero, then
$\sqrt{n} \max (|B(:)|) / \min (\operatorname{svd}(A))^{2}=\infty$ and so the inequality is true.
If $A^{\prime} A x=b$ and $Q R=A$ is the economy-size $Q R$ decomposition of A, then $A^{\prime} A x=R^{\prime} Q^{\prime} Q R x=R^{\prime} R x=b$.
If A is full rank then $x=R^{-1} \cdot\left(\left(R^{\prime}\right)^{-1} b\right)$. Let $x=X(:, j)$ be the j th column of X, and $b=B(:, j)$ be the j th column of B. Then

$$
\begin{aligned}
\max (|x(:)|) & =\|x\|_{\infty} \\
& \leq\|x\|_{2} \\
& =\left\|R^{-1} \cdot\left(\left(R^{\prime}\right)^{-1} b\right)\right\|_{2} \\
& \leq\left\|R^{-1}\left|\left\|_{2}\right\|\left(R^{\prime}\right)^{-1}\right|\right\|_{2}\|b\|_{2} \\
& =\left(1 / \min (\operatorname{svd}(A))^{2}\right) \cdot\|b\|_{2} \\
& =\|b\|_{2} / \min (\operatorname{svd}(A))^{2} \\
& \leq \sqrt{n}\|b \mid\|_{\infty} / \min (\operatorname{svd}(A))^{2} \\
& =\sqrt{n} \max (|b(:)|) / \min (\operatorname{svd}(A))^{2} .
\end{aligned}
$$

Since $\max (|x(:)|) \leq \sqrt{n} \max (|b(:)|) / \min (\operatorname{svd}(A))^{2}$ for all rows and columns of B and X, then $\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.

Lower Bound for $\min (\operatorname{svd}(A))$

You can estimate a lower bound s of $\min (\operatorname{svd}(A))$ for real-valued A using the following formula,

$$
s=\sigma_{N} \sqrt{2 \gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+1) \Gamma(n / 2)}{2^{m-n} \Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{m-n+1}{2}\right)}, \frac{m-n+1}{2}\right)}
$$

where σ_{N} is the standard deviation of random noise added to the elements of $A, 1-p_{s}$ is the probability that $s \leq \min (\operatorname{svd}(A)), \Gamma$ is the gamma function, and γ^{-1} is the inverse incomplete gamma function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and rearranging terms.

Since $s \leq \min (\operatorname{svd}(A))$ with probability $1-p_{s}$, then you can bound the magnitude of the elements of X without computing $\operatorname{svd}(A)$,
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}} \leq \frac{\sqrt{n} \max (|B(:)|)}{s^{2}}$ with probability $1-p_{s}$.
You can compute s using the fixed. realSingularValueLowerBound function which uses a default probability of 5 standard deviations below the mean,
$p_{s}=(1+\operatorname{erf}(-5 / \sqrt{2})) / 2 \approx 2.8665 \cdot 10^{-7}$, so the probability that the estimated bound for the smallest singular value s is less than the actual smallest singular value of A is $1-p_{s} \approx 0.9999997$.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with the actual singular values of A and the actual largest elements of $R=Q^{\prime} A$, and $X=\left(A^{\prime} A\right) \backslash B$.

Define System Parameters

Define the matrix attributes and system parameters for this example.
m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrices B and X . In a least-squares problem, m is greater than n , and usually m is much larger than n . In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
n = 10;
p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system with p right-hand sides.
$\mathrm{p}=1$;
In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, real-valued matrices A and B are constructed such that the magnitude of their elements is less than or equal to one. Your own system requirements will define what those values are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = 1;
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = 1;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The standard deviation of the noise from quantizing a real signal is $2^{- \text {precisionBits }} / \sqrt{12}[4,5]$. Use fixed. realQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.
quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)
quantizationNoiseStandardDeviation $=1.7206 e-08$

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer signals of interest than number of columns of matrix A), and the measured system matrix A has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix A have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.

```
noiseStandardDeviation = thermalNoiseStandardDeviation;
```

Use fixed.realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

```
T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)
T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
```

T. A is the type computed for transforming A to R in-place so that it does not overflow.
T.A
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 31
FractionLength: 24
```

T. B is the type computed for B so that it does not overflow.
T.B
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 27
FractionLength: 24
```

T. X is the type computed for the solution $X=\left(A^{\prime} A\right) \backslash B$ so that there is a low probability that it overflows.

```
T.X
ans =
```

[]

```
DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
```


WordLength: 40

FractionLength: 24

Upper Bound for \mathbf{R}

The upper bound for R is computed using the formula $\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$, where m is the number of rows of matrix A. This upper bound is used to select a fixed-point type with the required number of bits of precision to avoid an overflow in the upper bound.

```
upperBoundR = sqrt(m)*max_abs_A
upperBoundR = 17.3205
```


Lower Bound for $\min (\operatorname{svd}(A))$ for Real A

A lower bound for $\min (\operatorname{svd}(A))$ is estimated by the fixed. realSingularValueLowerBound function using a probability that the estimate s is not greater than the actual smallest singular value. The default probability is 5 standard deviations below the mean. You can change this probability by specifying it as the last input parameter to the fixed. realSingularValueLowerBound function.

```
estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)
estimatedSingularValueLowerBound = 0.0371
```


Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the number of bits translates to a logarithmic scale relative to the range of values. Being within a factor of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run the simulation for more samples, then it is more likely that the simulated results will be closer to the bound. This example uses a limited number of simulations so it doesn't take too long to run. For realworld system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

```
numSamples = 1e4;
```

Run the simulation.

```
[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples
    noiseStandardDeviation,T);
```

You can see that the upper bound on R compared to the measured simulation results of the maximum value of R over all runs is within an order of magnitude.
upperBoundR
upperBoundR = 17.3205
max (actualMaxR)
ans $=8.1682$
Finally, see that the estimated lower bound of $\min (\operatorname{svd}(A))$ compared to the measured simulation results of $\min (\operatorname{svd}(A))$ over all runs is also within an order of magnitude.

```
estimatedSingularValueLowerBound
```

estimatedSingularValueLowerBound $=0.0371$

```
actualSmallestSingularValue = min(singularValues,[],'all')
actualSmallestSingularValue = 0.0421
```

Plot the distribution of the singular values over all simulation runs. The distributions of the largest singular values correspond to the signals that determine the rank of the matrix. The distributions of the smallest singular values correspond to the noise. The derivation of the estimated bound of the smallest singular value makes use of the random nature of the noise.
clf
fixed.example.plot.singularValueDistribution(m,n, rankA,...
noiseStandardDeviation,singularValues,...
estimatedSingularValueLowerBound,"real");
Singular value distributions for 300-by-10 real matrices of rank 3 with $\sigma_{\text {noise }}=\mathbf{0 . 0 0}$:

Zoom in to the smallest singular value to see that the estimated bound is close to it. xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

Estimate the largest value of the solution, X , and compare it to the largest value of X found during the simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual largest value of X will approach the estimated largest value of X .

```
estimated_largest_X = fixed.realQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviati
estimated_largest_X = 7.2565e+03
actual_largest_X = max(abs(X_values),[],'all')
actual_largest_X = 582.6761
```

Plot the distribution of X values and compare it to the estimated upper bound for X .
clf
fixed.example.plot.xValueDistribution(m,n,rankA, noiseStandardDeviation,...

X_values,estimated_largest_X,"real normally distributed random");

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank, quantizes them according to the computed types, computes the QR decomposition of A, and solves the equation $A^{\prime} A X=B$. It returns the maximum values of $R=Q^{\prime} A$, the singular values of A, and the values of X so their distributions can be plotted and compared to the bounds.

```
function [actualMaxR,singularValues,X values] = runSimulations(m,n,p,rankA,max abs A,max abs B,
    numSamples,noiseStandardDeviation,T)
    precisionBits = T.A.FractionLength;
    A_WordLength = T.A.WordLength;
    B_WordLength = T.B.WordLength;
    actualMaxR = zeros(1,numSamples);
    singularValues = zeros(n,numSamples);
    X_values = zeros(n,numSamples);
    for j = 1:numSamples
    A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
    % Adding random noise makes A non-singular.
    A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
    A = quantizenumeric(A,1,A WordLength,precisionBits);
    B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,n,p);
    B = quantizenumeric(B,1,B_WordLength,precisionBits);
    [~,R] = qr(A,0);
    X = R\(R'\B);
    actualMaxR(j) = max(abs(R(:)));
    singularValues(:,j) = svd(A);
    X values(:,j) = X;
```

end
end

References

1 Thomas A. Bryan and Jenna L. Warren. "Systems and Methods for Design Parameter Selection". Patent pending. U.S. Patent Application No. 16/947,130. 2020.

2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing QR. MathWorks. 2010.

3 Zizhong Chen and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices". In: SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603-620. issn: 0895-4798. doi: 10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
5 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns Hopkins University Press, 1989.

Suppress mlint warnings in this file.
\%\#ok<*NASGU>
\%\#ok<*ASGLU>

Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B

This example shows how to use the fixed. realQlessQRMatrixSolveFixedpointTypes function to analytically determine fixed-point types for the solution of the real least-squares matrix equation $A^{\prime} A X=B$, where A is an m-by- n matrix with $m \geq n, B$ is n-by- p, and X is n-by- p.

Fixed-point types for the solution of the matrix equation $A^{\prime} A X=B$ are well-bounded if the number of rows, m, of A are much greater than the number of columns, n (i.e. $m>n$), and A is full rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a / b$ and $a, b \in[-1,1]$, then x can be arbitrarily large if b is close to 0 .

Define System Parameters

Define the matrix attributes and system parameters for this example.
m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is greater than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
$\mathrm{n}=10$;
p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system with p right-hand sides.
$\mathrm{p}=1$;
In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, real-valued matrices A and B are constructed such that the magnitude of their elements is less than or equal to one. Your own system requirements will define what those values are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = 1;
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = 1;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The quantization noise standard deviation is a function of the required number of bits of precision. Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.

```
quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)
```

quantizationNoiseStandardDeviation $=1.7206 \mathrm{e}-08$

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer signals of interest than number of columns of matrix A), and the measured system matrix A has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix A have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed.realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

```
T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)
T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
```

T. A is the type computed for transforming A to $R=Q^{\prime} A$ in-place so that it does not overflow.
T.A
ans =
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 31
FractionLength: 24
```

T.B is the type computed for B so that it does not overflow.

T.B

ans =
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 27
FractionLength: 24
```

T. X is the type computed for the solution $X=\left(A^{\prime} A\right) \backslash B$ so that there is a low probability that it overflows.

T.X

ans =
[]
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 40
FractionLength: 24

Use the Specified Types to Solve the Matrix Equation A'AX=B

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A which will make it become full rank.

```
rng('default');
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
```

Cast the inputs to the types determined by fixed. realQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent to adding random noise [4,5].

```
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
```

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB executable (MEX) function.
fiaccel fixed.qlessQRMatrixSolve -args $\{A, B, T . X\}$-o qlessQRMatrixSolve_mex
Specify output type T. X and compute fixed-point $X=\left(A^{\prime} A\right) \backslash B$ using the QR method.
X = qlessQRMatrixSolve_mex(A,B,T.X);
Compute the relative error to verify the accuracy of the ouput.

```
relative_error = norm(double(A'*A*X - B))/norm(double(B))
relative_error = 0.0561
```

Suppress mlint warnings in this file.

```
%#ok<*NASGU>
%#ok<*ASGLU>
```


Determine Fixed-Point Types for Real Q-less QR Matrix Solve with Tikhonov Regularization

This example shows how to use the fixed. realQlessQRMatrixSolveFixedpointTypes function to analytically determine fixed-point types for the solution of the real least-squares matrix equation

$$
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\mathrm{T}} A\right) X=B
$$

where A is an m-by- n matrix with $m \geq n, B$ is n-by- p, X is n-by- $p, I_{n}=$ eye (n), and λ is a regularization parameter.

Define System Parameters

Define the matrix attributes and system parameters for this example.
m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is greater than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
$\mathrm{n}=10 ;$
p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system with p right-hand sides.

```
p = 1;
```

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA $=3$;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 32;
Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
regularizationParameter $=0.01$;
In this example, real-valued matrices A and B are constructed such that the magnitude of their elements is less than or equal to one. Your own system requirements will define what those values are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = 1;
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = 1;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The quantization noise standard deviation is a function of the required number of bits of precision. Use fixed. realQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.

```
quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)
```

quantizationNoiseStandardDeviation = 6.7212e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer signals of interest than number of columns of matrix A), and the measured system matrix A has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix A have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.realQlessQRMatrixSolveFixedpointTypes function to compute fixed-point types.

```
T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)
T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
```

T. A is the type computed for transforming $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ to $R=Q^{\mathrm{T}}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ in-place so that it does not overflow.
T.A
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 39
FractionLength: 32
```

T.B is the type computed for B so that it does not overflow.
т.B
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 35
FractionLength: 32
```

T. X is the type computed for the solution $X=\left(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\right) \backslash B$ so that there is a low probability that it overflows.
T.X
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 48
FractionLength: 32
```

Use the Specified Types to Solve the Matrix Equation
Create random matrices A and B such that $\operatorname{rank} A=\operatorname{rank}(A)$. Add random measurement noise to A which will make it become full rank.
rng('default');
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p,rankA);
$A=A+$ fixed.example. realNormalRandomArray (0, noiseStandardDeviation,m,n);
Cast the inputs to the types determined by fixed. realQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent to adding random noise.

```
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
```

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB executable (MEX) function.

```
fiaccel +fixed/qlessQRMatrixSolve -args {A,B,T.X,[],regularizationParameter} -o qlessQRMatrixSol`
```

Specify output type T.X and compute fixed-point $X=\left(\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\right)$ B using the QR method.
X = qlessQRMatrixSolve_mex(A,B,T.X,[],regularizationParameter);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision floating-point is small.

$$
X_{\text {double }}=\left(\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right]\right) \backslash B
$$

A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda) \double(B);
relativeError = norm(X_double - double(X))/norm(X_double)
relativeError = 1.0133e-05
Suppress mlint warnings in this file.

```
%#ok<*NASGU>
%#ok<*ASGLU>
```


Input Arguments

m - Number of rows in A and B

positive integer-valued scalar
Number of rows in A and B, specified as a positive integer-valued scalar.
Data Types: double

n - Number of columns in A

positive integer-valued scalar
Number of columns in A, specified as a positive integer-valued scalar.
Data Types: double
max_abs_A - Maximum of absolute value of A
scalar

Maximum of the absolute value of A, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double
max_abs_B - Maximum of absolute value of B
scalar
Maximum of the absolute value of B, specified as a scalar.
Example: max(abs(B(:)))
Data Types: double
precisionBits - Required number of bits of precision
positive integer-valued scalar
Required number of bits of precision of the input and output, specified as a positive integer-valued scalar.
Data Types: double
noiseStandardDeviation - Standard deviation of additive random noise in A
scalar
Standard deviation of additive random noise in A, specified as a scalar.
If noiseStandardDeviation is not specified, then the default is the standard deviation of the realvalued quantization noise $\sigma_{q}=\left(2^{- \text {precisionBits }}\right) /(\sqrt{12})$, which is calculated by fixed.realQuantizationNoiseStandardDeviation.

Data Types: double

p_s - Probability that estimate of lower bound s is larger than actual smallest singular value of matrix
 $\approx 3 \cdot 10^{-7}$ (default) | scalar

Probability that estimate of lower bound s is larger than actual smallest singular value of matrix, specified as a scalar. Use fixed. realSingularValueLowerBound to estimate the smallest singular value, s, of A. If $p \_s$ is not specified, the default value is
$p_{s}=(1 / 2) \cdot(1+\operatorname{erf}(-5 / \sqrt{2})) \approx 3 \cdot 10^{-7}$ which is 5 standard deviations below the mean, so the probability that the estimated bound for the smallest singular value is less than the actual smallest singular value is $1-p_{s} \approx 0.9999997$.
Data Types: double
regularizationParameter - Regularization parameter
0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
regularizationParameter is the Tikhonov regularization parameter of the matrix problem

$$
\begin{aligned}
& \qquad\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left(\lambda^{2} I_{n}+A^{\prime} A\right) X=B \\
& \text { Data Types: single | double } \mid \text { int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | } \\
& \text { fi }
\end{aligned}
$$

maxWordLength - Maximum word length of fixed-point types
128 (default) | positive integer
Maximum word length of fixed-point types, specified as a positive integer.
If the word length of the fixed-point type exceeds the specified maximum word length, the default of 128 bits is used.

Data Types: single | double | int8 | int16| int32|int64|uint8|uint16|uint32|uint64| fi

Output Arguments

T - Fixed-point types for A, B, and X

struct
Fixed-point types for A, B, and X, returned as a struct. The struct T has fields T. A, T. B, and T.X. These fields contain fi objects that specify fixed-point types for:

- A and B that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms A in-place into upper-triangular R, where $Q R=A$ is the QR decomposition of A.

- X such that there is a low probability of overflow.

Tips

Use fixed. realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types for the inputs of these functions and blocks.

- fixed.qlessQRMatrixSolve
- Real Burst Matrix Solve Using Q-less QR Decomposition
- Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
- Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Algorithms

The fixed-point type for A is computed using fixed.qlessqrFixedpointTypes. The required number of integer bits to prevent overflow is derived from the following bound on the growth of R [1]. The required number of integer bits is added to the number of bits of precision, precisionBits, of the input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately 1.6468 [2].

The elements of R are bounded in magnitude by

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)
$$

Matrix B is not transformed, so it does not need any additional growth bits.
The elements of $X=R \backslash\left(R^{\prime} \backslash B\right)$ are bounded in magnitude by

$$
\max (|X(:)|) \leq \frac{n \cdot \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}} .
$$

Computing the singular value decomposition to derive the above bound on X is more computationally intensive than the entire matrix solve, so the fixed.realSingularValueLowerBound function is used to estimate a bound on $\min (\operatorname{svd}(A))$.

Version History

Introduced in R2021b

R2022b: Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixedpoint types.

R2022a: Support for Tikhonov regularization parameter

The fixed.realQlessQRMatrixSolveFixedpointTypes function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0

References

[1] "Perform QR Factorization Using CORDIC"
[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers EC-8 (1959): 330-334.

See Also

Functions

fixed.realQuantizationNoiseStandardDeviation |
fixed.realSingularValueLowerBound|fixed.qlessqrFixedpointTypes |
fixed.qlessQRMatrixSolve

Blocks

Real Burst Matrix Solve Using Q-less QR Decomposition | Real Partial-Systolic Matrix Solve Using Qless QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

fixed.realQRMatrixSolveFixedpointTypes

Determine fixed-point types for matrix solution of real-valued $A X=B$ using QR decomposition

Syntax

$T=$ fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B, precisionBits)
T = fixed.realQRMatrixSolveFixedpointTypes(\qquad ,noiseStandardDeviation)
T = fixed.realQRMatrixSolveFixedpointTypes(\qquad , p s)
T = fixed.realQRMatrixSolveFixedpointTypes(\qquad , regularizationParameter)
T = fixed.realQRMatrixSolveFixedpointTypes(\qquad ,maxWordLength)

Description

$T=$ fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B, precisionBits) computes fixed-point types for the matrix solution of real-valued $\bar{A} X=B$ using QR decomposition. T is returned as a struct with fields that specify fixed-point types for A and B that guarantee no overflow will occur in the QR algorithm, and X such that there is a low probability of overflow.

The QR algorithm transforms A in-place into upper-triangular R and transforms B in-place into $C=Q^{\prime} B$, where $Q R=A$ is the $Q R$ decomposition of A.

T = fixed.realQRMatrixSolveFixedpointTypes(\qquad , noiseStandardDeviation) specifies the standard deviation of the additive random noise in A. noiseStandardDeviation is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.realQRMatrixSolveFixedpointTypes(\qquad , p_s) specifies the probability that the estimate of the lower bound for the smallest singular value of A is larger than the actual smallest singular value of the matrix. $p \_s$ is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.realQRMatrixSolveFixedpointTypes(\qquad ,regularizationParameter) computes fixed-point types for the matrix solution of real-valued $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right] X=\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$ where λ is the regularizationParameter, A is an m-by- n matrix, p is the number of columns in $B, I_{n}=\operatorname{eye}(n)$, and $0_{n, p}=\operatorname{zeros}(n, p)$. regularizationParameter is an optional parameter. If not supplied or empty, then the default value is used.

T = fixed.realQRMatrixSolveFixedpointTypes(\qquad ,maxWordLength) specifies the maximum word length of the fixed-point types. maxWordLength is an optional parameter. If not supplied or empty, then the default value is used.

Examples

Algorithms to Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B

This example shows the algorithms that the fixed. realQRMatrixSolveFixedpointTypes function uses to analytically determine fixed-point types for the solution of the real least-squares matrix equation $A X=B$, where A is an m-by- n matrix with $m \geq n, B$ is m-by- p, and X is n-by- p.

Overview

You can solve the fixed-point least-squares matrix equation $A X=B$ using $Q R$ decomposition. Using a sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R, and transforms matrix B in-place to $C=Q^{\prime} B$, where $Q R=A$ is the economy-size QR decomposition. This reduces the equation to an upper-triangular system of equations $R X=C$. To solve for X, compute $X=R \backslash C$ through back-substitution of R into C.

You can determine appropriate fixed-point types for the least-squares matrix equation $A X=B$ by selecting the fraction length based on the number of bits of precision defined by your requirements. The fixed.realQRMatrixSolveFixedpointTypes function analytically computes the following upper bounds on $R, C=Q^{\prime} B$, and X to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of R is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.
The upper bound for the magnitude of the elements of $C=Q^{\prime} B$ is
$\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)$.
The upper bound for the magnitude of the elements of $X=A \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.
Since computing $\operatorname{svd}(A)$ is more computationally expensive than solving the system of equations, the fixed.realQRMatrixSolveFixedpointTypes function estimates a lower bound of $\min (\operatorname{svd}(A))$.

Fixed-point types for the solution of the matrix equation $A X=B$ are generally well-bounded if the number of rows, m, of A are much greater than the number of columns, n (i.e. $m \gg n$), and A is full rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a / b$ and $a, b \in[-1,1]$, then x can be arbitrarily large if b is close to 0 .

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms, where Q is an orthogonal matrix, and v is a vector of length m [6].

$$
\begin{aligned}
& \|A v\|_{2} \leq\|A\|_{2}\|v\|_{2} \\
& \|Q\|_{2}=1 \\
& \|v\|_{\infty}=\max (|v(:)|) \\
& \|v\|_{\infty} \leq\|v\|_{2} \leq \sqrt{m}\|v\|_{\infty}
\end{aligned}
$$

If A is an m-by- n matrix and $Q R=A$ is the economy-size $Q R$ decomposition of A, where Q is orthogonal and m-by- n and R is upper-triangular and n-by- n, then the singular values of R are equal to the singular values of A. If A is nonsingular, then

$$
\left\|R^{-1} \mid\right\|_{2}=\left\|\left(R^{\prime}\right)^{-1}\right\|_{2}=\frac{1}{\min (\operatorname{svd}(R))}=\frac{1}{\min (\operatorname{svd}(A))}
$$

Upper Bound for $R=Q^{\prime} \mathbf{A}$

The upper bound for the magnitude of the elements of R is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.

Proof of Upper Bound for $R=Q^{\prime} A$

The j th column of R is equal to $R(:, j)=Q^{\prime} A(:, j)$, so

$$
\begin{aligned}
\max (|R(:, j)|) & =\|R(:, j)\|_{\infty} \\
& \leq\|R(:, j)\|_{2} \\
& =\left\|Q^{\prime} A(:, j)\right\|_{2} \\
& \leq\left\|Q^{\prime} \mid\right\|_{2}\|A(:, j)\|_{2} \\
& =\|A(:, j)\|_{2} \\
& \leq \sqrt{m}| | A(:, j) \|_{\infty} \\
& =\sqrt{m} \max (|A(:, j)|) \\
& \leq \sqrt{m} \max (|A(:)|)
\end{aligned}
$$

Since $\max (|R(:, j)|) \leq \sqrt{m} \max (|A(:)|)$ for all $1 \leq j$, then

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)
$$

Upper Bound for $\mathbf{C}=\mathbf{Q}^{\prime} \mathbf{B}$

The upper bound for the magnitude of the elements of $C=Q^{\prime} B$ is
$\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)$.

Proof of Upper Bound for $C=Q^{\prime} B$

The proof of the upper bound for $C=Q^{\prime} B$ is the same as the proof of the upper bound for $R=Q^{\prime} A$ by substituting C for R and B for A.

Upper Bound for $X=A \backslash B$

The upper bound for the magnitude of the elements of $X=A \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.

Proof of Upper Bound for $X=A \backslash B$

If A is not full rank, then $\min (\operatorname{svd}(A))=0$, and if B is not equal to zero, then $\sqrt{m} \max (|B(:)|) / \min (\operatorname{svd}(A))=\infty$ and so the inequality is true.

If A is full rank, then $x=R^{-1}\left(Q^{\prime} b\right)$. Let $x=X(:, j)$ be the j th column of X, and $b=B(:, j)$ be the j th column of B. Then

$$
\begin{aligned}
\max (|x(:)|) & =\|x\|_{\infty} \\
& \leq\|x\|_{2} \\
& =\left\|R^{-1} \cdot\left(Q^{\prime} b\right)\right\|_{2} \\
& \leq\left\|R^{-1} \mid\right\|_{2}\left\|Q^{\prime}\right\|_{2}\|b\|_{2} \\
& =(1 / \min (\operatorname{svd}(A))) \cdot 1 \cdot\|b\|_{2} \\
& =\|b\|_{2} / \min (\operatorname{svd}(A)) \\
& \leq \sqrt{m}\|b\|_{\infty} / \min (\operatorname{svd}(A)) \\
& =\sqrt{m} \max (|b(:)|) / \min (\operatorname{svd}(A)) .
\end{aligned}
$$

Since $\max (|x(:)|) \leq \sqrt{m} \max (|b(:)|) / \min (\operatorname{svd}(A))$ for all rows and columns of B and X, then $\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.

Lower Bound for $\min (\operatorname{svd}(A))$

You can estimate a lower bound s of $\min (\operatorname{svd}(A))$ for real-valued A using the following formula,

$$
s=\sigma_{N} \sqrt{2 \gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+1) \Gamma(n / 2)}{2^{m-n} \Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{m-n+1}{2}\right)}, \frac{m-n+1}{2}\right)}
$$

where σ_{N} is the standard deviation of random noise added to the elements of $A, 1-p_{s}$ is the probability that $s \leq \min (\operatorname{svd}(A)), \Gamma$ is the gamma function, and γ^{-1} is the inverse incomplete gamma function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and rearranging terms.

Since $s \leq \min (\operatorname{svd}(A))$ with probability $1-p_{s}$, then you can bound the magnitude of the elements of X without computing $\operatorname{svd}(A)$,
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))} \leq \frac{\sqrt{m} \max (|B(:)|)}{s}$ with probability $1-p_{s}$.
You can compute s using the fixed. realSingularValueLowerBound function which uses a default probability of 5 standard deviations below the mean $p_{s}=(1+\operatorname{erf}(-5 / \sqrt{2})) / 2 \approx 2.8665 \cdot 10^{-7}$, so the probability that the estimated bound for the smallest singular value s is less than the actual smallest singular value of A is $1-p_{s} \approx 0.9999997$.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with the actual singular values of A and the actual largest elements of $R=Q^{\prime} A, C=Q^{\prime} B$, and $X=A \backslash B$.

Define System Parameters

Define the matrix attributes and system parameters for this example.
m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrix X . In a least-squares problem, m is greater than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
n = 10;
p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system with p right-hand sides.
$\mathrm{p}=1$;
In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, real-valued matrices A and B are constructed such that the magnitude of their elements is less than or equal to one. Your own system requirements will define what those values are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = 1;
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = 1;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
```

thermalNoiseStandardDeviation $=0.0032$
The standard deviation of the noise from quantizing the elements of a real signal is $2^{- \text {precisionBits }} / \sqrt{12}$ [4,5]. Use the fixed. realQuantizationNoiseStandardDeviation function to compute this. See that it is less than thermalNoiseStandardDeviation.
quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)
quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer signals of interest than number of columns of matrix A), and the measured system matrix A has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix A have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

```
T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)
T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
```

T. A is the type computed for transforming A to R in-place so that it does not overflow.
T.A
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 31
FractionLength: 24
```

T.B is the type computed for transforming B to $Q^{\prime} B$ in-place so that it does not overflow.
т.B
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 31
FractionLength: 24
```

T. X is the type computed for the solution $X=A \backslash B$ so that there is a low probability that it overflows.
T.X
ans $=$
[]

```
DataTypeMode: Fixed-point: binary point scaling
```


Signedness: Signed

WordLength: 36
FractionLength: 24

Upper Bounds for \mathbf{R} and $C=Q$ ' B

The upper bounds for R and $C=Q^{\prime} B$ are computed using the following formulas, where m is the number of rows of matrices A and B.

$$
\begin{aligned}
& \max (|R(:)|) \leq \sqrt{\max } \max (|A(:)|) \\
& \max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)
\end{aligned}
$$

These upper bounds are used to select a fixed-point type with the required number of bits of precision to avoid overflows.

```
upperBoundR = sqrt(m)*max_abs_A
upperBoundR = 17.3205
upperBoundQB = sqrt(m)*max_abs_B
upperBoundQB = 17.3205
```


Lower Bound for min(svd(A)) for Real A

A lower bound for $\min (\operatorname{svd}(A))$ is estimated by the fixed. realSingularValueLowerBound function using a probability that the estimate s is not greater than the actual smallest singular value. The default probability is 5 standard deviations below the mean. You can change this probability by specifying it as the last input parameter to the fixed. realSingularValueLowerBound function.
estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)
estimatedSingularValueLowerBound = 0.0371

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the number of bits translates to a logarithmic scale relative to the range of values. Being within a factor of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run the simulation for more samples, then it is more likely that the simulated results will be closer to the bound. This example uses a limited number of simulations so it doesn't take too long to run. For realworld system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

```
numSamples = le4;
```

Run the simulation.

```
[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_
    numSamples,noiseStandardDeviation,T);
```

You can see that the upper bound on R compared to the measured simulation results of the maximum value of R over all runs is within an order of magnitude.
upperBoundR

```
upperBoundR = 17.3205
max(actualMaxR)
ans = 8.3029
```

You can see that the upper bound on $C=Q^{\prime} B$ compared to the measured simulation results of the maximum value of $C=Q^{\prime} B$ over all runs is also within an order of magnitude.

```
upperBoundQB
upperBoundQB = 17.3205
max(actualMaxQB)
ans = 2.5707
```

Finally, see that the estimated lower bound of $\min (\operatorname{svd}(A))$ compared to the measured simulation results of $\min (\operatorname{svd}(A))$ over all runs is also within an order of magnitude.

```
estimatedSingularValueLowerBound
estimatedSingularValueLowerBound = 0.0371
actualSmallestSingularValue = min(singularValues,[],'all')
actualSmallestSingularValue = 0.0420
```

Plot the distribution of the singular values over all simulation runs. The distributions of the largest singular values correspond to the signals that determine the rank of the matrix. The distributions of the smallest singular values correspond to the noise. The derivation of the estimated bound of the smallest singular value makes use of the random nature of the noise.
clf
fixed.example.plot.singularValueDistribution(m, n, rankA, noiseStandardDeviation,... singularValues,estimatedSingularValueLowerBound,"real");

Zoom in to smallest singular value to see that the estimated bound is close to it. xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

Estimate the largest value of the solution, X , and compare it to the largest value of X found during the simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual largest value of X will approach the estimated largest value of X .

```
estimated_largest_X = fixed.realMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)
estimated_largest_X = 466.5772
actual_largest_X = max(abs(X_values),[],'all')
actual_largest_X = 44.8056
```

Plot the distribution of X values and compare it to the estimated upper bound for X .
clf
fixed.example.plot.xValueDistribution(m,n,rankA, noiseStandardDeviation,...
X_values,estimated_largest_X,"real normally distributed random");

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank, quantizes them according to the computed types, computes the QR decomposition of A, and solves the equation $A X=B$. It returns the maximum values of $R=Q^{\prime} A$ and $C=Q^{\prime} B$, the singular values of A, and the values of X so their distributions can be plotted and compared to the bounds.

```
function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A
    numSamples,noiseStandardDeviation,T)
    precisionBits = T.A.FractionLength;
    A_WordLength = T.A.WordLength;
    B_WordLength = T.B.WordLength;
    actualMaxR = zeros(1,numSamples);
    actualMaxQB = zeros(1,numSamples);
    singularValues = zeros(n,numSamples);
    X_values = zeros(n,numSamples);
    for j = 1:numSamples
    A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
    % Adding normally distributed random noise makes A non-singular.
    A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
    A = quantizenumeric(A,1,A WordLength,precisionBits);
    B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,m,p);
    B = quantizenumeric(B,1,B_WordLength,precisionBits);
    [Q,R] = qr(A,0);
    C = Q'*B;
    X = R\C;
    actualMaxR(j) = max(abs(R(:)));
```

```
        actualMaxQB(j) = max(abs(C(:)));
        singularValues(:,j) = svd(A);
        X_values(:,j) = X;
    end
end
```


References

1 Thomas A. Bryan and Jenna L. Warren. "Systems and Methods for Design Parameter Selection". Patent pending. U.S. Patent Application No. 16/947,130. 2020.
2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing QR. MathWorks. 2010.

3 Zizhong Chen and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices". In: SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603-620. issn: 0895-4798. doi: 10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
5 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns Hopkins University Press, 1989.

Suppress mlint warnings in this file.
\%\#ok<*NASGU>
\%\#ok<*ASGLU>

Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B

This example shows how to use the fixed.realQRMatrixSolveFixedpointTypes function to analytically determine fixed-point types for the solution of the real least-squares matrix equation $A X=B$, where A is an m-by- n matrix with $m \geq n, B$ is m-by- p, and X is n-by- p.

Fixed-point types for the solution of the matrix equation $A X=B$ are well-bounded if the number of rows, m, of A are much greater than the number of columns, n (i.e. $m>n$), and A is full rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a / b$ and $a, b \in[-1,1]$, then x can be arbitrarily large if b is close to 0 .

Define System Parameters

Define the matrix attributes and system parameters for this example.
m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrix X . In a least-squares problem, m is greater than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
n = 10;
p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system with p right-hand sides.
$\mathrm{p}=1$;
In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, real-valued matrices A and B are constructed such that the magnitude of their elements is less than or equal to one. Your own system requirements will define what those values are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = 1;
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = 1;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.
thermalNoiseStandardDeviation $=\operatorname{sqrt}\left(10^{\wedge}(-50 / 10)\right)$
thermalNoiseStandardDeviation $=0.0032$
The quantization noise standard deviation is a function of the required number of bits of precision. Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.
quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)
quantizationNoiseStandardDeviation $=1.7206 e-08$

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer signals of interest than number of columns of matrix A), and the measured system matrix A has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix A have full rank.

```
Set }\mp@subsup{\sigma}{\mathrm{ noise }}{}=\mp@subsup{\sigma}{\mathrm{ thermal noise}}{}\mathrm{ .
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.
T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)
T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
```

T. A is the type computed for transforming A to $R=Q^{\prime} A$ in-place so that it does not overflow.
T.A
ans =
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 31
FractionLength: 24
```

T. B is the type computed for transforming B to $C=Q^{\prime} B$ in-place so that it does not overflow.
T.B
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 31
FractionLength: 24
```

$\mathrm{T} . \mathrm{X}$ is the type computed for the solution $X=A \backslash B$ so that there is a low probability that it overflows.
T.X
ans =
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 36
FractionLength: 24
```

Use the Specified Types to Solve the Matrix Equation $A X=B$
Create random matrices A and B such that B is in the range of A, and rankA=rank (A). Add random measurement noise to A which will make it become full rank, but it will also affect the solution so that B is only close to the range of A.
rng('default');
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,rankA);
$A=A+$ fixed.example.realNormalRandomArray(0, noiseStandardDeviation,m,n);
Cast the inputs to the types determined by fixed. realQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent to adding random noise $[4,5]$.

```
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
```

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB executable (MEX) function.

```
fiaccel fixed.qrMatrixSolve -args {A,B,T.X} -o qrRealMatrixSolve_mex
```

Specify output type T. X and compute fixed-point $X=A \backslash B$ using the QR method.
$X=$ qrRealMatrixSolve_mex $(A, B, T . X)$;
Compute the relative error to verify the accuracy of the output.

```
relative_error = norm(double(A*X - B))/norm(double(B))
relative error = 0.0063
```

Suppress mlint warnings in this file.

```
%#ok<*NASGU>
%#ok<*ASGLU>
```


Determine Fixed-Point Types for Real Least-Squares Matrix Solve with Tikhonov Regularization

This example shows how to use the fixed. realQRMatrixSolveFixedpointTypes function to analytically determine fixed-point types for the solution of the real least-squares matrix equation

$$
\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right] X=\left[\begin{array}{c}
0_{n, p} \\
B
\end{array}\right]
$$

where A is an m-by- n matrix with $m \geq n, B$ is m-by- p, X is n-by- $p, I_{n}=\operatorname{eye}(n), 0_{n, p}=\operatorname{zeros}(n, p)$, and λ is a regularization parameter.

The least-squares solution is

$$
X_{L S}=\left(\lambda^{2} I_{n}+A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} B
$$

but is computed without squares or inverses.

Define System Parameters

Define the matrix attributes and system parameters for this example.
m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
n = 10;
p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system with p right-hand sides.
p = 1;
In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA $=3$;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.

```
precisionBits = 32;
```

Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.

```
regularizationParameter = 0.01;
```

In this example, real-valued matrices A and B are constructed such that the magnitude of their elements is less than or equal to one. Your own system requirements will define what those values are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = 1;
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = 1;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The quantization noise standard deviation is a function of the required number of bits of precision. Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.
quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)
quantizationNoiseStandardDeviation $=6.7212 \mathrm{e}-11$

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer signals of interest than number of columns of matrix A), and the measured system matrix A has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix A have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

```
T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)
T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
```

T. A is the type computed for transforming $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ to $R=Q^{\mathrm{T}}\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ in-place so that it does not overflow.
T.A
ans =
[]
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 39
FractionLength: 32
T.B is the type computed for transforming $\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$ to $C=Q^{T}\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$ in-place so that it does not overflow.
T.B
ans $=$
[]
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 39
FractionLength: 32
T. X is the type computed for the solution $X=\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$, so that there is a low probability that it overflows.
T.X
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 44
FractionLength: 32
```


Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that B is in the range of A, and $\operatorname{rank} A=\operatorname{rank}(A)$. Add random measurement noise to A which will make it become full rank, but it will also affect the solution so that B is only close to the range of A.

```
rng('default');
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
```

Cast the inputs to the types determined by fixed. realQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent to adding random noise [4,5].

A = cast(A,'like',T.A);
$B=\operatorname{cast}(B, ' l i k e ', T . B)$;
Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB executable (MEX) function.

Specify output type T. X and compute fixed-point $X=A \backslash B$ using the QR method.
$X=$ qrRealMatrixSolve_mex(A,B,T.X,regularizationParameter);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and the output from MATLAB using the default double-precision floating-point values is small.

$$
\begin{aligned}
& \quad X_{\text {double }}=\left[\begin{array}{c}
\lambda I_{n} \\
A
\end{array}\right]\left[\begin{array}{c}
0_{n, p} \\
B
\end{array}\right] \\
& \text { A_lambda }=\text { double }([\text { regularizationParameter*eye }(\mathrm{n}) ; \mathrm{A}]) ; \\
& \mathrm{B}-0=[\text { zeros }(\mathrm{n}, \mathrm{p}) ; \text { double }(\mathrm{B})] ; \\
& \text { X_double }=\mathrm{A} \text { lambda } \backslash \mathrm{B} 00 ; \\
& \text { relativeError }=\text { norm }(\overline{\mathrm{X}}-\mathrm{double}-\operatorname{double}(X)) / \text { norm }\left(X \_d o u b l e\right) \\
& \text { relativeError }=5.1152 \mathrm{e}-06
\end{aligned}
$$

Suppress mlint warnings in this file.

```
%#ok<*NASGU>
%#ok<*ASGLU>
```


Input Arguments

m - Number of rows in A and B
positive integer-valued scalar

Number of rows in A and B, specified as a positive integer-valued scalar.
Data Types: double
n - Number of columns in A
positive integer-valued scalar
Number of columns in A, specified as a positive integer-valued scalar.
Data Types: double
max_abs_A - Maximum of absolute value of A
scalar
Maximum of the absolute value of A, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double
max_abs_B - Maximum of absolute value of B
scalar
Maximum of the absolute value of B, specified as a scalar.
Example: max(abs(B(:)))
Data Types: double
precisionBits - Required number of bits of precision
positive integer-valued scalar
Required number of bits of precision of the input and output, specified as a positive integer-valued scalar.

Data Types: double
noiseStandardDeviation - Standard deviation of additive random noise in A scalar

Standard deviation of additive random noise in A, specified as a scalar.
If noiseStandardDeviation is not specified, then the default is the standard deviation of the realvalued quantization noise $\sigma_{q}=\left(2^{- \text {precisionBits }}\right) /(\sqrt{12})$, which is calculated by fixed.realQuantizationNoiseStandardDeviation.
Data Types: single | double | int8 | int16|int32 | int64 | uint8 | uint16 |uint32|uint64 | fi
p_s - Probability that estimate of lower bound s is larger than the actual smallest singular value of the matrix
$\approx 3 \cdot 10^{-7}$ (default) | scalar
Probability that estimate of lower bound s is larger than the actual smallest singular value of the matrix, specified as a scalar. Use fixed. realSingularValueLowerBound to estimate the smallest singular value, s, of A. If $p_{-} s$ is not specified, the default value is $p_{s}=(1 / 2) \cdot(1+\operatorname{erf}(-5 / \sqrt{2})) \approx 3 \cdot 10^{-7}$ which is 5 standard deviations below the mean, so the
probability that the estimated bound for the smallest singular value is less than the actual smallest singular value is $1-p_{s} \approx 0.9999997$.

> Data Types: single| double| int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi

regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
regularizationParameter is the Tikhonov regularization parameter of the least-squares problem $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right] X=\left[\begin{array}{c}0_{n, p} \\ B\end{array}\right]$.
Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi

maxWordLength - Maximum word length of fixed-point types

128 (default) | positive integer
Maximum word length of fixed-point types, specified as a positive integer.
If the word length of the fixed-point type exceeds the specified maximum word length, the default of 128 bits is used.

Data Types: single|double| int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi

Output Arguments

T - Fixed-point types for A, B, and X
 struct

Fixed-point types for A, B, and X, returned as a struct. The struct T has fields T. A, T. B, and T.X. These fields contain fi objects that specify fixed-point types for

- A and B that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms A in-place into upper-triangular R and transforms B in-place into $C=Q^{\prime} B$, where $Q R=A$ is the QR decomposition of A.

- X such that there is a low probability of overflow.

Tips

Use fixed. realQRMatrixSolveFixedpointTypes to compute fixed-point types for the inputs of these functions and blocks.

- fixed.qrMatrixSolve
- Real Burst Matrix Solve Using QR Decomposition
- Real Partial-Systolic Matrix Solve Using QR Decomposition

Algorithms

T.A and T.B are computed using fixed.qrFixedpointTypes. The number of integer bits required to prevent overflow is derived from the following bounds on the growth of R and $C=Q^{\prime} B$ [1]. The required number of integer bits is added to the number of bits of precision, precisionBits, of the input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately 1.6468 [2].

The elements of R are bounded in magnitude by

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|) .
$$

The elements of $C=Q^{\prime} B$ are bounded in magnitude by

$$
\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|) .
$$

T. X is computed by bounding the output, X, in the least-squares solution of $A X=B$ using the following formula [3] [4].

The elements of $X=R \backslash\left(Q^{\prime} B\right)$ are bounded in magnitude by

$$
\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))} .
$$

Computing the singular value decomposition to derive the above bound on X is more computationally expensive than the entire matrix solve, so the fixed. realSingularValueLowerBound function is used to estimate a bound on $\min (\operatorname{svd}(A))$.

Version History

Introduced in R2021b

R2022b: Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixedpoint types.

R2022a: Support for Tikhonov regularization parameter

The fixed. realQRMatrixSolveFixedpointTypes function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0

References

[1] "Perform QR Factorization Using CORDIC"
[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic Computers EC-8 (1959): 330-334.
[3] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2020.
[4] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620.

See Also

Functions

fixed.realQuantizationNoiseStandardDeviation |
fixed.realSingularValueLowerBound | fixed.qrFixedpointTypes |
fixed.qrMatrixSolve
Blocks
Real Burst Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition

fixed.realQuantizationNoiseStandardDeviation

Estimate standard deviation of quantization noise of real-valued signal

Syntax

noiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

Description

noiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits) returns an estimate of the quantization noise standard deviation of a real-valued signal with a quantization level $q=2$-precisionBits, where precisionBits is the required number of bits of precision.

Examples

Estimate Standard Deviation of Quantization Noise of Real-Valued Signal

Quantizing a real signal to p bits of precision can be modeled as a linear system that adds normally distributed noise with a standard deviation of $\zeta_{\text {noise }}=\frac{2^{-p}}{\sqrt{12}}[1,2]$.

Compute the theoretical quantization noise standard deviation with p bits of precision using the fixed.realQuantizationNoiseStandardDeviation function.

```
p = 14;
```

theoreticalQuantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(p);

The returned value is $\zeta_{\text {noise }}=\frac{2^{-p}}{\sqrt{12}}$.
Create a real signal with n samples.

```
rng('default');
n = 1e6;
x = rand(1,n);
```

Quantize the signal with p bits of precision.
wordLength = 16;
x_quantized $=$ quantizenumeric (x,1,wordLength,p);
Compute the quantization noise by taking the difference between the quantized signal and the original signal.
quantizationNoise = x_quantized - x;
Compute the measured quantization noise standard deviation.

```
measuredQuantizationNoiseStandardDeviation = std(quantizationNoise)
measuredQuantizationNoiseStandardDeviation = 1.7607e-05
```

Compare the actual quantization noise standard deviation to the theoretical and see that they are close for large values of n.
theoreticalQuantizationNoiseStandardDeviation
theoreticalQuantizationNoiseStandardDeviation $=1.7619 \mathrm{e}-05$

References

1 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
2 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

Input Arguments

precisionBits - Required number of bits of precision

positive integer-valued scalar
Required number of bits of precision, specified as a positive integer-valued scalar.
Data Types: double

Output Arguments

noiseStandardDeviation - Noise standard deviation
scalar
Noise standard deviation, returned as a scalar.

Tips

fixed.realQuantizationNoiseStandardDeviation is used in these functions.

- fixed.realQRMatrixSolveFixedpointTypes
- fixed.realQlessQRMatrixSolveFixedpointTypes

Algorithms

The variance of a real-valued error sequence $e(k)$ with quantization level $q=2^{- \text {-precisionBits }}$ [1][2] is

$$
\sigma_{q}^{2}=\frac{1}{q} \int_{-q / 2}^{q / 2} e^{2} d e=\frac{q^{2}}{12}=\frac{2^{-2 \text { precisionBits }}}{12} .
$$

The standard deviation of a real error sequence $e(k)$ is

$$
\sigma_{q}=\frac{2^{-p r e c i s i o n B i t s}}{\sqrt{12}}
$$

Version History

Introduced in R2021b

References

[1] Widrow, Bernard. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory." IRE Transactions on Circuit Theory 3, no. 4 (December 1956): 266-276.
[2] Widrow, Bernard, and Kollár, István. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

See Also

fixed.realQRMatrixSolveFixedpointTypes |
fixed.realQlessQRMatrixSolveFixedpointTypes

fixed.realSingularValueLowerBound

Estimate lower bound for smallest singular value of real-valued matrix

Syntax

s_n = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n) s^{-}n = fixed. realSingularValueLowerBound (m,n, noiseStandardDeviation, p_s_n, regularizationParameter)

Description

s_n = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n) returns an estimate of a lower bound for the smallest singular value of a real-valued matrix with m rows and n columns, where $m \geq n$.
$\mathrm{s} \_\mathrm{n}=\mathrm{fixed}$. realSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n, regularizationParameter) returns an estimate of a lower bound for the smallest singular value of a real-valued matrix $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ where λ is the regularizationParameter, A is an m-by- n matrix with $m>=n$, and $I_{n}=\operatorname{eye}(n)$.
p_s_n and regularizationParameter are optional parameters. If not supplied or empty, then their default values are used.

Examples

Algorithms to Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B

This example shows the algorithms that the fixed. realQlessQRMatrixSolveFixedpointTypes function uses to analytically determine fixed-point types for the solution of the real matrix equation $A^{\prime} A X=B$, where A is an m-by- n matrix with $m>n, B$ is n-by- p, and X is n-by- p.

Overview

You can solve the fixed-point matrix equation $A^{\prime} A X=B$ using $Q R$ decomposition. Using a sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R, where $Q R=A$ is the economy-size $Q R$ decomposition. This reduces the equation to an uppertriangular system of equations $R^{\prime} R X=B$. To solve for X, compute $X=R \backslash\left(R^{\prime} \backslash B\right)$ through forward- and backward-substitution of R into B.

You can determine appropriate fixed-point types for the matrix equation $A^{\prime} A X=B$ by selecting the fraction length based on the number of bits of precision defined by your requirements. The fixed.realQlessQRMatrixSolveFixedpointTypes function analytically computes the following upper bounds on R, and X to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of $R=Q^{\prime} A$ is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.

The upper bound for the magnitude of the elements of $X=\left(A^{\prime} A\right) \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.
Since computing $\operatorname{svd}(A)$ is more computationally expensive than solving the system of equations, the fixed.realQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of $\min (\operatorname{svd}(A))$.

Fixed-point types for the solution of the matrix equation $\left(A^{\prime} A\right) X=B$ are generally well-bounded if the number of rows, m, of A are much greater than the number of columns, n (i.e. $m>n$), and A is full rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a^{2} / b$ and $a, b \in[-1,1]$, then x can be arbitrarily large if b is close to 0 .

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms, where Q is an orthogonal matrix, and v is a vector of length m [6].

$$
\begin{aligned}
& \|A v\|_{2} \leq\|A\|_{2}\|v\|_{2} \\
& \|Q\|_{2}=1 \\
& \|v\|_{\infty}=\max (|v(:)|) \\
& \|v\|_{\infty} \leq\|v\|_{2} \leq \sqrt{m}\|v\|_{\infty}
\end{aligned}
$$

If A is an m-by- n matrix and $Q R=A$ is the economy-size $Q R$ decomposition of A, where Q is orthogonal and m-by- n and R is upper-triangular and n-by- n, then the singular values of R are equal to the singular values of A. If A is nonsingular, then

$$
\left\|R^{-1}\right\|_{2}=\left\|\left(R^{\prime}\right)^{-1}\right\|_{2}=\frac{1}{\min (\operatorname{svd}(R))}=\frac{1}{\min (\operatorname{svd}(A))}
$$

Upper Bound for $\mathbf{R}=\mathbf{Q}^{\mathbf{\prime}} \mathbf{A}$
The upper bound for the magnitude of the elements of R is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.
Proof of Upper Bound for $\mathbf{R}=\mathbf{Q}^{\prime} \mathbf{A}$
The j th column of R is equal to $R(:, j)=Q^{\prime} A(:, j)$, so

$$
\begin{aligned}
\max (|R(:, j)|) & =\|R(:, j)\|_{\infty} \\
& \leq\|R(:, j)\|_{2} \\
& =\left\|Q^{\prime} A(:, j)\right\|_{2} \\
& \leq\left\|Q^{\prime} \mid\right\|_{2}\|A(:, j)\|_{2} \\
& =\|A(:, j)\| \|_{2} \\
& \leq \sqrt{m}| | A(:, j) \|_{\infty} \\
& =\sqrt{m} \max (|A(:, j)|) \\
& \leq \sqrt{m} \max (|A(:)|)
\end{aligned}
$$

Since $\max (|R(:, j)|) \leq \sqrt{m} \max (|A(:)|)$ for all $1 \leq j$, then

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)
$$

Upper Bound for $X=\left(A^{\prime} A\right) \backslash B$

The upper bound for the magnitude of the elements of $X=\left(A^{\prime} A\right) \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.

Proof of Upper Bound for $X=\left(A^{\prime} A\right) \backslash B$

If A is not full rank, then $\min (\operatorname{svd}(A))=0$, and if B is not equal to zero, then $\sqrt{n} \max (|B(:)|) / \min (\operatorname{svd}(A))^{2}=\infty$ and so the inequality is true.

If $A^{\prime} A x=b$ and $Q R=A$ is the economy-size $Q R$ decomposition of A, then $A^{\prime} A x=R^{\prime} Q^{\prime} Q R x=R^{\prime} R x=b$.
If A is full rank then $x=R^{-1} \cdot\left(\left(R^{\prime}\right)^{-1} b\right)$. Let $x=X(:, j)$ be the j th column of X, and $b=B(:, j)$ be the j th column of B. Then

$$
\begin{aligned}
\max (|x(:)|) & =\|x\|_{\infty} \\
& \leq\|x\|_{2} \\
& =\left\|R^{-1} \cdot\left(\left(R^{\prime}\right)^{-1} b\right)\right\|_{2} \\
& \leq\left\|R^{-1}\left|\left\|_{2}\right\|\left(R^{\prime}\right)^{-1}\right|\right\|_{2}\|b\|_{2} \\
& =\left(1 / \min (\operatorname{svd}(A))^{2}\right) \cdot\|b\|_{2} \\
& =\|b\|_{2} / \min (\operatorname{svd}(A))^{2} \\
& \leq \sqrt{n}| | b \mid \|_{\infty} / \min (\operatorname{svd}(A))^{2} \\
& =\sqrt{n} \max (|b(:)|) / \min (\operatorname{svd}(A))^{2}
\end{aligned}
$$

Since $\max (|x(:)|) \leq \sqrt{n} \max (|b(:)|) / \min (\operatorname{svd}(A))^{2}$ for all rows and columns of B and X, then $\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}}$.

Lower Bound for min(svd(A))

You can estimate a lower bound s of $\min (\operatorname{svd}(A))$ for real-valued A using the following formula,

$$
s=\sigma_{N} \sqrt{2 \gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+1) \Gamma(n / 2)}{2^{m-n} \Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{m-n+1}{2}\right)}, \frac{m-n+1}{2}\right)}
$$

where σ_{N} is the standard deviation of random noise added to the elements of $A, 1-p_{s}$ is the probability that $s \leq \min (\operatorname{svd}(A)), \Gamma$ is the gamma function, and γ^{-1} is the inverse incomplete gamma function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and rearranging terms.

Since $s \leq \min (\operatorname{svd}(A))$ with probability $1-p_{s}$, then you can bound the magnitude of the elements of X without computing $\operatorname{svd}(A)$,
$\max (|X(:)|) \leq \frac{\sqrt{n} \max (|B(:)|)}{\min (\operatorname{svd}(A))^{2}} \leq \frac{\sqrt{n} \max (|B(:)|)}{s^{2}}$ with probability $1-p_{s}$.
You can compute s using the fixed. realSingularValueLowerBound function which uses a default probability of 5 standard deviations below the mean,
$p_{s}=(1+\operatorname{erf}(-5 / \sqrt{2})) / 2 \approx 2.8665 \cdot 10^{-7}$, so the probability that the estimated bound for the smallest singular value s is less than the actual smallest singular value of A is $1-p_{s} \approx 0.9999997$.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with the actual singular values of A and the actual largest elements of $R=Q^{\prime} A$, and $X=\left(A^{\prime} A\right) \backslash B$.

Define System Parameters

Define the matrix attributes and system parameters for this example.
m is the number of rows in matrix A . In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is greater than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
n = 10;
p is the number of columns in matrices B and X . It corresponds to simultaneously solving a system with p right-hand sides.
$\mathrm{p}=1$;
In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA $=3$;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, real-valued matrices A and B are constructed such that the magnitude of their elements is less than or equal to one. Your own system requirements will define what those values are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = 1;
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = 1;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The standard deviation of the noise from quantizing a real signal is $2^{- \text {precisionBits }} / \sqrt{12}[4,5]$. Use fixed. realQuantizationNoiseStandardDeviation to compute this. See that it is less than thermalNoiseStandardDeviation.
quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)
quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer signals of interest than number of columns of matrix A), and the measured system matrix A has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix A have full rank.

Set $\sigma_{\text {noise }}=\sigma_{\text {thermal noise }}$.
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use fixed.realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

```
T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)
T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
```

T. A is the type computed for transforming A to R in-place so that it does not overflow.

```
T.A
ans =
[]
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 31
FractionLength: 24
```

T.B is the type computed for B so that it does not overflow.
т.B
ans $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 27
FractionLength: 24
```

T. X is the type computed for the solution $X=\left(A^{\prime} A\right) \backslash B$ so that there is a low probability that it overflows.

T.X

ans $=$
[]

```
        DataTypeMode: Fixed-point: binary point scaling
```

 Signedness: Signed
 WordLength: 40
 FractionLength: 24

Upper Bound for \mathbf{R}

The upper bound for R is computed using the formula $\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$, where m is the number of rows of matrix A. This upper bound is used to select a fixed-point type with the required number of bits of precision to avoid an overflow in the upper bound.

```
upperBoundR = sqrt(m)*max_abs_A
upperBoundR = 17.3205
```


Lower Bound for min(svd(A)) for Real A

A lower bound for $\min (\operatorname{svd}(A))$ is estimated by the fixed. realSingularValueLowerBound function using a probability that the estimate s is not greater than the actual smallest singular value. The default probability is 5 standard deviations below the mean. You can change this probability by specifying it as the last input parameter to the fixed. realSingularValueLowerBound function.

```
estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)
```

estimatedSingularValueLowerBound $=0.0371$

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the number of bits translates to a logarithmic scale relative to the range of values. Being within a factor of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run the simulation for more samples, then it is more likely that the simulated results will be closer to the bound. This example uses a limited number of simulations so it doesn't take too long to run. For realworld system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

```
numSamples = 1e4;
```

Run the simulation.

```
[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples
    noiseStandardDeviation,T);
```

You can see that the upper bound on R compared to the measured simulation results of the maximum value of R over all runs is within an order of magnitude.

```
upperBoundR
upperBoundR = 17.3205
max(actualMaxR)
ans = 8.1682
```

Finally, see that the estimated lower bound of $\min (\operatorname{svd}(A))$ compared to the measured simulation results of $\min (\operatorname{svd}(A))$ over all runs is also within an order of magnitude.

```
estimatedSingularValueLowerBound
estimatedSingularValueLowerBound = 0.0371
actualSmallestSingularValue = min(singularValues,[],'all')
actualSmallestSingularValue = 0.0421
```

Plot the distribution of the singular values over all simulation runs. The distributions of the largest singular values correspond to the signals that determine the rank of the matrix. The distributions of the smallest singular values correspond to the noise. The derivation of the estimated bound of the smallest singular value makes use of the random nature of the noise.

```
clf
fixed.example.plot.singularValueDistribution(m,n,rankA,...
    noiseStandardDeviation, singularValues,...
    estimatedSingularValueLowerBound,"real");
```


Zoom in to the smallest singular value to see that the estimated bound is close to it. xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

Estimate the largest value of the solution, X , and compare it to the largest value of X found during the simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual largest value of X will approach the estimated largest value of X .

```
estimated_largest_X = fixed.realQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviati
estimated_largest_X = 7.2565e+03
actual_largest_X = max(abs(X_values),[],'all')
actual_largest_X = 582.6761
```

Plot the distribution of X values and compare it to the estimated upper bound for X .
clf
fixed.example.plot.xValueDistribution(m,n,rankA, noiseStandardDeviation,...

X_values,estimated_largest_X,"real normally distributed random");

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank, quantizes them according to the computed types, computes the QR decomposition of A, and solves the equation $A^{\prime} A X=B$. It returns the maximum values of $R=Q^{\prime} A$, the singular values of A, and the values of X so their distributions can be plotted and compared to the bounds.

```
function [actualMaxR,singularValues,X values] = runSimulations(m,n,p,rankA,max abs A,max abs B,
    numSamples, noiseStandardDeviation,T)
    precisionBits = T.A.FractionLength;
    A_WordLength = T.A.WordLength;
    B_WordLength = T.B.WordLength;
    actualMaxR = zeros(1,numSamples);
    singularValues = zeros(n,numSamples);
    X_values = zeros(n,numSamples);
    for j = 1:numSamples
    A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
    % Adding random noise makes A non-singular.
    A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
    A = quantizenumeric(A,1,A WordLength,precisionBits);
    B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,n,p);
    B = quantizenumeric(B,1,B_WordLength,precisionBits);
    [~,R] = qr(A,0);
    X = R\(R'\B);
    actualMaxR(j) = max(abs(R(:)));
    singularValues(:,j) = svd(A);
    X_values(:,j) = X;
```

end
end

References

1 Thomas A. Bryan and Jenna L. Warren. "Systems and Methods for Design Parameter Selection". Patent pending. U.S. Patent Application No. 16/947,130. 2020.
2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing QR. MathWorks. 2010.
3 Zizhong Chen and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices". In: SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603-620. issn: 0895-4798. doi: 10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
5 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns Hopkins University Press, 1989.

Suppress mlint warnings in this file.
\%\#ok<*NASGU>
\%\#ok<*ASGLU>

Algorithms to Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B

This example shows the algorithms that the fixed. realQRMatrixSolveFixedpointTypes function uses to analytically determine fixed-point types for the solution of the real least-squares matrix equation $A X=B$, where A is an m-by- n matrix with $m \geq n, B$ is m-by- p, and X is n-by- p.

Overview

You can solve the fixed-point least-squares matrix equation $A X=B$ using QR decomposition. Using a sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R, and transforms matrix B in-place to $C=Q^{\prime} B$, where $Q R=A$ is the economy-size QR decomposition. This reduces the equation to an upper-triangular system of equations $R X=C$. To solve for X, compute $X=R \backslash C$ through back-substitution of R into C.

You can determine appropriate fixed-point types for the least-squares matrix equation $A X=B$ by selecting the fraction length based on the number of bits of precision defined by your requirements. The fixed. realQRMatrixSolveFixedpointTypes function analytically computes the following upper bounds on $R, C=Q^{\prime} B$, and X to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of R is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.
The upper bound for the magnitude of the elements of $C=Q^{\prime} B$ is
$\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)$.

The upper bound for the magnitude of the elements of $X=A \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.
Since computing $\operatorname{svd}(A)$ is more computationally expensive than solving the system of equations, the fixed.realQRMatrixSolveFixedpointTypes function estimates a lower bound of $\min (\operatorname{svd}(A))$.

Fixed-point types for the solution of the matrix equation $A X=B$ are generally well-bounded if the number of rows, m, of A are much greater than the number of columns, n (i.e. $m>n$), and A is full rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise naturally occurs in physical systems, such as thermal noise in radar or communications systems. If $m=n$, then the dynamic range of the system can be unbounded, for example in the scalar equation $x=a / b$ and $a, b \in[-1,1]$, then x can be arbitrarily large if b is close to 0 .

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms, where Q is an orthogonal matrix, and v is a vector of length m [6].

$$
\begin{aligned}
& \|A v\|_{2} \leq\|A\|\left\|_{2}\right\| v \|_{2} \\
& \|Q\|_{2}=1 \\
& \|v\|_{\infty}=\max (|v(:)|) \\
& \|v\|_{\infty} \leq\|v\|_{2} \leq \sqrt{m}\|v\|_{\infty}
\end{aligned}
$$

If A is an m-by-n matrix and $Q R=A$ is the economy-size $Q R$ decomposition of A, where Q is orthogonal and m-by- n and R is upper-triangular and n-by- n, then the singular values of R are equal to the singular values of A. If A is nonsingular, then

$$
\left\|R^{-1}\right\|_{2}=\left\|\left(R^{\prime}\right)^{-1}\right\|_{2}=\frac{1}{\min (\operatorname{svd}(R))}=\frac{1}{\min (\operatorname{svd}(A))}
$$

Upper Bound for $\mathbf{R}=\mathbf{Q}^{\prime} \mathbf{A}$

The upper bound for the magnitude of the elements of R is
$\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)$.

Proof of Upper Bound for $\mathbf{R}=\mathbf{Q}^{\prime} \mathbf{A}$

The j th column of R is equal to $R(:, j)=Q^{\prime} A(:, j)$, so

$$
\begin{aligned}
\max (|R(:, j)|) & =\|R(:, j)\|_{\infty} \\
& \leq\|R(:, j)\|_{2} \\
& =\left\|Q^{\prime} A(:, j)\right\|_{2} \\
& \leq\left\|Q^{\prime}\right\|\left\|_{2}\right\| A(:, j) \|_{2} \\
& =\|A(:, j)\|_{2} \\
& \leq \sqrt{m}| | A(:, j) \|_{\infty} \\
& =\sqrt{m} \max (|A(:, j)|) \\
& \leq \sqrt{m} \max (|A(:)|) .
\end{aligned}
$$

Since $\max (|R(:, j)|) \leq \sqrt{m} \max (|A(:)|)$ for all $1 \leq j$, then

$$
\max (|R(:)|) \leq \sqrt{m} \max (|A(:)|)
$$

Upper Bound for C = Q'B

The upper bound for the magnitude of the elements of $C=Q^{\prime} B$ is
$\max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)$.

Proof of Upper Bound for $\mathbf{C}=\mathbf{Q} \mathbf{~} \mathbf{B}$

The proof of the upper bound for $C=Q^{\prime} B$ is the same as the proof of the upper bound for $R=Q^{\prime} A$ by substituting C for R and B for A.

Upper Bound for $X=A \backslash B$

The upper bound for the magnitude of the elements of $X=A \backslash B$ is
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.

Proof of Upper Bound for $\mathbf{X}=\mathbf{A} \backslash \mathbf{B}$

If A is not full rank, then $\min (\operatorname{svd}(A))=0$, and if B is not equal to zero, then $\sqrt{m} \max (|B(:)|) / \min (\operatorname{svd}(A))=\infty$ and so the inequality is true.

If A is full rank, then $x=R^{-1}\left(Q^{\prime} b\right)$. Let $x=X(:, j)$ be the j th column of X, and $b=B(:, j)$ be the j th column of B. Then

$$
\begin{aligned}
\max (|x(:)|) & =\|x\|_{\infty} \\
& \leq\|x\|_{2} \\
& =\left\|R^{-1} \cdot\left(Q^{\prime} b\right)\right\|_{2} \\
& \leq\left\|R ^ { - 1 } \left|\left\|_{2}\right\| Q^{\prime}\left\|_{2}| | b\right\|_{2}\right.\right. \\
& =(1 / \min (\operatorname{svd}(A))) \cdot 1 \cdot \mid\|b\|_{2} \\
& =\|b\|_{2} / \min (\operatorname{svd}(A)) \\
& \leq \sqrt{m}| | b \|_{\infty} / \min (\operatorname{svd}(A)) \\
& =\sqrt{m} \max (|b(:)|) / \min (\operatorname{svd}(A)) .
\end{aligned}
$$

Since $\max (|x(:)|) \leq \sqrt{m} \max (|b(:)|) / \min (\operatorname{svd}(A))$ for all rows and columns of B and X, then $\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))}$.

Lower Bound for $\min (\operatorname{svd}(A))$

You can estimate a lower bound s of $\min (\operatorname{svd}(A))$ for real-valued A using the following formula,

$$
s=\sigma_{N} \sqrt{2 \gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+1) \Gamma(n / 2)}{2^{m-n} \Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{m-n+1}{2}\right)}, \frac{m-n+1}{2}\right)}
$$

where σ_{N} is the standard deviation of random noise added to the elements of $A, 1-p_{s}$ is the probability that $s \leq \min (\operatorname{svd}(A)), \Gamma$ is the gamma function, and γ^{-1} is the inverse incomplete gamma function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and rearranging terms.

Since $s \leq \min (\operatorname{svd}(A))$ with probability $1-p_{s}$, then you can bound the magnitude of the elements of X without computing $\operatorname{svd}(A)$,
$\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))} \leq \frac{\sqrt{m} \max (|B(:)|)}{S}$ with probability $1-p_{s}$.
You can compute s using the fixed. realSingularValueLowerBound function which uses a default probability of 5 standard deviations below the mean $p_{s}=(1+\operatorname{erf}(-5 / \sqrt{2})) / 2 \approx 2.8665 \cdot 10^{-7}$, so the probability that the estimated bound for the smallest singular value s is less than the actual smallest singular value of A is $1-p_{s} \approx 0.9999997$.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with the actual singular values of A and the actual largest elements of $R=Q^{\prime} A, C=Q^{\prime} B$, and $X=A \backslash B$.

Define System Parameters

Define the matrix attributes and system parameters for this example.
m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding, m corresponds to the number of samples that are integrated over.
m = 300;
n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n corresponds to the number of sensors.
$\mathrm{n}=10 ;$
p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system with p right-hand sides.
p = 1;
In this example, set the rank of matrix A to be less than the number of columns. In a problem such as beamforming or direction finding, $\operatorname{rank}(A)$ corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 24;
In this example, real-valued matrices A and B are constructed such that the magnitude of their elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
max_abs_A is an upper bound on the maximum magnitude element of A.
max_abs_A = 1;
max_abs_B is an upper bound on the maximum magnitude element of B.
max_abs_B = 1;
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

```
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
```

The standard deviation of the noise from quantizing the elements of a real signal is $2^{- \text {precisionBits }} / \sqrt{12}$ [4,5]. Use the fixed.realQuantizationNoiseStandardDeviation function to compute this. See that it is less than thermalNoiseStandardDeviation.

```
quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)
quantizationNoiseStandardDeviation = 1.7206e-08
```


Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer signals of interest than number of columns of matrix A), and the measured system matrix A has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix A have full rank.

$$
\begin{aligned}
& \text { Set } \sigma_{\text {noise }}=\sigma_{\text {thermal noise }} . \\
& \text { noiseStandardDeviation }=\text { thermalNoiseStandardDeviation; }
\end{aligned}
$$

Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

```
T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)
T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
```

T. A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans $=$
[]
DataTypeMode: Fixed-point: binary point scaling

Signedness: Signed
WordLength: 31
FractionLength: 24
T. B is the type computed for transforming B to $Q^{\prime} B$ in-place so that it does not overflow.

```
T.B
ans =
[]
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 31
FractionLength: 24
```

$\mathrm{T} . \mathrm{X}$ is the type computed for the solution $X=A \backslash B$ so that there is a low probability that it overflows.

```
T.X
ans =
```

[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 36
FractionLength: 24
```


Upper Bounds for R and C=Q'B

The upper bounds for R and $C=Q^{\prime} B$ are computed using the following formulas, where m is the number of rows of matrices A and B.

$$
\begin{aligned}
& \max (|R(:)|) \leq \sqrt{m} \max (|A(:)|) \\
& \max (|C(:)|) \leq \sqrt{m} \max (|B(:)|)
\end{aligned}
$$

These upper bounds are used to select a fixed-point type with the required number of bits of precision to avoid overflows.

```
upperBoundR = sqrt(m)*max_abs_A
upperBoundR = 17.3205
upperBoundQB = sqrt(m)*max_abs_B
upperBoundQB = 17.3205
```


Lower Bound for min(svd(A)) for Real A

A lower bound for $\min (\operatorname{svd}(A))$ is estimated by the fixed. realSingularValueLowerBound function using a probability that the estimate s is not greater than the actual smallest singular value. The default probability is 5 standard deviations below the mean. You can change this probability by specifying it as the last input parameter to the fixed. realSingularValueLowerBound function.
estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)
estimatedSingularValueLowerBound = 0.0371

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the number of bits translates to a logarithmic scale relative to the range of values. Being within a factor of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run the simulation for more samples, then it is more likely that the simulated results will be closer to the bound. This example uses a limited number of simulations so it doesn't take too long to run. For realworld system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.
numSamples = 1e4;
Run the simulation.

```
[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs
    numSamples,noiseStandardDeviation,T);
```

You can see that the upper bound on R compared to the measured simulation results of the maximum value of R over all runs is within an order of magnitude.

```
upperBoundR
upperBoundR = 17.3205
max(actualMaxR)
ans = 8.3029
```

You can see that the upper bound on $C=Q^{\prime} B$ compared to the measured simulation results of the maximum value of $C=Q^{\prime} B$ over all runs is also within an order of magnitude.

```
upperBoundQB
upperBoundQB = 17.3205
max(actualMaxQB)
ans = 2.5707
```

Finally, see that the estimated lower bound of $\min (\operatorname{svd}(A))$ compared to the measured simulation results of $\min (\operatorname{svd}(A))$ over all runs is also within an order of magnitude.

```
estimatedSingularValueLowerBound
estimatedSingularValueLowerBound = 0.0371
actualSmallestSingularValue = min(singularValues,[],'all')
actualSmallestSingularValue = 0.0420
```

Plot the distribution of the singular values over all simulation runs. The distributions of the largest singular values correspond to the signals that determine the rank of the matrix. The distributions of the smallest singular values correspond to the noise. The derivation of the estimated bound of the smallest singular value makes use of the random nature of the noise.
clf
fixed.example.plot.singularValueDistribution(m,n,rankA, noiseStandardDeviation,... singularValues,estimatedSingularValueLowerBound, "real");

Singular value distributions for 300-by-10 real matrices of rank 3 with $\sigma_{\text {noise }}=\mathbf{0 . 0 0}$:

Zoom in to smallest singular value to see that the estimated bound is close to it. $x \lim ([e s t i m a t e d S i n g u l a r V a l u e L o w e r B o u n d * 0.9, ~ m a x(s i n g u l a r V a l u e s(n,:))]) ;$

Estimate the largest value of the solution, X , and compare it to the largest value of X found during the simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual largest value of X will approach the estimated largest value of X .

```
estimated_largest_X = fixed.realMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)
estimated_largest_X = 466.5772
actual_largest_X = max(abs(X_values),[],'all')
actual_largest_X = 44.8056
```

Plot the distribution of X values and compare it to the estimated upper bound for X .
clf
fixed.example.plot.xValueDistribution(m,n,rankA, noiseStandardDeviation,...
X_values,estimated_largest_X,"real normally distributed random");

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank, quantizes them according to the computed types, computes the QR decomposition of A, and solves the equation $A X=B$. It returns the maximum values of $R=Q^{\prime} A$ and $C=Q^{\prime} B$, the singular values of A, and the values of X so their distributions can be plotted and compared to the bounds.

```
function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A
    numSamples,noiseStandardDeviation,T)
    precisionBits = T.A.FractionLength;
    A_WordLength = T.A.WordLength;
    B_WordLength = T.B.WordLength;
    actualMaxR = zeros(1,numSamples);
    actualMaxQB = zeros(1,numSamples);
    singularValues = zeros(n,numSamples);
    X_values = zeros(n,numSamples);
    for j = 1:numSamples
    A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
    % Adding normally distributed random noise makes A non-singular.
    A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
    A = quantizenumeric(A,1,A WordLength,precisionBits);
    B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,m,p);
    B = quantizenumeric(B,1,B_WordLength,precisionBits);
    [Q,R] = qr(A,0);
    C = Q'*B;
    X = R\C;
    actualMaxR(j) = max(abs(R(:)));
```

```
            actualMaxQB(j) = max(abs(C(:)));
            singularValues(:,j) = svd(A);
            X_values(:,j) = X;
    end
end
```


References

1 Thomas A. Bryan and Jenna L. Warren. "Systems and Methods for Design Parameter Selection". Patent pending. U.S. Patent Application No. 16/947,130. 2020.
2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing QR. MathWorks. 2010.

3 Zizhong Chen and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices". In: SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603-620. issn: 0895-4798. doi: 10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266-276.
5 Bernard Widrow and István Kollár. Quantization Noise - Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns Hopkins University Press, 1989.

Suppress mlint warnings in this file.
\%\#ok<*NASGU>
\%\#ok<*ASGLU>

Input Arguments

m - Number of rows in matrix
positive integer-valued scalar
Number of rows in matrix, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, n.

Data Types: double

n - Number of columns in matrix

positive integer-valued scalar
Number of columns in matrix, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, n.

Data Types: double
noiseStandardDeviation - Standard deviation of additive random noise in matrix scalar

Standard deviation of additive random noise in matrix, specified as a scalar.
Data Types: double
p_s_n - Probability that estimate of lower bound is larger than actual smallest singular value of matrix
2.8665e-07 (default) | scalar

Probability that estimate of lower bound is larger than actual smallest singular value of matrix, specified as a scalar.

If $p \_s \_n$ is not supplied or empty, then the default of $p \_s \_n=(1 / 2) *(1+e r f(-5 / s q r t(2)))=$ $2.8665 \mathrm{e}-07$ is used, which is 5 standard deviations below the mean, so the probability that the estimated lower bound for the smallest singular value is less than the actual smallest singular value is $1-p \_s=0.99999971-p \_s=0.9999997$.

Data Types: double

regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar. Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
regularizationParameter is the Tikhonov regularization parameter of the matrix $\left[\begin{array}{c}\lambda I_{n} \\ A\end{array}\right]$ where λ is the regularizationParameter, A is an m-by-n matrix with $m>=n$, and $I=$ eye (n).
Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| fi

Output Arguments

s_n - Estimate of lower bound for smallest singular value of real-valued matrix
 scalar

Estimate of lower bound for smallest singular value of real-valued matrix, returned as a scalar.

Tips

- Use fixed. realSingularValueLowerBound to estimate the smallest singular value of a matrix to estimate a bound for $\max (|X(:)|)$. For example, in fixed.realQRMatrixSolveFixedpointTypes, the elements of $X=R \backslash\left(Q^{\prime} B\right)$ are bounded in magnitude by

$$
\max (|X(:)|) \leq \frac{\sqrt{m} \max (|B(:)|)}{\min (\operatorname{svd}(A))} \leq \frac{\sqrt{m} \max (|B(:)|)}{s}
$$

with probability $1-p_{s}$.

- $\max (|X(:)|)$ is smaller when the denominator in the above equation is larger.
- If nothing else is known about a matrix, then generally, the smallest singular value will be larger if:
- there is additive random noise.
- the number of rows, m, is much larger than the number of columns, n.
- If the noise standard deviation is not known, you can approximate it as the standard deviation of the quantization error. You can compute the quantization error using fixed.realQuantizationNoiseStandardDeviation.
- For s to be a useful bound on the smallest singular value of A, the probability that s is greater than the smallest singular value of A should be small. A practical value to use is

$$
p_{s}=(1 / 2) \cdot(1+\operatorname{erf}(-5 / \sqrt{2})) \approx 3 \cdot 10^{-7}
$$

which is 5 standard deviations below the mean, so the probability that the estimated bound for the smallest singular value is less than the actual smallest singular value is $1-p_{s} \approx 0.9999997$.

- fixed.realSingularValueLowerBound is used in these functions.
- fixed.realQlessQRMatrixSolveFixedpointTypes
- fixed.realQRMatrixSolveFixedpointTypes

Algorithms

Given a m-by- n real-valued matrix A and standard deviation σ_{N} of additive random noise on the elements of A, you can compute an estimate of a lower bound for the smallest singular value of A, s, such that the probability, p_{s}, of s being greater than the smallest singular value of A using this formula [1][2].

$$
s=\sigma_{N} \sqrt{2 \gamma^{-1}\left(\frac{p_{s} \Gamma(m-n+1) \Gamma(n / 2)}{2^{m-n} \Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{m-n+1}{2}\right)}, \frac{m-n+1}{2}\right)}
$$

Version History

Introduced in R2021b

R2022a: Support for Tikhonov regularization parameter

The fixed. realSingularValueLowerBound function now supports the Tikhonov regularization parameter, "regularizationParameter" on page 4-0

References

[1] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2020.
[2] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/ 10.1137/040616413.

Extended Capabilities

$\mathbf{C} / \mathbf{C + +}$ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR} \operatorname{Coder}^{\mathrm{TM}}$.

See Also
fixed.realQRMatrixSolveFixedpointTypes |
fixed.realQuantizationNoiseStandardDeviation|
fixed.realQlessQRMatrixSolveFixedpointTypes |
fixed.realQRMatrixSolveFixedpointTypes

fixed.singularValueUpperBound

Upper bound of largest singular value of matrix

Syntax

```
svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A)
svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A,
regularizationParameter)
```


Description

svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A) returns an upper bound of the largest singular value of an m-by-n matrix A, where $m>=n$ and max_abs_A >= $\max (a b s(A(:)))$.
svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A, regularizationParameter) returns an upper bound of the largest singular value of the matrix [regularizationParameter*eye(n) ; A], where A is an m-by-n matrix with $m>=n$.

Examples

Upper Bound of Largest Singular Value of Real-Valued Matrix

Define a real-valued matrix, A.
m = 5;
n = 3;
$A=$ ones (m, n);
max_abs_A = 1;
Determine an upper bound for the largest singular value of the matrix.
svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A)
svdUpperBound $=3.8730$
Compare to the actual largest singular value of the matrix.

```
actual_largest_singular_value = max(svd(A))
actual_largest_singular_value = 3.8730
```


Upper Bound of Largest Singular Value of a Low Rank Matrix with Regularization

Use the helper function realRandomLowRankMatrix to define a real-valued, low rank matrix A.

```
m = 300;
```

n = 10;

```
rankA = 3;
A = realRandomLowRankMatrix(m,n,rankA);
```

Determine an upper bound for the largest singular value of the matrix of the Tikhonov regularized problem.

```
regularizationParameter = 0.01;
A = [regularizationParameter*eye(n);A];
svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))),regularizationParameter)
svdUpperBound = 54.7823
```

Compare to the actual largest singular value of the matrix.

```
actual_largest_singular_value = max(svd(A))
actual_largest_singular_value = 13.3424
```


Input Arguments

m - Number of rows in matrix A
positive integer-valued scalar
Number of rows in matrix A, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, n.
Data Types: single| double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

n - Number of columns in matrix A

positive integer-valued scalar
Number of columns in matrix A, specified as a positive integer-valued scalar. The number of rows, m, must be greater than or equal to the number of columns, n.
Data Types: single| double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

max_abs_A - Maximum of absolute value of matrix A

scalar
Maximum of absolute value of matrix A, specified as a scalar.
Data Types: single| double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

regularizationParameter - Regularization parameter

0 (default) | nonnegative scalar
Regularization parameter, specified as a nonnegative scalar.
Data Types: single|double

Algorithms

The upper bound for the largest singular value of matrix A is svdUpperBound $=$ $\operatorname{sqrt}(m * n) * \max (\operatorname{abs}(A(:)))$. If there is a regularization parameter, then the upper bound is svdUpperBound $=\operatorname{sqrt}(m * n) * \max (a b s(A(:)))+\operatorname{abs}(r e g u l a r i z a t i o n P a r a m e t e r)[1][2]$ [3].

Version History

Introduced in R2022b

References

[1] Bryan, Thomas A., Jenna L. Warren, Brenda Zhuang, and Jessica Clayton. Continuation in Part for "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2022.
[2] Bryan, Thomas A., and Jenna L. Warren. "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2020.
[3] Chen, Zizhong, and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/ 10.1137/040616413.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

fixed.realSingularValueLowerBound|fixed.complexSingularValueLowerBound| fixed.svd

fixed.svd

Fixed-point Golub-Kahan-Reinsch singular value decomposition

Syntax

```
S = fixed.svd(A)
[U,S,V] = fixed.svd(A)
[___] = fixed.svd(A,"econ")
[____] = fixed.svd(A,0)
[____] = fixed.svd( ___,sigmaForm)
```


Description

$S=$ fixed. $\operatorname{svd}(A)$ returns the singular values of matrix A in descending order.
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=$ fixed.svd(A) performs a singular value decomposition of matrix A such that $\mathrm{A}=$ $\mathrm{U}^{*} \mathrm{~S}^{*} \mathrm{~V}^{\prime}$. S is a diagonal matrix of the same dimension as A with nonnegative diagonal elements in decreasing order. U and V are unitary matrices.
[___] = fixed.svd(A, "econ") produces an economy-size decomposition of A. If A is an m-by-n matrix, then:

- $m>n$ - Only the first n columns of U are computed and S is n-by- n.
- $m=n$ - fixed.svd(A, "econ") is equivalent to fixed.svd(A).
- $m<n$ - Only the first m columns of V are computed, and S is m-by- m.
[___] = fixed.svd $(A, 0)$ produces a different economy-size decomposition of A. If A is an m-by-n matrix, then:
- $m>n$ - fixed.svd(A,0) is equivalent to fixed.svd(A,"econ").
- $m<=n-f i x e d . \operatorname{svd}(A, 0)$ is equivalent to fixed. $\operatorname{svd}(A)$.

Syntax is not recommended. Use the "econ" option instead.
[___] = fixed.svd(__ , sigmaForm) optionally specifies the output format for the singular values. You can use this option with any of the previous input or output combinations. Specify
"vector" to return the singular values as a column vector. Specify "matrix" to return the singular values in a diagonal matrix.

Examples

Singular Values of Fixed-Point Matrix

Compute the singular values of a full rank scaled-double matrix.
A = [1 0 1; -1 -2 0; 0 1-1];
Define fixed-point types that will never overflow. First, use the fixed.singularValueUpperBound function to determine the upper bound on the singular values. Then, define the integer length based
on the value of the upper bound, with one additional bit for the sign and another additional bit for intermediate CORDIC growth. Compute the fraction length based on the integer length and the desired word length.

```
svdUpperBound = fixed.singularValueUpperBound(3,3,max(abs(A(:))));
integerLength = ceil(log2(svdUpperBound)) + 2;
wordLength = 16;
fractionLength = wordLength - integerLength;
```

Cast the matrix A to the scaled-double type.

```
T.A = fi([],1,wordLength,fractionLength,'DataType','ScaledDouble');
A = cast(A,'like',T.A)
A =
    1
        DataTypeMode: Scaled double: binary point scaling
        Signedness: Signed
        WordLength: 16
FractionLength: 11
```

Compute the singular values.

```
s = fixed.svd(A)
s =
    2.4605
    1.6996
    0.2391
```

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
 The singular values are returned in a column vector in decreasing order, and have the same data type as A.

Fixed-Point Singular Value Decomposition

Find the singular value decomposition of the rectangular fixed-point matrix A.
Define the rectangular matrix A.

```
m = 4;
n = 2;
rng('default');
A = 10*randn(m,n);
```

Define fixed-point types that will never overflow. First, use the fixed. singularValueUpperBound function to determine the upper bound on the singular values. Then, define the integer length based
on the value of the upper bound, with one additional bit for the sign and another additional bit for intermediate CORDIC growth. Compute the fraction length based on the integer length and the desired word length.

```
svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))));
integerLength = ceil(log2(svdUpperBound)) + 2;
wordLength = 32;
fractionLength = wordLength - integerLength;
```

Cast the matrix A to the signed fixed-point type.

```
T.A = fi([],1,wordLength,fractionLength,'DataType','Fixed');
A = cast(A,'like',T.A)
A =
    5.3767 3.1877
    18.3389 -13.0769
    -22.5885 -4.3359
    8.6217 3.4262
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 24
```

Find the singular value decomposition of the fixed-point matrix A.

```
[U,S,V] = fixed.svd(A)
U =
    0.6397 -0.7548 -0.1219 0.0790
    -0.7049 -0.5057 -0.3224 0.3787
    0.2619 0.3174 0 0.9114
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 30
S =
    31.0141 0
            0 14.1289
            0 0
            0 0
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: }3
            FractionLength: 24
V =
    0.9920 0.1259
    -0.1259 0.9920
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 30
```

```
Confirm the relation A = U*S*V'.
U*S*V'
ans =
    5.3767 3.1877
    18.3389 -13.0769
    -22.5885 -4.3359
    8.6217 3.4262
                DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 99
                FractionLength: 84
```


Economy-Size Decomposition

Calculate the complete and economy-size decomposition of a rectangular fixed-point matrix.
Define the matrix A.
A = [1 2; 3 4; 5 6; 7 8];
Define fixed-point types that will never overflow. First, use the fixed.singularValueUpperBound function to determine the upper bound on the singular values. Then, define the integer length based on the value of the upper bound, with one additional bit for the sign and another additional bit for intermediate CORDIC growth. Compute the fraction length based on the integer length and the desired word length.

```
svdUpperBound = fixed.singularValueUpperBound(4,2,max(abs(A(:))));
integerLength = ceil(log2(svdUpperBound)) + 2;
wordLength = 32;
fractionLength = wordLength - integerLength;
```

Cast the matrix A to the signed fixed-point type.

```
T.A = fi([],1,wordLength,fractionLength,'DataType',''Fixed');
A = cast(A,'like',T.A)
A =
    1 2
    3 4
    5 6
    7 8
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: }3
        FractionLength: 25
```

Compute the complete decomposition.

```
[U,S,V] = fixed.svd(A)
U =
    -0.1525 0.8226 -0.4082 0.3651
```

```
    -0.3499 0.4214 0.8165 -0.1826
    -0.5474 0.0201 
    -0.7448 -0.3812 0 0.5477
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: }3
        FractionLength: 30
S =
    14.2691 0
            0 0.6268
            0 0
            0 0
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 25
V =
    -0.6414 -0.7672
    -0.7672 0.6414
        DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: }3
            FractionLength: 30
```

Compute the economy-size decomposition.

```
[U,S,V] = fixed.svd(A,"econ")
U =
    -0.1525 0.8226
    -0.3499 0.4214
    -0.5474 0.0201
    -0.7448 -0.3812
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 30
S =
    14.2691 0
        0 0.6268
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 25
V =
            -0.6414 -0.7672
            -0.7672 0.6414
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
```

WordLength: 32
FractionLength: 30
Since A is 4-by-2, fixed. svd(A, "econ") returns fewer columns in U and fewer rows in S compared to a complete decomposition. Extra rows of zeros in S are excluded, along with the corresponding columns in U that would multiply with those zeros in the expression $A=U^{*} S^{*} V^{\prime}$.

Control Singular Value Output Format

Create a 3-by-3 magic square matrix and calculate the singular value decomposition. By default, the fixed.svd function returns the singular values in a diagonal matrix when you specify multiple outputs.

Define the matrix A.
m = 3;
$\mathrm{n}=\mathrm{m}$;
$A=\operatorname{magic}(m) ;$
Define fixed-point types that will never overflow. First, use the fixed. singularValueUpperBound function to determine the upper bound on the singular values. Then, define the integer length based on the value of the upper bound, with one additional bit for the sign and another additional bit for intermediate CORDIC growth. Compute the fraction length based on the integer length and the desired word length.

```
svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))));
integerLength = ceil(log2(svdUpperBound)) + 2;
wordLength = 32;
fractionLength = wordLength - integerLength;
```

Cast the matrix A to the signed fixed-point type.

```
T.A = fi([],1,wordLength,fractionLength,'DataType','Fixed');
A = cast(A,'like',T.A)
A =
    8
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 32
        FractionLength: 25
```

Compute the singular value decomposition.

```
[U,S,V] = fixed.svd(A)
U =
    0.5774 -0.7071 -0.4082
    0.5774 0.0000 0.8165
    0.5774 0.7071 -0.4082
    DataTypeMode: Fixed-point: binary point scaling
```

```
        Signedness: Signed
                WordLength: 32
            FractionLength: 30
S =
    15.0000 0 0
            0 6.9282 0
            0 0 3.4641
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 25
V =
    0.5774 -0.4082 -0.7071
    0.5774 0.8165 -0.0000
    0.5774 -0.4082 0.7071
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 30
```

Specify the "vector" option to return the singular values in a column vector.

```
[U,S,V] = fixed.svd(A,"vector")
U =
    0.5774 -0.7071 -0.4082
    0.5774 0.0000 0.8165
    0.5774 0.7071 -0.4082
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 30
S =
    15.0000
            6.9282
            3.4641
                    DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 25
V =
            0.5774 -0.4082 -0.7071
            0.5774 0.8165 -0.0000
            0.5774 -0.4082 0.7071
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 30
```

If you specify one output argument, such as $S=$ fixed. svd(A), then fixed. svd switches behavior to return the singular values in a column vector by default. In that case, you can specify the "matrix" option to return the singular values as a diagonal matrix.

Compute Fixed-Point Singular Value Decomposition and Generate Code

Compute the fixed-point singular value decomposition, verify the results, and generate purely integer C code.

Define the input matrix A.

```
m = 10;
n = 4;
rng('default');
A = 10*randn(m,n);
```

The fixed. svd function also accepts complex inputs.
$A=10 * \operatorname{complex}(\operatorname{rand}(m, n), \operatorname{rand}(m, n))$;
Define fixed-point types that will never overflow. Use the fixed. singularValueUpperBound function to determine the upper bound on the singular values. Define the integer length based on the value of the upper bound, with one additional bit for the sign and another additional bit for intermediate CORDIC growth. Compute the fraction length based on the integer length and the desired word length.

```
svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))));
integerLength = ceil(log2(svdUpperBound)) + 2;
wordLength = 32;
fractionLength = wordLength - integerLength;
```

Specify the desired data type for the input matrix A.

```
dataType = 'Fixed';
T.A = fi([],1,wordLength,fractionLength,'DataType',dataType);
disp(T.A)
[]
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: }3
FractionLength: 23
```

Cast the matrix A to the signed fixed-point type.
A = cast (A,'like',T.A);
Generate a MATLAB executable (MEX) file for execution speed. Use the "econ" flag to compute the economy-size singular-value decomposition. Use the "vector" flag to return the singular values as a vector, s. The flags must be constant for code generation. Use the - nargout 3 flag to indicate to the codegen function that it is to generate code for the three-output syntax.
codegen +fixed/svd -o fixedSVD_mex -args \{A,coder. Constant("econ"), coder. Constant("vector")\} -na

Code generation successful.
Run the MEX file.

```
[U,s,V] = fixedSVD_mex(A,"econ","vector")
U =
        0.2509 + 0.1236i 0.1980 + 0.1578i 0.1745 + 0.0268i 0.0755 - 0.2443i
        0.1601 + 0.2073i -0.3227-0.1684i 0.1420-0.3385i 0.3686 - 0.1899i
        0.2937 + 0.1868i 0.0574 - 0.2108i 0.0884 - 0.0633i -0.1079 + 0.0866i
        0.2071 + 0.3019i 0.0678 + 0.1740i -0.3790 + 0.1518i -0.3808 + 0.1483i
        0.2262 + 0.2405i 0.5884-0.1889i -0.0693-0.3624i 0.0547 - 0.1581i
        0.2435 + 0.2111i -0.0568 + 0.3536i -0.1593 + 0.1445i 0.3714 - 0.0026i
        0.2195 + 0.2411i -0.0713 - 0.2517i -0.2848 + 0.2641i 0.4055 - 0.0481i
        0.1461 + 0.3184i -0.1657 + 0.0477i 0.0478 + 0.2812i -0.2972 - 0.0396i
        0.2204 + 0.1354i -0.2868-0.0745i 0.3628-0.2391i -0.0565 + 0.1251i
        0.1863 + 0.2334i -0.1495 + 0.0491i 0.1422 - 0.1789i -0.3594 + 0.0775i
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 32
            FractionLength: 30
S =
        45.9444
        16.1174
        10.7897
            8.3153
```

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 23
 $\mathrm{V}=$
$0.5637+0.0000 i-0.4038+0.0000 i-0.2061+0.0000 i-0.6904+0.0000 i$
$0.4261+0.0228 i-0.3782-0.4565 i \quad 0.0076+0.3326 i \quad 0.5667+0.1863 i$
0.4980 + 0.0276i $0.3223+0.4193 i-0.5081-0.2300 i \quad 0.3698$ - 0.1540i
$0.5014+0.0041 i \quad 0.4531-0.0243 i \quad 0.7280-0.0758 i-0.0729+0.0402 i$
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 30

Verify the singular values. Since singular values are unique, you can use the svd function to verify that fixed. svd gives a comparable result within the precision of the selected fixed-point type.

```
sExpected = svd(double(A))
sExpected = 4×1
```

 45.9444
 16.1174
 10.7897
 8.3153
 singularValueRelativeError $=$ norm(double(s)-double(sExpected))/norm(double(sExpected))

```
singularValueRelativeError = 3.7197e-07
```

Singular vectors are not unique. You can verify the singular vectors by confirming that $A \approx \mathrm{U}^{*} \mathrm{~S}^{*} \mathrm{~V}^{\prime}$ and that the singular vector matrices are orthonormal.

First, expand the singular value vector s into matrix S.

```
S = zeros(size(U,2),size(V,2),'like',s);
for i = 1:min(m,n)
    S(i,i) = s(i);
end
S
S =
\begin{tabular}{rrrr}
45.9444 & 0 & 0 & 0 \\
0 & 16.1174 & 0 & 0 \\
0 & 0 & 10.7897 & 0 \\
0 & 0 & 0 & 8.3153
\end{tabular}
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                WordLength: 32
            FractionLength: 23
```

Verify that $U^{*} S^{*} V^{\prime}$ is approximately equal to A.

```
decompositionRelativeError = norm(double(U*S*V')-double(A))/norm(double(A))
decompositionRelativeError = 3.3811e-07
```

U and V are orthonormal. Verify that U ' U and $\mathrm{V}^{\prime} \mathrm{V}$ are approximately equal to the identity matrix.

```
UtransposeU = double(U'*U)
UtransposeU = 4×4 complex
    1.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i
    -0.0000 - 0.0000i 1.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i
    -0.0000-0.0000i -0.0000-0.0000i 1.0000 + 0.0000i -0.0000 - 0.0000i
    0.0000-0.0000i 0.0000-0.0000i -0.0000 + 0.0000i 1.0000 + 0.0000i
VtransposeV = double(V'*V)
VtransposeV = 4×4 complex
    1.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
    -0.0000 + 0.0000i 1.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i
    0.0000 - 0.0000i -0.0000 - 0.0000i 1.0000 + 0.0000i 0.0000 - 0.0000i
    0.0000 - 0.0000i -0.0000 - 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i
```

Generate C code. If the input is fixed point, you can verify that the generated C code consists only of integer types.

```
cfg = coder.config('lib');
if isfi(A) && isfixed(A)
    cfg.PurelyIntegerCode = true;
```

```
end
codegen +fixed/svd -args {A, coder.Constant("econ"), coder.Constant("vector")} -config cfg -narg
Warning: C Compiler produced warnings. See the build log for further details.
Code generation successful (with warnings): To view the report, open('codegen\lib\svd\html\repor
```

The MATLAB code for fixed. svd does not appear in the code generation report because fixed.svd is a MATLAB toolbox function.

Input Arguments

A - Input matrix

matrix
Input matrix, specified as a matrix. A can be a signed fixed-point fi, a signed scaled double fi, double, or single data type.

Data Types: single| double|fi
Complex Number Support: Yes

sigmaForm - Output format of singular values
 "vector"| "matrix"

Output format of singular values, specified as one of these values:

- "vector" - S is a column vector. This behavior is the default when you specify one output, $\mathrm{S}=$ fixed.svd(A).
- "matrix" - S is a diagonal matrix. This behavior is the default when you specify multiple outputs, $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\mathrm{fixed} . \operatorname{svd}(\mathrm{A})$.

Example: [U, S, V] = fixed.svd(X,"vector") returns S as a column vector instead of a diagonal matrix.

Example: $S=$ fixed.svd (X, "matrix") returns S as a diagonal matrix instead of a column vector.
Data Types: char|string

Output Arguments

U - Left singular vectors

matrix
Left singular vectors, returned as the columns of a matrix.
For fixed-point and scaled-double inputs, U is returned as a signed fixed-point or scaled-double fi with the same word length as A and fraction length equal to two less than the word length. One of these integer bits is used for the sign. The other integer bit allows +1 to be represented exactly.

For floating-point input, U has the same data type as A .

S - Singular values

diagonal matrix | column vector

Singular values, returned as a diagonal matrix or column vector. The singular values are nonnegative and returned in decreasing order. The singular values S have the same data type as A.

V - Right singular vectors

matrix

Right singular vectors, returned as the columns of a matrix.
For fixed-point input and scaled-double inputs, V is returned as a signed fixed-point or scaled-double fi with the same word length as A and fraction length equal to two less than the word length. One of these integer bits is used for the sign. The other integer bit allows +1 to be represented exactly.

For floating-point input, V has the same data type as A . One of these integer bits is used for the sign, and the other integer bit allows +1 to be represented exactly.

Tips

The fixed.svd function allows full control over the fixed-point types. fixed.svd computes in-place in the same data type as the input, which may overflow but will produce efficient code. The svd function adjusts the data type of a fixed-point input to avoid overflow and increase precision.

Algorithms

The Golub-Kahan-Reinsch algorithm is a sequential method that performs well on serial computers. For parallel computing, as in FPGA and ASIC applications, use the fixed. jacobiSVD function.

Version History

Introduced in R2022b

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
fixed.svd generates efficient, purely integer C code.

See Also

svd | svd
Topics
"Singular Values"

fixpt_instrument_purge

Remove corrupt fixed-point instrumentation from model

Compatibility

Note fixpt_instrument_purge will be removed in a future release.

Syntax

fixpt_instrument_purge
fixpt_instrument_purge(modelName, interactive)

Description

The fixpt_instrument_purge script finds and removes fixed-point instrumentation from a model left by the Fixed-Point Tool and the fixed-point autoscaling script. The Fixed-Point Tool and the fixedpoint autoscaling script each add callbacks to a model. For example, the Fixed-Point Tool appends commands to model-level callbacks. These callbacks make the Fixed-Point Tool respond to simulation events. Similarly, the autoscaling script adds instrumentation to some parameter values that gathers information required by the script.

Normally, these types of instrumentation are automatically removed from a model. The Fixed-Point Tool removes its instrumentation when the model is closed. The autoscaling script removes its instrumentation shortly after it is added. However, there are cases where abnormal termination of a model leaves fixed-point instrumentation behind. The purpose of fixpt_instrument_purge is to find and remove fixed-point instrumentation left over from abnormal termination.
fixpt_instrument_purge(modelName, interactive) removes instrumentation from model modelName. interactive is true by default, which prompts you to make each change. When interactive is set to false, all found instrumentation is automatically removed from the model.

Version History

Introduced before R2006a

See Also

autofixexp|fxptdlg

floor

Round toward negative infinity

Syntax

$y=$ floor (a)

Description

$y=f l o o r(a)$ rounds fi object a to the nearest integer in the direction of negative infinity and returns the result in fi object y.

Examples

Use floor on a Signed fi Object

The following example demonstrates how the floor function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 3 .

```
a = fi(pi,1,8,3)
a =
    3.1250
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 8
            FractionLength: 3
y = floor(a)
y =
    3
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
            WordLength: 5
            FractionLength: 0
```

The following example demonstrates how the floor function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 12 .

```
a = fi(0.025,1,8,12)
a =
    0.0249
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
        WordLength: 8
            FractionLength: 12
```

```
y = floor(a)
y =
    0
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 2
FractionLength: 0
```


Compare Rounding Methods

The functions ceil, fix, and floor differ in the way they round fi objects:

- The ceil function rounds values to the nearest integer toward positive infinity.
- The fix function rounds values to the nearest integer toward zero.
- The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

```
a = fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]');
y = [a ceil(a) fix(a) floor(a)]
y=
\begin{tabular}{rrrr}
-2.5000 & -2.0000 & -2.0000 & -3.0000 \\
-1.7500 & -1.0000 & -1.0000 & -2.0000 \\
-1.2500 & -1.0000 & -1.0000 & -2.0000 \\
-0.5000 & 0 & 0 & -1.0000 \\
0.5000 & 1.0000 & 0 & 0 \\
1.2500 & 2.0000 & 1.0000 & 1.0000 \\
1.7500 & 2.0000 & 1.0000 & 1.0000 \\
2.5000 & 3.0000 & 2.0000 & 2.0000
\end{tabular}
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 13
plot(a,y); legend('a','ceil(a)','fix(a)','floor(a)','location','NW');
```


Input Arguments

a - Input fi array
scalar | vector | matrix | multidimensional array
Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.
floor does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is trivial when the slope is an integer power of 2 and the bias is 0 .

Data Types: fi
Complex Number Support: Yes

Algorithms

- y and a have the same fimath object and DataType property.
- When the DataType property of a is single, double, or boolean, the numerictype of y is the same as that of a.
- When the fraction length of a is zero or negative, a is already an integer, and the numerictype of y is the same as that of a.
- When the fraction length of a is positive, the fraction length of y is 0 , its sign is the same as that of a, and its word length is the difference between the word length and the fraction length of a, plus one bit. If a is signed, then the minimum word length of y is 2 . If a is unsigned, then the minimum word length of y is 1 .

Version History
 Introduced in R2008a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

See Also

ceil|convergent | fix|nearest | round

floorDiv

Round the result of division toward negative infinity

Syntax

$y=f l o o r \operatorname{Div}(x, d)$
y = floorDiv(x,d,m)

Description

$y=f l o o r \operatorname{Div}(x, d)$ returns the result of x / d rounded to the nearest integer value in the direction of negative infinity.
$y=f l o o r D i v(x, d, m)$ returns the result of x / d rounded to the nearest multiple of m in the direction of negative infinity.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to contain both the largest and smallest possible solutions given the data type of x, and the values of d and m .

Examples

Divide and Round to Floor

Perform a division operation and round to the nearest integer value in the direction of negative infinity.

```
floorDiv(int16(201),10)
ans =
    20
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 13
            FractionLength: 0
```

Perform a division operation and round to the nearest multiple of 7 in the direction of negative infinity.

```
floorDiv(int16(201),10,7)
ans =
    1 4
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 13
        FractionLength: 0
```


Divide and Generate Code

Define a function that uses floorDiv.
function $y=$ floorDiv_example(x, d)
$y=$ floorDiv(x,d);
end
Define inputs and execute the function in MATLAB®.

```
x = fi(pi);
d = fi(2);
y = floorDiv_example(x,d)
y =
    1
```

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

To generate code for this function, the denominator d must be defined as a constant.

```
codegen floorDiv_example -args {x, coder.Constant(d)}
Code generation successful.
```

Alternatively, you can define the denominator, d , as constant in the body of the code.

```
function y = floorDiv10(x)
y = floorDiv(x,10);
end
x = fi(5*pi);
y = floorDiv10(x)
y =
    1
            DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 2
            FractionLength: 0
codegen floorDiv10 -args {x}
Code generation successful.
```


Input Arguments

x - Dividend
scalar
Dividend, specified as a scalar.

Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|fi
d - Divisor
scalar
Divisor, specified as a scalar.
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32 | uint64 | logical|fi
m - Value to round to nearest multiple of
1 (default) | scalar
Value to round to nearest multiple of, specified as a scalar.
Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi

Output Arguments

y - Result of division and round to floor

scalar
Result of division and round to floor, returned as a scalar.
The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to contain both the largest and smallest possible solutions given the data type of x, and the values of d and m .

Version History
Introduced in R2021a

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.
To generate code, the denominator d must be declared as constant.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.

See Also

ceilDiv|fixDiv|nearestDiv

fma

Multiply and add using fused multiply add approach

Syntax

$X=f m a(A, B, C)$

Description

$\mathrm{X}=\mathrm{fma}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ computes $A . * B+C$ using a fused multiply add approach. Fused multiply add operations round only once, often making the result more accurate than performing a multiplication operation followed by an addition.

Examples

Multiply and Add Three Inputs Using Fused Multiply Add

This example shows how to use the fma function to calculate $A \times B+C$ using a fused multiply add approach.

Define the inputs and use the fma function to compute the multiply add operation.

```
a = half(10);
b = half(10);
c = half(2);
x = fma(a, b, c)
x =
    half
    1 0 2
```

Compare the result of the fma function with the two-step approach of computing the product and then the sum.

```
temp = a * b;
x = temp + c
x =
    half
    1 0 2
```


Input Arguments

A - Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array. When A and B are matrices, fma performs element-wise multiplication followed by addition.

Data Types: single | double | half

B - Input array

scalar | vector | matrix | multidimensional array
Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array. When A and B are matrices, fma performs element-wise multiplication followed by addition.
Data Types: single | double | half

C - Input array

scalar | vector | matrix | multidimensional array
Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array.
Data Types: single | double | half

Output Arguments

X - Result of multiply and add operation

scalar | vector | matrix | multidimensional array
Result of multiply and add operation, $A .^{*} B+C$, returned as a scalar, vector, matrix, or multidimensional array.

Version History

Introduced in R2019a

See Also

half

for

for loop to repeat specified number of times

Syntax

```
for index = values
    statements
end
```


Description

for index = values, statements, end executes a group of statements in a loop for a specified number of times.

If a colon, : operation with fi objects is used as the index, then the fi objects must be whole numbers.

Refer to the MATLAB for reference page for more information.

Examples

Use fi in a For Loop

Use a fi object as the index of a for loop.

```
a = fi(1,0,8,0);
b = fi(2,0,8,0);
c = fi(10,0,8,0);
for x = a:b:c
    x
end
x =
    1
                DataTypeMode: Fixed-point: binary point scaling
                Signedness: Unsigned
                WordLength: 8
                    FractionLength: 0
X =
    3
                DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Unsigned
                        WordLength: 8
            FractionLength: 0
x =
5
```

```
            DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 8
            FractionLength: 0
x =
    7
            DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 8
            FractionLength: 0
x =
9
            DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 8
FractionLength: 0
```


Version History

Introduced in R2014b

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

fractionlength

Fraction length of quantizer object

Syntax

fractionlength(q)

Description

fractionlength (q) returns the fraction length of quantizer object q .

Algorithms

For floating-point quantizer objects, $f=w-e-1$, where w is the word length and e is the exponent length.

For fixed-point quantizer objects, f is part of the format $[w f]$.

Version History
 Introduced before R2006a

See Also

fi| numerictype | quantizer|wordlength

fxpopt

Optimize data types of a system

Syntax

result $=$ fxpopt(model, sud, options)

Description

result $=$ fxpopt(model, sud, options) optimizes the data types in the model or subsystem specified by sud in the model, model, with additional options specified in the fxpOptimizationOptions object, options.

Examples

Optimize Fixed-Point Data Types

This example shows how to optimize the data types used by a system based on specified tolerances.
To begin, open the system for which you want to optimize the data types.

```
model = 'ex_auto_gain_controller';
sud = 'ex_aüto_gain_controller/sud';
open_systēm(model)
```


Create an fxpOptimizationOptions object to define constraints and tolerances to meet your design goals. Set the UseParallel property of the fxpOptimizationOptions object to true to run iterations of the optimization in parallel. You can also specify word lengths to allow in your design through the AllowableWordLengths property.

```
opt = fxpOptimizationOptions('AllowableWordLengths', 10:24, 'UseParallel', true)
```

```
opt =
    fxpOptimizationOptions with properties:
            MaxIterations: 50
                        MaxTime: 600
                            Patience: 10
            Verbosity: High
        AllowableWordLengths: [10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]
            UseParallel: 1
    Advanced Options
        AdvancedOptions: [1×1 struct]
```

Use the addTolerance method to define tolerances for the differences between the original behavior of the system, and the behavior using the optimized fixed-point data types.

```
tol = 10e-2;
addTolerance(opt, [model '/output_signal'], 1, 'AbsTol', tol);
```

Use the fxpopt function to run the optimization. The software analyzes ranges of objects in your system under design and the constraints specified in the fxpOptimizationOptions object to apply heterogeneous data types to your system while minimizing total bit width.

```
result = fxpopt(model, sud, opt);
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).
    + Preprocessing
    + Modeling the optimization problem
    - Constructing decision variables
    + Running the optimization solver
Analyzing and transferring files to the workers ...done.
    - Evaluating new solution: cost 180, does not meet the tolerances.
    - Evaluating new solution: cost 198, does not meet the tolerances.
    - Evaluating new solution: cost 216, does not meet the tolerances.
    - Evaluating new solution: cost 234, does not meet the tolerances.
    - Evaluating new solution: cost 252, does not meet the tolerances.
    - Evaluating new solution: cost 270, does not meet the tolerances.
    - Evaluating new solution: cost 288, does not meet the tolerances.
    - Evaluating new solution: cost 306, meets the tolerances.
    - Evaluating new solution: cost 324, meets the tolerances.
    - Evaluating new solution: cost 342, meets the tolerances.
    - Evaluating new solution: cost 360, meets the tolerances.
    - Evaluating new solution: cost 378, meets the tolerances.
    - Evaluating new solution: cost 396, meets the tolerances.
    - Evaluating new solution: cost 414, meets the tolerances.
    - Evaluating new solution: cost 432, meets the tolerances.
    - Updated best found solution, cost: 306
    - Evaluating new solution: cost 304, meets the tolerances.
    - Evaluating new solution: cost 304, meets the tolerances.
    - Evaluating new solution: cost 301, meets the tolerances.
    - Evaluating new solution: cost 305, does not meet the tolerances.
    - Evaluating new solution: cost 305, meets the tolerances.
    - Evaluating new solution: cost 301, meets the tolerances.
    - Evaluating new solution: cost 299, meets the tolerances.
```

- Evaluating new solution: cost 299, meets the tolerances.
- Evaluating new solution: cost 296, meets the tolerances.
- Evaluating new solution: cost 299, meets the tolerances.
- Evaluating new solution: cost 291, meets the tolerances.
- Evaluating new solution: cost 296, does not meet the tolerances.
- Evaluating new solution: cost 299, meets the tolerances.
- Evaluating new solution: cost 300, meets the tolerances.
- Evaluating new solution: cost 296, does not meet the tolerances.
- Evaluating new solution: cost 301, meets the tolerances.
- Evaluating new solution: cost 303, meets the tolerances.
- Evaluating new solution: cost 299, meets the tolerances.
- Evaluating new solution: cost 304, does not meet the tolerances.
- Evaluating new solution: cost 300, meets the tolerances.
- Updated best found solution, cost: 304
- Updated best found solution, cost: 301
- Updated best found solution, cost: 299
- Updated best found solution, cost: 296
- Updated best found solution, cost: 291
- Evaluating new solution: cost 280, meets the tolerances.
- Evaluating new solution: cost 287, meets the tolerances.
- Evaluating new solution: cost 288, does not meet the tolerances.
- Evaluating new solution: cost 287, does not meet the tolerances.
- Evaluating new solution: cost 283, meets the tolerances.
- Evaluating new solution: cost 283, does not meet the tolerances.
- Evaluating new solution: cost 262, does not meet the tolerances.
- Evaluating new solution: cost 283, does not meet the tolerances.
- Evaluating new solution: cost 282, does not meet the tolerances.
- Evaluating new solution: cost 288, meets the tolerances.
- Evaluating new solution: cost 289, meets the tolerances.
- Evaluating new solution: cost 288, meets the tolerances.
- Evaluating new solution: cost 290, meets the tolerances.
- Evaluating new solution: cost 281, does not meet the tolerances.
- Evaluating new solution: cost 286, does not meet the tolerances.
- Evaluating new solution: cost 287, meets the tolerances.
- Evaluating new solution: cost 284, meets the tolerances.
- Evaluating new solution: cost 282, meets the tolerances.
- Evaluating new solution: cost 285, does not meet the tolerances.
- Evaluating new solution: cost 277, meets the tolerances.
- Updated best found solution, cost: 280
- Updated best found solution, cost: 277
- Evaluating new solution: cost 272, meets the tolerances.
- Evaluating new solution: cost 266, meets the tolerances.
- Evaluating new solution: cost 269, meets the tolerances.
- Evaluating new solution: cost 271, does not meet the tolerances.
- Evaluating new solution: cost 274, meets the tolerances.
- Evaluating new solution: cost 275, meets the tolerances.
- Evaluating new solution: cost 274, does not meet the tolerances.
- Evaluating new solution: cost 275, meets the tolerances.
- Evaluating new solution: cost 276, does not meet the tolerances.
- Evaluating new solution: cost 271, meets the tolerances.
- Evaluating new solution: cost 267, meets the tolerances.
- Evaluating new solution: cost 270, meets the tolerances.
- Evaluating new solution: cost 272, meets the tolerances.
- Evaluating new solution: cost 264, does not meet the tolerances.
- Evaluating new solution: cost 265, does not meet the tolerances.
- Evaluating new solution: cost 269, meets the tolerances.
- Evaluating new solution: cost 270, meets the tolerances.
- Evaluating new solution: cost 269, meets the tolerances.
- Evaluating new solution: cost 276, meets the tolerances.
- Evaluating new solution: cost 274, meets the tolerances.
- Updated best found solution, cost: 272
- Updated best found solution, cost: 266
+ Optimization has finished.
- Neighborhood search complete.
- Maximum number of iterations completed.
+ Fixed-point implementation that met the tolerances found.
- Total cost: 266
- Maximum absolute difference: 0.087035
- Use the explore method of the result to explore the implementation.

Use the explore method of the OptimizationResult object, result, to launch Simulation Data Inspector and explore the design containing the smallest total number of bits while maintaining the numeric tolerances specified in the opt object.

```
explore(result);
```

You can revert your model back to its original state using the revert method of the OptimizationResult object.

```
revert(result);
```


Input Arguments

model - Model containing system under design, sud
character vector
Name of the model containing the system that you want to optimize.
Data Types: char
sud - Model or subsystem whose data types you want to optimize
character vector
Model or subsystem whose data types you want to optimize, specified as a character vector containing the path to the system.
Data Types: char

options - Additional optimization options

fxp0ptimizationOptions object
fxpOptimizationOptions object specifying additional options to use during the data type optimization process.

Output Arguments

result - Object containing the optimized design
 OptimizationResult object

Result of the optimization, returned as an OptimizationResult object. Use the explore method of the object to open the Simulation Data Inspector and view the behavior of the optimized system. You can also explore other solutions found during the optimization that may or may not meet the constraints specified in the fxpOptimization0ptions object, options.

Version History

Introduced in R2018a

See Also

Classes

fxpOptimizationOptions|OptimizationResult|OptimizationSolution

Functions

addTolerance | showTolerances | explore

Topics

"Optimize Fixed-Point Data Types for a System"

fxptdlg

Open the Fixed-Point Tool

Syntax

fxptdlg(system_name)

Description

fxptdlg(system_name) opens the Fixed-Point Tool for the Simulink model or subsystem specified by system_name.

You can also access this tool by the following methods:

- From the Apps tab, under Code Generation click Fixed-Point Tool.
- From a subsystem context (right-click) menu, select Fixed-Point Tool.

Examples

Open the Fixed-Point Tool from the Command Line

Open a Simulink model.

```
open_system('fxpdemo_feedback')
```

Open the Fixed-Point Tool with the Controller subsystem selected as the system under design.

```
fxptdlg('fxpdemo_feedback/Controller')
```


Override Fixed-Point Specifications

Most of the functionality in the Fixed-Point Tool is for use with the Fixed-Point Designer software. However, even if you do not have Fixed-Point Designer software, you can configure data type override settings to simulate a model that specifies fixed-point data types. In this mode, the Simulink software temporarily overrides fixed-point data types with floating-point data types when simulating the model.

Note that if you use fi on page 4-387 objects or embedded numeric data types in your model or workspace, you might introduce fixed-point data types into your model. You can set fipref on page 4387 to prevent the checkout of a Fixed-Point Designer license.

To simulate a model without using Fixed-Point Designer:
Enter the following at the command line.

```
set_param(gcs, 'DataTypeOverride', 'Double',...
    'DataTypeOverrideAppliesTo','AllNumericTypes',...
    'MinMaxOverflowLogging','ForceOff')
```

If you use fi objects or embedded numeric data types in your model, set the fipref
DataTypeOverride property to TrueDoubles or TrueSingles (to be consistent with the modelwide data type override setting) and the DataTypeOverrideAppliesTo property to All numeric types.

For example, at the MATLAB command line, enter:

```
p = fipref('DataTypeOverride', 'TrueDoubles', ...
    'DataTypeOverrideAppliesTo', 'AllNumericTypes');
```


Input Arguments

system_name - Model or subsystem to analyze or convert
top-level model of current system
Model or subsystem to analyze or convert in the Fixed-Point Tool.
Data Types: string

Version History

Introduced before R2006a

See Also

Fixed-Point Tool

ge, >=

Package: embedded
Determine whether real-world value of one array is greater than or equal to another

Syntax

$A>=B$
$g e(A, B)$

Description

A >= B returns a logical array with elements set to logical 1 (true) where the real-world values of A is greater than or equal to B, when A or B is a fi object. Otherwise, the element is logical 0 (false). The test compares only the real part of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point value is cast to a fixed-point type that preserves the relative order of the value with respect to the value in the fixed-point fi object.
ge (A, B) is an alternate way to execute $A>=B$, but is rarely used.

Examples

Compare Two fi Objects

Use the ge function to determine whether the real-world value of one fi object is greater than or equal to another.

```
a = fi(pi);
b = fi(pi, 1, 32);
b >= a
ans = logical
    0
```

Input a has a 16 -bit word length, while input b has a 32 -bit word length. The ge function returns 0 because after quantization, the value of a is slightly greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the relative order of the value with respect to the value in the fixed-point fi object. This behavior allows relational operations to work between fi objects and floating-point constants without introducing floating-point values in generated code.

```
a = fi(pi);
b = pi;
ge(a,b)
ans =
    logical
    1
```


Input Arguments

A, B - Operands

scalars | vectors | matrices | multidimensional arrays
Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".

```
Data Types: single | double | int8| int16| int32 | int64 | uint8|uint16|uint32 | uint64 |
fi
Complex Number Support: Yes
```


Version History

Introduced before R2006a

R2022a: Implicit expansion change affects arguments for operators

Behavior changed in R2022a
Starting in R2022a with the addition of implicit expansion for fi ge, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

R2022a: Improved accuracy in comparing fi objects and floating-point numbers using relational operators
 Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was cast to the same word length and signedness of the fi object. This could lead to incorrect results. For example,

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    0}
```

```
fi(65534)
fi(65534.25) == 65534.25
ans =
    65534
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: -1
ans =
    logical
    1
```

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always return the mathematically correct behavior. The previous examples now gives these results:

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    1 0
```

Note that the updated algorithm may produce subtle, but accurate, results. For example:

```
fi(pi) == pi
ans =
    logical
    0
```

Simulation results for relational operations between fi objects and floating-point singles or doubles may be more accurate than in previous releases. The updated algorithm requires a modest wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Fixed-point signals with different biases are not supported.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

eq|gt|le|lt|ne

get

Property values of object

Syntax

```
value = get(o,'propertyname')
structure = get(o)
```


Description

value $=$ get (o,'propertyname') returns the property value of the property 'propertyname' for the object o. If you replace 'propertyname' by a cell array of a vector of strings containing property names, get returns a cell array of a vector of corresponding values.
structure $=\operatorname{get}(0)$ returns a structure containing the properties and states of object 0 .
o can be a fi, fimath, fipref, numerictype, or quantizer object.

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- The syntax structure $=$ get(o) is not supported.

See Also

set

getlsb

Package: embedded
Least significant bit

Syntax

$c=$ getlsb(a)

Description

$c=$ getlsb(a) returns the value of the least significant bit in a.

Examples

Find Least-Significant Bit in fi Object
Use getlsb to find the least-significnat bit in the fi object a.

```
a = fi(-26, 1, 6, 0);
c = getlsb(a)
c =
    0
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Unsigned
        WordLength: 1
        FractionLength: 0
```

You can verify that the least sigificant bit in the fi object a is 0 by looking at the binary representation of a.
disp(bin(a))
100110

Input Arguments

a - Input fi object

scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array. getlsb only supports fi object with fixed-point data types.
Data Types: fi

Version History

Introduced in R2007b

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

```
See Also
bitand|bitandreduce|bitconcat | bitget | bitor|bitorreduce|bitset | bitxor|
bitxorreduce|getmsb
```


getmsb

Package: embedded
Most significant bit

Syntax

$\mathrm{c}=\operatorname{getmsb}(\mathrm{a})$

Description

$c=$ getmsb(a) returns the value of the most-significant bit in a.

Examples

Find Most-Significant Bit in fi Object
Use getmsb to find the most-significant bit in the fi object a.

```
a = fi(-26, 1, 6, 0);
c = getmsb(a)
c =
    1
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Unsigned
        WordLength: 1
        FractionLength: 0
```

You can verify that the most significant bit in the fi object a is 1 by looking at the binary representation of a.
disp(bin(a))
100110

Input Arguments

a - Input fi object

scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array. getmsb only supports fi object with fixed-point data types.
Data Types: fi

Version History

Introduced in R2007b

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

```
See Also
bitand|bitandreduce|bitconcat | bitget | bitor|bitorreduce|bitset | bitxor|
bitxorreduce|getlsb
```


globalfimath

Configure global fimath and return handle object

Syntax

G = globalfimath
G = globalfimath('PropertyName1',PropertyValue1,...)
$G=g l o b a l f i m a t h(f)$

Description

$G=$ globalfimath returns a handle object to the global fimath. The global fimath has identical properties to a fimath object but applies globally.
$G=$ globalfimath('PropertyName1', PropertyValue1,...) sets the global fimath using the named properties and their corresponding values. Properties that you do not specify in this syntax are automatically set to that of the current global fimath.

G = globalfimath(f) sets the properties of the global fimath to match those of the input fimath object f, and returns a handle object to it.

Unless, in a previous release, you used the saveglobalfimathpref function to save global fimath settings to your MATLAB preferences, the global fimath properties you set with the globalfimath function apply only to your current MATLAB session. It is best practice to remove global fimath from the MATLAB preferences so that you start each MATLAB session using the default fimath settings. To remove the global fimath, use the removeglobalfimathpref function.

Examples

Modifying globalfimath

Use the globalfimath function to set, change, and reset the global fimath.
Create a fimath object and use it as the global fimath.

```
G = globalfimath('RoundMode','Floor','OverflowMode','Wrap')
G =
    RoundingMethod: Floor
    OverflowAction: Wrap
        ProductMode: FullPrecision
            SumMode: FullPrecision
```

Create another fimath object using the new default.
F1 = fimath
F1 =
RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision
Create a fi object, A, associated with the global fimath.

```
A = fi(pi)
A =
    3.1416
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
            FractionLength: 13
```

Now set the "SumMode" property of the global fimath to "KeepMSB" and retain all the other property values of the current global fimath.

```
G = globalfimath('SumMode','KeepMSB')
G =
    RoundingMethod: Floor
    OverflowAction: Wrap
        ProductMode: FullPrecision
            SumMode: KeepMSB
        SumWordLength: 32
        CastBeforeSum: true
```

Change the global fimath by directly interacting with the handle object G .
G.ProductMode = 'SpecifyPrecision'

G =
RoundingMethod: Floor
OverflowAction: Wrap
ProductMode: SpecifyPrecision
ProductWordLength: 32
ProductFractionLength: 30
SumMode: KeepMSB
SumWordLength: 32
CastBeforeSum: true
Reset the global fimath to the factory default by calling the reset method on G. This is equivalent to using the resetglobalfimath function.

```
reset(G);
G
G =
    RoundingMethod: Nearest
    OverflowAction: Saturate
        ProductMode: FullPrecision
            SumMode: FullPrecision
```


Tips

If you always use the same fimath settings and you are not sharing code with other people, using the globalfimath function is a quick, convenient method to configure these settings. However, if
you share the code with other people or if you use the fiaccel function to accelerate the algorithm or you generate C code for your algorithm, consider the following alternatives.

Goal	Issue Using globalfimath	Solution
Share code	If you share code with someone who is using different global fimath settings, they might see different results.	Separate the fimath properties from your algorithm by using types tables. For more information, see "Separate Data Type Definitions from Algorithm".
Accelerate your algorithm using fiaccel or generate C code from your MATLAB algorithm using codegen	You cannot use globalfimath within that algorithm. If you generate code with one globalfimath setting and run it with a different globalfimath setting, results might vary. For more information, see Specifying Default fimath Values for MEX Functions.	Use types tables in the algorithm from which you want to generate code. This insulates you from the global settings and makes the code portable. For more information, see "Separate
Data Type Definitions from Algorithm".		

Version History

Introduced in R2010a

See Also

fimath | codegen | fiaccel | removeglobalfimathpref|resetglobalfimath

gt

Package: embedded
Determine whether real-world value of one array is greater than another

Syntax

$A>B$
gt (A, B)

Description

A > B returns a logical array with elements set to logical 1 (true) where the real-world values of A is greater than B, when A or B is a fi object. Otherwise, the element is logical 0 (false). The test compares only the real part of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point value is cast to a fixed-point type that preserves the relative order of the value with respect to the value in the fixed-point fi object.
gt (A, B) is an alternate way to execute $A>B$, but is rarely used.

Examples

Compare Two fi Objects

Use the gt function to determine whether the real-world value of one fi object is greater than another.

```
a = fi(pi);
b = fi(pi, 1, 32);
a > b
ans = logical
    1
```

Input a has a 16 -bit word length, while input b has a 32 -bit word length. The gt function returns 1 because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the relative order of the value with respect to the value in the fixed-point fi object. This behavior allows relational operations to work between fi objects and floating-point constants without introducing floating-point values in generated code.

```
a = fi(pi);
b = pi;
gt(a,b)
ans =
    logical
    1
```


Input Arguments

A, B - Operands

scalars | vectors | matrices | multidimensional arrays
Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".

```
Data Types: single | double | int8| int16| int32 | int64 | uint8|uint16|uint32 | uint64 |
fi
Complex Number Support: Yes
```


Version History

Introduced before R2006a

R2022a: Implicit expansion change affects arguments for operators

Behavior changed in R2022a
Starting in R2022a with the addition of implicit expansion for fi gt, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

R2022a: Improved accuracy in comparing fi objects and floating-point numbers using relational operators
 Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was cast to the same word length and signedness of the fi object. This could lead to incorrect results. For example,

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    0}
```

```
fi(65534)
fi(65534.25) == 65534.25
ans =
    65534
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: -1
ans =
    logical
    I
```

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always return the mathematically correct behavior. The previous examples now gives these results:

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    1 0
```

Note that the updated algorithm may produce subtle, but accurate, results. For example:

```
fi(pi) == pi
ans =
    logical
    0
```

Simulation results for relational operations between fi objects and floating-point singles or doubles may be more accurate than in previous releases. The updated algorithm requires a modest wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Fixed-point signals with different biases are not supported.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

eq|ge|le|lt|ne

half

Construct half-precision numeric object

Description

Use the half constructor to assign a half-precision data type to a number or variable. A halfprecision data type occupies 16 bits of memory, but its floating-point representation enables it to handle wider dynamic ranges than integer or fixed-point data types of the same size. For more information, see "Floating-Point Numbers" and "What is Half Precision?".

For a list of functions that support code generation with half-precision inputs, see "Half Precision Code Generation Support".

Creation

Syntax

a = half(v)
Description
$a=h a l f(v)$ converts the values in v to half-precision.
Input Arguments
v - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single| double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical

Object Functions

These functions are supported for simulation with half-precision inputs in MATLAB. MATLAB System object ${ }^{\mathrm{TM}}$ supports half-precision data type and MATLAB System block supports half-precision data type with real values. For a list of functions that support code generation with half-precision inputs, see "Half Precision Code Generation Support".

Math and Arithmetic

abs
acos Inverse cosine in radians
acosh Inverse hyperbolic cosine
asin Inverse sine in radians
asinh Inverse hyperbolic sine

atan	Inverse tangent in radians
atan2	Four-quadrant inverse tangent
atanh	Inverse hyperbolic tangent
ceil	Round toward positive infinity
conj	Complex conjugate
conv	Convolution and polynomial multiplication
conv2	2-D convolution
cos	Cosine of argument in radians
cosh	Hyperbolic cosine
cospi	Compute $\cos \left(\mathrm{X}^{*}\right.$ pi) accurately
cumsum	Cumulative sum
dot	Dot product
exp	Exponential
expm1	Compute $\exp (\mathrm{X})-1$ accurately for small X
fft	Fast Fourier transform
fft2	2-D fast Fourier transform
fftn	N-D fast Fourier transform
fftshift	Shift zero-frequency component to center of spectrum
fix	Round toward zero
floor	Round toward negative infinity
fma	Multiply and add using fused multiply add approach
hypot	Square root of sum of squares (hypotenuse)
ifft	Inverse fast Fourier transform
ifft2	2-D inverse fast Fourier transform
ifftn	Multidimensional inverse fast Fourier transform
ifftshift	Inverse zero-frequency shift
imag	Imaginary part of complex number
ldivide	Left array division
\log	Natural logarithm
$\log 10$	Common logarithm (base 10)
$\log 1 \mathrm{p}$	Compute natural logarithm of 1+X accurately for small X
$\log 2$	Base 2 logarithm and floating-point number dissection
mean	Average or mean value of array
minus	Subtraction
mldivide	Solve systems of linear equations $\mathrm{Ax}=\mathrm{B}$ for x
mod	Remainder after division (modulo operation)
mrdivide	Solve systems of linear equations $\mathrm{xA}=\mathrm{B}$ for x
mtimes	Matrix multiplication
plus	Add numbers, append strings
pow10	Base 10 power and scale half-precision numbers
pow2	Base 2 exponentiation and scaling of floating-point numbers
power	Element-wise power
prod	Product of array elements
rdivide	Right array division
real	Real part of complex number
rem	Remainder after division
round	Round to nearest decimal or integer
rsqrt	Reciprocal square root
sign	Sign function (signum function)
sin	Sine of argument in radians
sinh	Hyperbolic sine
sinpi	Compute $\sin \left(\mathrm{X}^{*}\right.$ pi) accurately

sqrt	Square root
sum	Sum of array elements
tan	Tangent of argument in radians
tanh	Hyperbolic tangent
times	Multiplication
uminus	Unary minus
uplus	Unary plus

Data Types

allfinite	Determine if all array elements are finite
anynan	Determine if any array element is NaN
cast	Convert variable to different data type
cell	Cell array
double	Double-precision arrays
eps	Floating-point relative accuracy
flintmax	Largest consecutive integer in floating-point format
Inf	Create array of all Inf values
int16	16-bit signed integer arrays
int32	32-bit signed integer arrays
int64	64-bit signed integer arrays
int8	8-bit signed integer arrays
isa	Determine if input has specified data type
isfloat	Determine whether input is floating-point data type
isinteger	Determine whether input is integer array
islogical	Determine if input is logical array
isnan	Determine which array elements are NaN
isnumeric	Determine whether input is numeric array
isobject	Determine if input is MATLAB object
isreal	Determine whether array uses complex storage
logical	Convert numeric values to logicals
NaN	Create array of all NaN values
realmax	Largest positive floating-point number
realmin	Smallest normalized floating-point number
single	Single-precision arrays
storedInteger	Stored integer value of fi object
typecast	Convert data type without changing underlying data
uint16	16-bit unsigned integer arrays
uint32	32-bit unsigned integer arrays
uint64	64-bit unsigned integer arrays
uint8	8-bit unsigned integer arrays

Relational and Logical Operators

all
and
Short-Circuit AND
any
eq
ge
gt
isequal
isequaln

Determine if all array elements are nonzero or true Find logical AND
Logical AND with short-circuiting
Determine if any array elements are nonzero
Determine equality
Determine greater than or equal to
Determine greater than
Determine array equality
Determine array equality, treating NaN values as equal

le	Determine less than or equal to
lt	Determine less than
ne	Determine inequality
not	Find logical NOT
or	Find logical OR
Short-Circuit OR	Logical OR with short-circuiting

Array and Matrix Operations

cat	Concatenate arrays
chol	Cholesky factorization
circshift	Shift array circularly
colon	Vector creation, array subscripting, and for-loop iteration
complex	Create complex array
ctranspose	Complex conjugate transpose
empty	Create empty array of specified class
eye	Identity matrix
flip	Flip order of elements
fliplr	Flip array left to right
flipud	Flip array up to down
horzcat	Horizontal concatenation for heterogeneous arrays
iscolumn	Determine if input is column vector
isempty	Determine whether array is empty
isfinite	Determine which array elements are finite
isinf	Determine which array elements are infinite
ismatrix	Determine whether input is matrix
isrow	Determine if input is row vector
isscalar	Determine whether input is scalar
issorted	Determine if array is sorted
isvector	Determine whether input is vector
length	Length of largest array dimension
lu	LU matrix factorization
max	Maximum elements of array
min	Minimum elements of array
ndims	Number of array dimensions
numel	Number of array elements
ones	Create array of all ones
permute	Permute array dimensions
repelem	Repeat copies of array elements
repmat	Repeat copies of array
reshape	Reshape array
size	Array size
sort	Sort array elements
squeeze	Remove dimensions of length 1
transpose	Transpose vector or matrix
vertcat	Vertically concatenate for heterogeneous arrays
zeros	Create array of all zeros

Graphics

area	Area of 2-D alpha shape
bar	Bar graph
barh	Horizontal bar graph

fplot	Plot expression or function
line	Create primitive line
plot	2-D line plot
plot3	3-D point or line plot
plotmatrix	Scatter plot matrix
rgbplot	Plot colormap
scatter	Scatter plot
scatter3	3-D scatter plot
xlim	Set or query x-axis limits
ylim	Set or query y-axis limits
zlim	Set or query z-axis limits

Deep Learning

activations
classify predict
predictAndUpdateState

Compute deep learning network layer activations Classify data using trained deep learning neural network Reconstruct the inputs using trained autoencoder
Predict responses using a trained recurrent neural network and update the network state

To display a list of supported functions, at the MATLAB Command Window, enter:

```
methods(half(1))
```


Examples

Convert Value to Half Precision

To cast a double-precision number to half precision, use the half function.

```
a = half(pi)
a =
    half
    3.1406
```

You can also use the half function to cast an existing variable to half-precision.

```
v = single(magic(3))
v = 3x3 single matrix
    8 1 6
    3 5 7
    4 9
a = half(v)
a =
    3x3 half matrix
```

8	1	6
3	5	7
4	9	2

Limitations

- Arithmetic operations which combine half-precision and logical types are not supported.
- For additional usage notes and limitations, see "Half Precision Code Generation Support".

Version History

Introduced in R2018b

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.

- For a list of functions that support code generation with half-precision inputs and any associated limitations, see "Half Precision Code Generation Support".
- If your target hardware does not have native support for half-precision, then half is used as a storage type, with arithmetic operations performed in single-precision.
- Some functions use half only as a storage type and the arithmetic is performed in singleprecision, regardless of the target hardware.
- For deep learning code generation, half inputs are cast to single precision and computations are performed in single precision.
- In MATLAB, the isobject function returns true with a half-precision input. In generated code, this function returns false.

GPU Code Generation

Generate CUDA® code for NVIDIA ${ }^{\circledR}$ GPUs using GPU Coder ${ }^{\mathrm{TM}}$.

- For a list of functions that support code generation with half-precision inputs and any associated limitations, see "Half Precision Code Generation Support".
- CUDA ${ }^{\circledR}$ compute capability of 5.3 or higher is required for generating and executing code with half-precision data types.
- CUDA toolkit version of 10.0 or later is required for generating and executing code with halfprecision data types.
- You must set the memory allocation (malloc) mode to 'Discrete' for generating CUDA code.
- Half-precision complex data types are not supported for GPU code generation.
- If your target hardware does not have native support for half-precision, then half is used as a storage type, with arithmetic operations performed in single-precision.
- Some functions use half only as a storage type and the arithmetic is performed in singleprecision, regardless of the target hardware.
- For deep learning code generation, half inputs are cast to single precision and computations are performed in single precision. To perform computations in half, set the library target to 'tensorrt' and set the data type to 'FP16' in coder. DeepLearningConfig.
- In MATLAB, the isobject function returns true with a half-precision input. In generated code, this function returns false.

See Also

single|double

Topics

"Half Precision Code Generation Support"
"Floating-Point Numbers"
"What is Half Precision?"
"Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type" (MATLAB Coder) Edge Detection with Sobel Method in Half-Precision (GPU Coder)

hex

Package: embedded
Hexadecimal representation of stored integer of fi object

Syntax

b = hex (a)

Description

$b=$ hex(a) returns the stored integer of fi object a in hexadecimal format as a character vector.
Fixed-point numbers can be represented as
real-worldvalue $=2^{- \text {fractionlength }} \times$ storedinteger
or, equivalently as
real-worldvalue $=($ slope \times storedinteger $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.

Tip hex returns the hexadecimal representation of the stored integer of a fi object. To obtain the hexadecimal representation of the real-world value of a fi object, use dec2hex.

Examples

View Stored Integer of fi Object in Hexadecimal Format

Create a signed fi object with values -1 and 1 , a word length of 8 bits, and a fraction length of 7 bits.

```
a = fi([-1 1], 1, 8, 7)
a =
    -1.0000 0.9922
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: }
        FractionLength: 7
```

Find the hexadecimal representation of the stored integers of fi object a.

```
b = hex(a)
b =
    '80 7f'
```


Write Hex Data to a File

This example shows how to write hexadecimal data from the MATLAB workspace into a text file.
Define your data and create a writable text file called hexdata.txt.

```
x = (0:15)'/16;
a = fi(x, 0, 16, 16);
h = fopen('hexdata.txt', 'w');
```

Use the fprintf function to write your data to the hexdata.txt file.

```
for k = 1:length(a)
    fprintf(h, '%s\n', hex(a(k)));
end
fclose(h);
```

To see the contents of the file you created, use the type function.
type hexdata.txt
0000
1000
2000
3000
4000
5000
6000
7000
8000
9000
a000
b000
c000
d000
e000
f000

Read Hex Data From a File

This example shows how to read hexadecimal data from a text file back into the MATLAB workspace.
Define your data, create a writable text file called hexdata.txt, and write your data to the hexdata.txt file.

```
x = (0:15)'/16;
a = fi(x, 0, 16, 16);
h = fopen('hexdata.txt', 'w');
for k = 1:length(a)
    fprintf(h, '%s\n', hex(a(k)));
end
```

```
fclose(h);
```

Open hexdata. txt for reading and read its contents into a workspace variable

```
h = fopen('hexdata.txt', 'r');
```

nextline = '';
str = '';
while ischar(nextline)
nextline = fgetl(h);
if ischar(nextline)
str = [str; nextline];
end
end
fclose(h);

Create a fi object with the correct scaling and assign it the hex values stored in the str variable.
b = fi([], 0, 16, 16);
b.hex = str
$\mathrm{b}=$

```
        0
    0.1250
    0.1875
    0.2500
    0.3125
    0.3750
    0.4375
    0.5000
    0.5625
    0.6250
    0.6875
    0.7500
    0.8125
    0.8750
    0.9375
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Unsigned
                WordLength: 16
                FractionLength: 16
```


Input Arguments

a - Input array

fi object
Input array, specified as a fi object.
Data Types: fi

Version History

Introduced before R2006a

```
See Also
bin|dec|storedInteger|oct|dec2hex|dec2base|dec2bin
```


hex2num

Package: embedded
Convert hexadecimal string to number using quantizer object

Syntax

$x=\operatorname{hex} 2 \operatorname{num}(q, h)$
[x1,x2,...] = hex2num,(q,h1,h2,...)

Description

$x=$ hex2num (q, h) converts hexadecimal character vector h to numeric matrix x.
The attributes of the numbers in x are specified by quantizer object q. When h is a cell array, hex2num returns x as a cell array of the same dimension containing numbers. For fixed-point hexadecimal representations, hex2num uses "Two's Complement" representation. For floating point, the representation is IEEE Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number, the fixed-point conversion zero-fills on the left. Floating-point conversion zero-fills on the right.
hex2num and num2hex are inverses of one another, with the distinction that num2hex returns the hexadecimal representations in a column.

Note This function uses a quantizer object to convert a hexadecimal string to a number. To convert IEEE hexadecimal format to a double-precision number without using a quantizer object, use the MATLAB hex2num function.
$[x 1, x 2, \ldots]=$ hex2num, ($q, h 1, h 2, \ldots)$ converts hexadecimal representations $h 1, h 2, \ldots$ to numeric matrices $\times 1, \times 2$,....

Examples

Convert Hexadecimal Array to Numeric Array

This example returns all the 4-bit fixed-point two's complement numbers in fractional form.

```
q = quantizer([4 3]);
h = [l7 [ 3 F B'
    '6 2 E A'
    '5 1 D 9'
    '4 0 C 8'];
x = hex2num(q,h)
x = 4×4
    0.8750 0.3750 -0.1250 -0.6250
```

0.7500	0.2500	-0.2500	-0.7500
0.6250	0.1250	-0.3750	-0.8750
0.5000	0	-0.5000	-1.0000

Input Arguments

q - Input quantizer object

quantizer object
Input quantizer object, specified as a quantizer object.
h - Text representing hexadecimal numbers
character array
Text representing hexadecimal numbers, specified as a character array.
Data Types: char
h1, h2,... - Text representing hexadecimal numbers
character array
Text representing hexadecimal numbers, specified as a character array.
Data Types: char

Version History

Introduced before R2006a

See Also

bin2num | num2bin | num2hex | num2int

horzcat

Concatenate multiple fi objects horizontally

Syntax

C = horzcat (A, B)
$C=\operatorname{horzcat}(A 1, A 2, \ldots A n)$

Description

$C=$ horzcat (A, B) concatenates B horizontally to the end of A when A and B have compatible sizes (the lengths of the dimensions match except in the second dimension).
$\mathrm{C}=$ horzcat (A1, A2,...An) concatenates A1, A2,..., An horizontally.
horzcat is equivalent to using square brackets for horizontally concatenating arrays. For example, $[A, B]$ or $[A B]$ is equal to horzcat (A, B) when A and B are compatible arrays.

Note The fimath and numerictype properties of a concatenated matrix of fi objects, C, are taken from the leftmost fi object in the list A1,A2,...,An.

Input Arguments

A - First input

scalar | vector | matrix | multidimensional array
First input, specified as a scalar, vector, matrix, or multidimensional array.

B - Second input

scalar | vector | matrix | multidimensional array
Second input, specified as a scalar, vector, matrix, or multidimensional array.
The elements of B are concatenated to the end of the first input along the second dimension. The sizes of the input arguments must be compatible. For example, if the first input is a matrix of size 3-by-2, then B must have 3 rows.

A1, A2 , ...An - List of inputs

scalar | vector | matrix | multidimensional array
List of inputs, specified as a comma-separated list of elements to concatenate in the order they are specified.

Any number of matrices can be concatenated within one pair of brackets. Multidimensional arrays are horizontally concatenated along the second dimension.

The inputs must have compatible sizes. For example, if A1 is a column vector of length m, then the remaining inputs must each have m rows to concatenate horizontally.

Tips

- Horizontal and vertical concatenation can be combined together, as in [1 $2 ; 34]$.
- The matrices in a concatenation expression can themselves be formed via a concatenation, as in [a b; [c d]].
- [A B;C] is allowed if the number of rows of A equals the number of rows of B and if the number of columns of A plus the number of columns of B equals the number of columns of C.
- When concatenating an empty array to a nonempty array, horzcat omits the empty array in the output. For example,

```
horzcat(fi([1 2]),[])
ans =
2
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 16
FractionLength: 13
```


Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

See Also

vertcat

innerprodintbits

Number of integer bits needed for fixed-point inner product

Syntax

innerprodintbits(a,b)

Description

innerprodintbits (a, b) computes the minimum number of integer bits necessary in the inner product of $a^{\prime}{ }^{*}$ b to guarantee that no overflows occur and to preserve best precision.

- $\quad a$ and b are fi vectors.
- The values of a are known.
- Only the numeric type of b is relevant. The values of b are ignored.

Examples

The primary use of this function is to determine the number of integer bits necessary in the output Y of an FIR filter that computes the inner product between constant coefficient row vector B and state column vector Z. For example,

```
for k=1:length(X);
    Z = [X(k);Z(1:end-1)];
    Y(k) = B * Z;
end
```


Algorithms

In general, an inner product grows $\log 2(n)$ bits for vectors of length n. However, in the case of this function the vector a is known and its values do not change. This knowledge is used to compute the smallest number of integer bits that are necessary in the output to guarantee that no overflow will occur.

The largest gain occurs when the vector b has the same sign as the constant vector a. Therefore, the largest gain due to the vector a is $a^{*} \operatorname{sign}\left(a^{\prime}\right)$, which is equal to $\operatorname{sum}(a b s(a))$.

The overall number of integer bits necessary to guarantee that no overflow occurs in the inner product is computed by:
$\mathrm{n}=\operatorname{ceil}(\log 2(\operatorname{sum}(\operatorname{abs}(\mathrm{a}))))+$ number of integer bits in $\mathrm{b}+1$ sign bit
The extra sign bit is only added if both a and b are signed and b attains its minimum. This prevents overflow in the event of $(-1)^{*}(-1)$.

Version History

Introduced before R2006a

int

Get stored integer value of a fi object

Syntax

i = int(a)

Description

$i=\operatorname{int}(a)$ returns the integer value of a fi object, stored in one of the built-in integer data types.

Examples

Get the Stored Integer Value of a fi Object

Create a fi object with default settings. Use the int function to get its stored integer value. The output is an int 16 because the input used the default word length of 16 -bits.

```
a = fi(pi);
b = int(a)
b = int16
    25736
```

Create a fi object that uses a 20 -bit word length and get the stored integer value of the fi object.

```
a = fi(pi,1,20);
b = int(a)
b = int32
    4 1 1 7 7 5
```

The output is an int32 to accommodate the larger input word length.

Input Arguments

a - Fixed-point numeric object
scalar | vector | matrix | multidimensional array
Fixed-point numeric object from which you want to get the stored integer value. The word length of the input determines the data type of the output.

```
Data Types: fi
Complex Number Support: Yes
```


Output Arguments

i - Stored integer value
scalar | vector | matrix | multidimensional array

Stored integer value of the input fi object, returned as one of the built-in integer data types. The word length of the input determines the data type of the output. The output has the same dimensions as the input.

Version History

Introduced in R2006a

See Also

Functions
bin |hex|storedInteger|oct|sdec

int8

Convert fi object to signed 8-bit integer

Syntax

c = int8(a)

Description

c = int8(a) returns the built-in int8 value of fi object a, based on its real world value. If necessary, the data is rounded-to-nearest and saturated to fit into an int8.

Examples

This example shows the int8 values of a fi object.

```
a = fi([-pi 0.1 pi],1,8);
c = int8(a)
c =
    -3 0
```


Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

```
See Also
storedInteger|int16|int32| int64|uint8|uint16|uint32|uint64
```


int16

Convert fi object to signed 16-bit integer

Syntax

c = int16(a)

Description

c = int16(a) returns the built-in int16 value of fi object a, based on its real world value. If necessary, the data is rounded-to-nearest and saturated to fit into an int16.

Examples

This example shows the int16 values of a fi object.

```
a = fi([-pi 0.1 pi],1,16);
c = int16(a)
C =
    -3 0
```


Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

```
See Also
storedInteger|int8|int32|int64|uint8|uint16|uint32|uint64
```


int32

Convert fi object to signed 32-bit integer

Syntax

$\mathrm{c}=$ int32(a)

Description

c = int32(a) returns the built-in int32 value of fi object a, based on its real world value. If necessary, the data is rounded-to-nearest and saturated to fit into an int32.

Examples

This example shows the int 32 values of a fi object.

```
a = fi([-pi 0.1 pi],1,32);
c = int32(a)
c =
    -3 0
```


Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

```
See Also
storedInteger|int8|int16|int64|uint8|uint16|uint32|uint64
```


int64

Convert fi object to signed 64-bit integer

Syntax

c = int64(a)

Description

c = int64(a) returns the built-in int64 value of fi object a, based on its real world value. If necessary, the data is rounded-to-nearest and saturated to fit into an int64.

Examples

This example shows the int64 values of a fi object.

```
a = fi([-pi 0.1 pi],1,64);
c = int64(a)
c =
    -3 0
```


Version History

Introduced in R2008b

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.

```
See Also
storedInteger |int8|int16|int32|uint8|uint16|uint32|uint64
```


intmax

Largest positive stored integer value representable by numerictype of fi object

Syntax

$x=\operatorname{intmax}(a)$

Description

$x=$ intmax (a) returns the largest positive stored integer value representable by the numerictype of a.

Examples

a = fi(pi, true, 16, 12);
$x=$ intmax(a)
$x=$

```
32767
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
    FractionLength: 0
```


Version History

Introduced before R2006a

See Also
 eps | intmin | lowerbound | lsb|range | realmax|realmin | stripscaling| upperbound

intmin

Smallest stored integer value representable by numerictype of fi object

Syntax

$x=\operatorname{intmin}(a)$

Description

$x=\operatorname{intmin}(a)$ returns the smallest stored integer value representable by the numerictype of a.

Examples

a = fi(pi, true, 16, 12);
$x=\operatorname{intmin}(a)$
$x=$
-32768
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 0

Version History
 Introduced before R2006a

See Also

eps | intmax | lowerbound | lsb|range | realmax | realmin | stripscaling| upperbound

isboolean

Determine whether input is Boolean

Syntax

tf $=$ isboolean(a)
tf = isboolean(T)

Description

$t f=$ isboolean(a) returns 1 (true) when the DataType property of fi object a is Boolean. Otherwise, it returns 0 (false).
$\mathrm{tf}=$ isboolean (T) returns 1 (true) when the DataType property of numerictype object T is Boolean. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a Boolean

Create a fi object and determine if its data type is Boolean.
$a=f i(p i)$
a =
3.1416

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 13

```
tf = isboolean(a)
tf = logical
    0
```

a = fi(pi,'DataType','Boolean')
a $=$
1

DataTypeMode: Boolean

```
tf = isboolean(a)
tf = logical
    1
```


Determine Whether numerictype Object is a Boolean

Create a numerictype object and determine if its data type is Boolean.

```
T = numerictype
T =
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                        WordLength: 16
            FractionLength: 15
tf = isboolean(T)
tf = logical
    0
T = numerictype('Boolean')
T =
    DataTypeMode: Boolean
tf = isboolean(T)
tf = logical
    1
```


Input Arguments

a - Input fi object
scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
T - Input numerictype object
scalar
Input numerictype object, specified as a scalar.

Version History

Introduced in R2008a

See Also

```
isdouble|isfixed|isfloat|isscaleddouble|isscalingbinarypoint|
isscalingslopebias|isscalingunspecified|issingle
```


isdouble

Determine whether input is double-precision data type

Syntax

tf = isdouble(a)
tf = isdouble(T)

Description

$\mathrm{tf}=$ isdouble(a) returns 1 (true) when the DataType property of fi object a is double. Otherwise, it returns 0 (false).
tf = isdouble(T) returns 1 (true) when the DataType property of numerictype object T is double. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a double

Create a fi object and determine if its data type is double.
$a=f i(p i)$
a =
3.1416

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 13

```
tf = isdouble(a)
tf = logical
    0
a = fi(pi,'DataType','double')
a =
    3.1416
            DataTypeMode: Double
tf = isdouble(a)
tf = logical
    1
```


Determine Whether numerictype Object is a double

Create a numerictype object and determine if its data type is double.

```
T = numerictype
T =
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                        WordLength: 16
            FractionLength: 15
tf = isdouble(T)
tf = logical
    0
T = numerictype('Double')
T =
            DataTypeMode: Double
tf = isdouble(T)
tf = logical
    1
```


Input Arguments

a - Input fi object
scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
T - Input numerictype object
scalar
Input numerictype object, specified as a scalar.

Version History

Introduced in R2008a

See Also

isboolean|isfixed|isfloat|isscaleddouble|isscaledtype|isscalingbinarypoint| isscalingslopebias|isscalingunspecified|issingle

isequal

Determine whether real-world values of two fi objects are equal, or determine whether properties of two fimath, numerictype, or quantizer objects are equal

Syntax

```
y = isequal (a,b,...)
y = isequal (F,G,...)
y = isequal(T,U,...)
y = isequal (q,r,...)
```


Description

$y=$ isequal (a, b, \ldots) returns logical 1 (true) if all the fi object inputs have the same real-world value. Otherwise, it returns logical 0 (false).

In relational operations comparing a floating-point value to a fixed-point value, the floating-point value is cast to the same word length and signedness as the fi object, with best-precision scaling.
$y=$ isequal (F, G, \ldots.$) returns logical 1$ (true) if all the fimath object inputs have the same properties. Otherwise, it returns logical 0 (false).
$y=$ isequal $(T, U, . .$.$) returns logical 1$ (true) if all the numerictype object inputs have the same properties. Otherwise, it returns logical 0 (false).
$y=$ isequal $(q, r, . .$.$) returns logical 1$ (true) if all the quantizer object inputs have the same properties. Otherwise, it returns logical 0 (false).

Examples

Compare Two fi Objects

Use the isequal function to determine if two fi objects have the same real-world value.

```
format long
a = fi(pi)
a =
    3.141601562500000
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                        WordLength: 16
            FractionLength: 13
b = fi(pi,1,32)
b =
    3.141592653468251
```

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
        WordLength: 32
FractionLength: 29
```

$y=$ isequal (a, b)
y = logical
0

Input a has a 16 -bit word length, while input b has a 32 -bit word length. The isequal function returns 0 because the two fi objects do not have the same real-world value.

Compare a Double to a fi Object

When comparing a double to a fi object, the double is cast to the same word length and signedness of the fi object.

```
a = fi(pi);
b = pi;
y = isequal(a,b)
y = logical
    1
```

The isequal function casts b to the same word length as a, and returns 1 . This behavior allows relational operations to work between fi objects and floating-point constants without introducing floating-point values in generated code.

Compare Two fimath Objects

Use the isequal function to determine if two fimath objects have the same properties.

```
F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent');
G = fimath('RoundingMethod','Convergent','ProductMode','FullPrecision');
y = isequal(F,G)
y = logical
    1
```


Compare Two numerictype Objects

Use the isequal function to determine if two numerictype objects have the same properties.

```
T = numerictype;
U = numerictype(true, 16, 15);
y = isequal(T,U)
```

```
y = logical
    1
```


Compare Two quantizer Objects

Use the isequal function to determine if two quantizer objects have the same properties.

```
q = quantizer('fixed', [5 4]);
r = quantizer('fixed', 'floor', 'saturate', [5 4]);
y = isequal(q,r)
y = logical
    1
```


Input Arguments

$\mathrm{a}, \mathrm{b}, \ldots$ - fi objects to be compared
scalar | vector | matrix | multidimensional array
fi objects to be compared, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
Complex Number Support: Yes

F, G, ... - fimath objects to be compared fimath object

fimath objects to be compared.

$\mathrm{T}, \mathrm{U}, \ldots$ - numerictype objects to be compared
 scalar | vector | matrix | multidimensional array

numerictype objects to be compared, specified as a scalar, vector, matrix, or multidimensional array.

$q, r, \ldots-$ quantizer objects to be compared

quantizer object
quantizer objects to be compared.

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

See Also
 eq | fi|fimath |ispropequal|numerictype |quantizer

isequivalent

Determine if two numerictype objects have equivalent properties

Syntax

```
y = isequivalent (T1, T2)
```


Description

$\mathrm{y}=$ isequivalent (T1, T2) determines whether the numerictype object inputs have equivalent properties and returns a logical 1 (true) or 0 (false). Two numerictype objects are equivalent if they describe the same data type.

Examples

Compare two numerictype objects

Use isequivalent to determine if two numerictype objects have the same data type.

```
T1 = numerictype(1, 16, 2^-12, 0)
T1 =
    DataTypeMode: Fixed-point: slope and bias scaling
        Signedness: Signed
        WordLength: 16
            Slope: 2^-12
            Bias: 0
T2 = numerictype(1, 16, 12)
T2 =
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
            FractionLength: 12
isequivalent(T1,T2)
ans = logical
    1
```

Although the Data Type Mode is different for T1 and T2, the function returns 1 (true) because the two objects have the same data type.

Input Arguments

T1, T2 - Inputs to be compared
numerictype objects
Inputs to be compared, specified as numerictype objects.

Version History

Introduced in R2014a

See Also
isequal|ispropequal|eq

isequaln

Package: embedded
Determine equality of fixed-point arrays, treating NaN values as equal

Syntax

$\mathrm{tf}=$ isequaln($\mathrm{A}, \mathrm{B})$
tf = isequaln(A1, $\mathrm{A} 2, \ldots, \mathrm{An})$

Description

$t f=$ isequaln (A, B) returns logical 1 (true) if A and B are equivalent; otherwise, it returns logical 0 (false). Arrays are considered equivalent if they are the same size and are numerically equal. NaN (Not a Number) values are considered to be equal to other such values.

Numeric data types and structure field order need not match to be considered equivalent.
isequaln recursively compares the contents of cell arrays and structures. If all elements of a cell array or structure are numerically equal, isequaln returns logical 1 (true).
$\mathrm{tf}=$ isequaln(A1, $\mathrm{A} 2, \ldots, \mathrm{An})$ returns logical 1 (true) if all the inputs are equivalent.

Examples

Compare Two Numeric Matrices

Create two numeric matrices and compare them for equality.

```
A = fi(zeros(3,3)+1e-4,1,16,15);
B = fi(zeros(3,3),1,16,15);
tf = isequaln(A,B)
tf = logical
    0
```

The function returns logical 0 (false) because the matrices differ by a small amount and are not exactly equal.

If the two matrices differ by an amount that is smaller than the precision representable by the fixedpoint data type, the function returns logical 1 (true).

```
A = fi(zeros(3,3)+1e-5,1,16,15);
B = fi(zeros(3,3),1,16,15);
tf = isequaln(A,B)
tf = logical
    1
```

Two matrices can be considered numerically equivalent when the inputs are of different data types.

```
A = fi(zeros(3,3),1,16,15);
B = single(zeros(3,3));
tf = isequaln(A,B)
tf = logical
    1
```


Input Arguments

A, B - Inputs to be compared (as separate arguments) arrays

Inputs to be compared, specified as arrays.
Data Types: fi
Complex Number Support: Yes
A1, A2, ... An - Series of inputs to be compared (as separate inputs) arrays

Series of inputs to be compared, specified as arrays.
Data Types: fi
Complex Number Support: Yes

Version History

Introduced in R2021a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also
isequal |eq

isfi

Determine whether variable is fi object

Syntax

tf = isfi(a)

Description

$t f=$ isfi(a) returns 1 (true) if a is a fi object. Otherwise, it returns 0 (false).

Examples

Determine Whether Variable is a fi Object

Create a variable and determine whether it is a fi object.

```
a = fi(pi);
tf = isfi(a)
tf = logical
    1
b = single([llllll);
tf = isfi(b)
tf = logical
    0
```


Input Arguments

a - Input array
array
Input array.

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Avoid using the isfi function in code that you intend to convert using the automated workflow. The value returned by isfi in the fixed-point code might differ from the value returned in the original MATLAB algorithm. The behavior of the fixed-point code might differ from the behavior of the original algorithm.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

See Also

fi|isfimath|isfipref|isnumerictype|isquantizer

isfimath

Determine whether variable is fimath object

Syntax

tf = isfimath(F)

Description

$t f=$ isfimath (F) returns 1 (true) if F is a fimath object. Otherwise, it returns 0 (false).

Examples

Determine Whether Variable is a fimath Object

Create a variable and determine whether it is a fimath object

```
F = fimath;
tf = isfimath(F)
tf = logical
    1
T = numerictype;
tf = isfimath(T)
tf = logical
    0
A = fi([lllllll);
tf = isfimath(A)
tf = logical
    0
```


Input Arguments

F - Input array
array
Input array.

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

fimath|isfi|isfipref|isnumerictype|isquantizer

isfimathlocal

Determine whether fi object has local fimath

Syntax

tf = isfimathlocal(a)

Description

tf = isfimathlocal(a) returns 1 (true) if the fi object a has a local fimath object. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object has Local fimath

Create a fi object and determine whether it has local fimath.

```
F = fimath;
a = fi(pi);
b = fi(pi,F);
tf_a = isfimathlocal(a)
tf_a = logical
tf_b = isfimathlocal(b)
tf_b = logical
```


Input Arguments

a - Input array
array
Input array.
Data Types: fi

Version History

Introduced in R2009b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

fimath|isfi|isfipref|isnumerictype|isquantizer|removefimath|sfi|ufi

isfipref

Determine whether input is fipref object

Syntax

tf = isfipref(P)

Description

$t f=$ isfipref(P) returns 1 (true) if P is a fipref object. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is a fipref Object
Create a variable and determine whether it is a fipref object.
P = fipref;
tf = isfipref(P)
tf = logical
1

F = fimath;
tf = isfipref(F)
tf = logical
0

Input Arguments

P - Input array
array
Input array.

Version History

Introduced in R2008a

```
See Also
fipref|isfi|isfimath|isnumerictype|isquantizer
```


isfixed

Determine whether input is fixed-point data type

Syntax

tf $=$ isfixed(a)
tf = isfixed(T)
tf = isfixed(q)

Description

$t f=$ isfixed(a) returns 1 (true) when the DataType property of fi object a is Fixed. Otherwise, it returns 0 (false).
$t f=$ isfixed(T) returns 1 when the DataType property of numerictype object T is Fixed. Otherwise, it returns 0 (false).
$\mathrm{tf}=$ isfixed (q) returns 1 when q is a fixed-point quantizer object. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is a Fixed-Point Data Type

Create a fi object and determine whether it is a fixed-point data type.

```
a = fi([pi pi/2])
a =
    3.1416 1.5708
        DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 13
tf = isfixed(a)
tf = logical
    1
```

Create a numerictype object and determine whether it is a fixed-point data type.
T = numerictype('Double')
$\mathrm{T}=$

DataTypeMode: Double
tf = isfixed(T)

```
tf = logical
    0
```

Create a quantizer object and determine whether it is a fixed-point data type.

```
q = quantizer('mode','single')
q =
    DataMode = single
    Format = [l32 8]
```

```
tf = isfixed(q)
```

$\mathrm{tf}=$ logical

Input Arguments

a - Input fi object

scalar | vector \mid matrix \mid multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
T - Input numerictype object
scalar
Input numerictype object, specified as a scalar.
q - Input quantizer object
scalar
Input quantizer object, specified as a scalar.

Version History

Introduced in R2008a

See Also

isboolean |isdouble|isfloat|isscaleddouble|isscaledtype|isscalingbinarypoint |isscalingslopebias|isscalingunspecified|issingle

isfloat

Determine whether input is floating-point data type

Syntax

$y=$ isfloat (a)
y = isfloat (T)
$y=$ isfloat(q)

Description

$y=$ isfloat(a) returns 1 when the DataType property of fi object a is single, or double, and 0 otherwise.
$y=$ isfloat (T) returns 1 when the DataType property of numerictype object T is single, or double, and 0 otherwise.
$y=$ isfloat(q) returns 1 when q is a floating-point quantizer, and 0 otherwise.

Version History

Introduced in R2008a

See Also

isboolean|isdouble |isfixed|isscaleddouble|isscaledtype|isscalingbinarypoint |isscalingslopebias|isscalingunspecified|issingle

isnumerictype

Determine whether input is numerictype object

Syntax

tf = isnumerictype(T)

Description

tf $=$ isnumerictype(T) returns 1 (true) if T is a numerictype object. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is a numerictype Object

Create a variable and determine whether it is a numerictype object.

```
T = numerictype;
tf = isnumerictype(T)
tf = logical
    1
q = quantizer;
tf = isnumerictype(q)
tf = logical
    0
```


Input Arguments

T - Input array
array
Input array.

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

isfi|isfimath|isfipref|isquantizer|numerictype

ispropequal

Determine whether properties of two fi objects are equal

Syntax

tf = ispropequal(a,b)

Description

$\mathrm{tf}=$ ispropequal (a, b) returns 1 (true) if a and b are both fi objects and have the same properties. Otherwise, it returns 0 (false).

Examples

Determine Whether Properties of Two fi Objects are Equal

Create two fi objects and determine whether they have the same properties.

```
F = fimath;
a = fi(pi);
b = fi(pi,F);
c = fi(pi/2,F);
d = fi(pi/2,0);
tf = ispropequal(a,b)
tf = logical
    1
tf = ispropequal(b,c)
tf = logical
    0
tf = ispropequal(c,d)
tf = logical
    0
```


Input Arguments

a,b - Inputs to be compared (as separate arguments)
arrays
Inputs to be compared, specified as arrays.
Data Types: fi

Tips

To compare the real-world values of two fi objects a and b, use $a==b$ or isequal (a, b).

Version History

Introduced before R2006a

See Also

fi|isequal

isquantizer

Determine whether input is quantizer object

Syntax

tf $=$ isquantizer(q)

Description

$\mathrm{tf}=$ isquantizer(q) returns 1 (true) when q is a quantizer object. Otherwise, it returns 0 (false).

Examples

Determine Whether Variable is a quantizer Object

Create a variable and determine whether it is a quantizer object.

```
q = quantizer('fixed', 'Ceiling', 'Wrap', [16 12])
q =
    DataMode = fixed
            RoundMode = ceil
    OverflowMode = wrap
            Format = [ll6 12]
tf = isquantizer(q)
tf = logical
    1
y = quantize(q,[pi pi/2])
y = 1×2
    3.1416
                        1.5708
tf = isquantizer(y)
tf = logical
    0
```


Input Arguments

q - Input array
array

Input array.

Version History

Introduced in R2008a
See Also
quantizer|isfi|isfimath|isfipref|isnumerictype

isscaleddouble

Determine whether input is scaled double data type

Syntax

```
tf = isscaleddouble(a)
```

tf = isscaleddouble(T)

Description

$\mathrm{tf}=$ isscaleddouble(a) returns 1 (true) when the DataType property of fi object a is ScaledDouble. Otherwise, it returns 0 (false).
tf = isscaleddouble(T) returns 1 (true) when the DataType property of numerictype object T is ScaledDouble. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a Scaled Double

Create a fi object and determine whether its DataType property is set to ScaledDouble.

```
a = fi(pi)
a =
    3.1416
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
            FractionLength: 13
tf = isscaleddouble(a)
tf = logical
    0
T = numerictype('DataType','ScaledDouble');
a = fi(pi,T)
a =
    3.1416
            DataTypeMode: Scaled double: binary point scaling
                Signedness: Signed
            WordLength: 16
            FractionLength: 15
tf = isscaleddouble(a)
```

```
tf = logical
    1
```


Determine Whether numerictype Object is a Scaled Double

Create a numerictype object and determine whether its DataType property is set to ScaledDouble.

```
T = numerictype
```

```
T =
```

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15
tf = isscaleddouble(T)
tf = logical
0
T = numerictype('DataType', 'ScaledDouble')
$\mathrm{T}=$
DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

```
tf = isscaleddouble(T)
tf = logical
    1
```


Input Arguments

a - Input fi object
scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
T - Input numerictype object
scalar
Input numerictype object, specified as a scalar.

Version History

Introduced in R2008a

```
See Also
isboolean|isdouble|isfixed|isfloat|isscaledtype|isscalingbinarypoint|
isscalingslopebias|isscalingunspecified|issingle
```


isscaledtype

Determine whether input is fixed-point or scaled double data type

Syntax

tf = isscaledtype(a)
tf = isscaledtype(T)

Description

tf = isscaledtype(a) returns 1 (true) when the DataType property of fi object a is Fixed or ScaledDouble. Otherwise, it returns 0 (false).
$\mathrm{tf}=$ isscaledtype(T) returns 1 (true) when the DataType property of numerictype object T is Fixed or ScaledDouble. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is Fixed-Point or Scaled Double Data Type

Create a fi object and determine whether its DataType property is set to Fixed or ScaledDouble.

```
a = fi([pi,pi/2]);
tf = isscaledtype(a)
tf = logical
    1
```

Create a numerictype object and determine whether its DataType property is set to Fixed or ScaledDouble.

T1 = numerictype('DataType','ScaledDouble');
tf = isscaledtype(T1)
tf = logical
1

```
T2 = numerictype('DataType','Single');
tf = isscaledtype(T2)
tf = logical
    0
```


Input Arguments

a - Input fi object
scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
T - Input numerictype object
scalar
Input numerictype object, specified as a scalar.

Version History

Introduced in R2008a

See Also

isboolean|isdouble|isfixed|isfloat|numerictype|isscaleddouble| isscalingbinarypoint|isscalingslopebias|isscalingunspecified|issingle

isscalingbinarypoint

Determine whether input has binary point scaling

Syntax

```
tf = isscalingbinarypoint(a)
```

tf = isscalingbinarypoint(T)

Description

$\mathrm{tf}=$ isscalingbinarypoint(a) returns 1 (true) when the fi object a has binary point scaling or trivial slope and bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial when the slope is an integer power of two and the bias is zero.
tf = isscalingbinarypoint(T) returns 1 (true) when the numerictype object T has binary point scaling or trivial slope and bias scaling. Otherwise, it returns 0 (false).

Examples

Determine Whether Input has Binary Point Scaling

Create a fi object and determine whether it has binary point scaling.

```
a = fi(pi)
a =
    3.1416
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                WordLength: 16
            FractionLength: 13
tf = isscalingbinarypoint(a)
tf = logical
    1
b = fi(pi,1,16,3,2)
b =
        2
            DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                    Slope: 3
                    Bias: 2
tf = isscalingbinarypoint(b)
```

```
tf = logical
    0
```

If the fi object has trivial slope and bias scaling, that is, the slope is an integer power of two and the bias is zero, isscalingbinarypoint returns 1.

```
c = fi(pi,1,16,4,0)
c =
    4
            DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                    Slope: 2^2
                        Bias: 0
tf = isscalingbinarypoint(c)
tf = logical
    1
```

Create a numerictype object and determine whether it has binary point scaling.

```
T = numerictype
```

$T=$
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
tf = isscalingbinarypoint(T)
tf = logical
1

Input Arguments

a - Input fi object

scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
T - Input numerictype object
scalar
Input numerictype object, specified as a scalar.

Version History

Introduced in R2010b

```
See Also
isboolean| isdouble| isfixed| isfloat| isscaleddouble| isscaledtype|
isscalingslopebias|isscalingunspecified|issingle
```


isscalingslopebias

Determine whether input has nontrivial slope and bias scaling

Syntax

```
tf = isscalingslopebias(a)
tf = isscalingslopebias(T)
```


Description

tf $=$ isscalingslopebias(a) returns 1 (true) when the fi object a has nontrivial slope and bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial when the slope is an integer power of two and the bias is zero.
$\mathrm{tf}=$ isscalingslopebias(T) returns 1 (true) when the numerictype object T has nontrivial slope and bias scaling. Otherwise, it returns 0 (false).

Examples

Determine Whether Input has Nontrivial Slope and Bias Scaling

Create a fi object and determine whether it has nontrivial slope and bias scaling.

```
a = fi(pi)
a =
    3.1416
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                        WordLength: 16
            FractionLength: 13
tf = isscalingslopebias(a)
tf = logical
    0
b = fi(pi,1,16,3,1)
b =
    4
            DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                Slope: 3
                    Bias: 1
tf = isscalingslopebias(b)
```

```
tf = logical
    1
```

If the fi object has trivial slope and bias scaling, that is, the slope is an integer power of two and the bias is zero, isscalingslopebias returns 0.

```
c = fi(pi,1,16,4,0)
c =
    4
            DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                    Slope: 2^2
                        Bias: 0
tf = isscalingslopebias(c)
tf = logical
    0
```

Create a numerictype object and determine whether it has nontrivial slope and bias scaling.

```
T = numerictype
```

$T=$
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
tf = isscalingslopebias(T)
tf = logical
0

Input Arguments

a - Input fi object

scalar | vector \mid matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
T - Input numerictype object
scalar
Input numerictype object, specified as a scalar.

Version History

Introduced in R2010b

```
See Also
isboolean| isdouble| isfixed| isfloat| isscaleddouble| isscaledtype|
isscalingbinarypoint|isscalingunspecified|issingle
```


isscalingunspecified

Determine whether input has unspecified scaling

Syntax

$\mathrm{tf}=$ isscalingunspecified(a)
$\mathrm{tf}=$ isscalingunspecified(T$)$

Description

tf = isscalingunspecified(a) returns 1 (true) if fi object a has a fixed-point or scaled double data type and its scaling has not been specified.
$\mathrm{tf}=$ isscalingunspecified(T) returns 1 (true) if numerictype object T has a fixed-point or scaled double data type and its scaling has not been specified.

Examples

Determine Whether Input has Unspecified Scaling

Create a numerictype object and determine whether it has unspecified scaling.

```
T1 = numerictype(0)
```

T1 =

DataTypeMode: Fixed-point: unspecified scaling Signedness: Unsigned WordLength: 16
tf = isscalingunspecified(T1)
tf = logical
1

T2 = numerictype($0,24,12$, 'DataType','ScaledDouble')
T2 =

DataTypeMode: Scaled double: binary point scaling Signedness: Unsigned WordLength: 24
FractionLength: 12
tf = isscalingunspecified(T2)
tf = logical
0

Create a fi object and determine whether it has unspecified scaling.

```
a = fi(pi,1)
a =
    3.1416
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 13
tf = isscalingunspecified(a)
tf = logical
    0
```


Input Arguments

a - Input fi object
scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T - Input numerictype object

scalar
Input numerictype object, specified as a scalar.

Version History

Introduced in R2010b

See Also

isboolean|isdouble|isfixed|isfloat|isscaleddouble|isscaledtype|
isscalingbinarypoint|isscalingslopebias|issingle

issigned

Determine whether fi object is signed

Syntax

tf $=$ issigned(a)

Description

$t f=$ issigned (a) returns 1 (true) if the fi object a is signed. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is Signed

Create a fi object and determine whether it is signed or unsigned.

```
a1 = fi(pi,1)
a1 =
    3.1416
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 13
tf = issigned(al)
tf = logical
    1
a2 = fi(pi,0)
a2 =
    3.1416
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Unsigned
                WordLength: 16
            FractionLength: 14
tf = issigned(a2)
tf = logical
    0
```

If a numerictype object with Auto Signedness is used to create a fi object, the Signedness property of the fi object automatically defaults to Signed.

T = numerictype('Signedness', 'Auto')
$\mathrm{T}=$

DataTypeMode: Fixed-point: binary point scaling Signedness: Auto WordLength: 16
FractionLength: 15

```
a3 = fi(pi,T)
```

a3 =
1.0000

```
            DataTypeMode: Fixed-point: binary point scaling
```

 Signedness: Signed
 WordLength: 16
 FractionLength: 15
    ```
tf = issigned(a3)
tf = logical
    1
```


Input Arguments

a - Input fi object
scalar | vector | matrix \| multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

See Also

isfi|isfixed|isscaleddouble|isscaledtype|isscalingbinarypoint|
isscalingslopebias |isscalingunspecified

issingle

Determine whether input is single-precision data type

Syntax

tf = issingle(a)
tf = issingle(T)

Description

$\mathrm{tf}=$ issingle(a) returns 1 (true) when the DataType property of fi object a is single. Otherwise, it returns 0 (false).
$\mathrm{tf}=$ issingle(T) returns 1 (true) when the DataType property of numerictype object T is single. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is Single-Precision Data Type

Create a fi object and determine whether it is single-precision data type.

```
a = fi(pi)
a =
    3.1416
                DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 13
tf = issingle(a)
tf = logical
    0
```

Create a numerictype object and determine whether it is single-precision data type.

```
T = numerictype('Single')
T =
            DataTypeMode: Single
tf = issingle(T)
tf = logical
    1
```


Input Arguments

a - Input fi object
scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
T - Input numerictype object
scalar
Input numerictype object, specified as a scalar.

Version History

Introduced in R2008a

See Also

isboolean|isdouble|isfixed|isfloat|isscaleddouble|isscaledtype| isscalingbinarypoint|isscalingslopebias|isscalingunspecified

isslopebiasscaled

Determine whether numerictype object has nontrivial slope and bias scaling

Syntax

tf = isslopebiasscaled(T)

Description

$\mathrm{tf}=$ isslopebiasscaled(T) returns 1 (true) when numerictype T has nontrivial slope and bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial when the slope is an integer power of two and the bias is zero.

Examples

Determine Whether numerictype Object has Nontrivial Slope and Bias Scaling

Create a numerictype object and determine whether it has nontrivial slope and bias scaling.

```
T1 = numerictype
```

T1 $=$

```
                DataTypeMode: Fixed-point: binary point scaling
```

 Signedness: Signed
 WordLength: 16
 FractionLength: 15
 tf = isslopebiasscaled(T1)
tf = logical
0
T2 = numerictype('DataTypeMode',...
'Fixed-point: slope and bias scaling',...
'WordLength', 32,...
'Slope', 2^-2,...
'Bias',4)
T2 $=$
DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 32
Slope: 0.25
Bias: 4
tf = isslopebiasscaled(T2)

```
tf = logical
    1
T3 = numerictype('DataTypeMode',...
    'Fixed-point: slope and bias scaling',...
    'WordLength',32,...
    'Slope',2^2,...
    'Bias',0)
T3 =
            DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: }3
                Slope: 2^2
                        Bias: 0
tf = isslopebiasscaled(T3)
tf = logical
    0
```


Input Arguments

T - Input numerictype object

scalar
Input numerictype object, specified as a scalar.

Version History

Introduced in R2008a

See Also

isboolean|isdouble|isfixed|isfloat|isscaleddouble|isscaledtype|issingle| numerictype

le, <=

Package: embedded
Determine whether real-world value of one array is less than or equal to another

Syntax

$A<=B$
$l e(A, B)$

Description

A <= B returns a logical array with elements set to logical 1 (true) where the real-world values of A is less than or equal to B, when A or B is a fi object. Otherwise, the element is logical 0 (false). The test compares only the real part of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point value is cast to a fixed-point type that preserves the relative order of the value with respect to the value in the fixed-point fi object.
$l e(A, B)$ is an alternate way to execute $A<=B$, but is rarely used.

Examples

Compare Two fi Objects

Use the le function to determine whether the real-world value of one fi object is less than or equal to another.

```
a = fi(pi);
b = fi(pi, 1, 32);
a <= b
ans = logical
    0
```

Input a has a 16 -bit word length, while input b has a 32 -bit word length. The le function returns 0 because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the relative order of the value with respect to the value in the fixed-point fi object. This behavior allows relational operations to work between fi objects and floating-point constants without introducing floating-point values in generated code.

```
a = fi(pi);
b = pi;
le(a,b)
ans =
    logical
    0
```


Input Arguments

A, B - Operands

scalars | vectors | matrices | multidimensional arrays
Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".

```
Data Types: single | double | int8| int16| int32 | int64 | uint8|uint16|uint32 | uint64 |
fi
Complex Number Support: Yes
```


Version History

Introduced before R2006a

R2022a: Implicit expansion change affects arguments for operators

Behavior changed in R2022a
Starting in R2022a with the addition of implicit expansion for fi le, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

R2022a: Improved accuracy in comparing fi objects and floating-point numbers using relational operators
 Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was cast to the same word length and signedness of the fi object. This could lead to incorrect results. For example,

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    0 0
```

```
fi(65534)
fi(65534.25) == 65534.25
ans =
    65534
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: -1
ans =
    logical
    I
```

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always return the mathematically correct behavior. The previous examples now gives these results:

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    1 0
```

Note that the updated algorithm may produce subtle, but accurate, results. For example:

```
fi(pi) == pi
ans =
    logical
    0
```

Simulation results for relational operations between fi objects and floating-point singles or doubles may be more accurate than in previous releases. The updated algorithm requires a modest wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Fixed-point signals with different biases are not supported.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

eq|ge|gt|lt|ne

logreport

Quantization report

Syntax

logreport(a)
logreport(a, b, ...)

Description

logreport(a) displays the minlog, maxlog, lowerbound, upperbound, noverflows, and nunderflows for the fi object a.
logreport (a, b, ...) displays the report for each fi object a, b,

Examples

The following example produces a logreport for fi objects a and b:

```
fipref('LoggingMode','On');
a = fi(pi);
b = fi(randn(10),1,8,7);
Warning: 35 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 2 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
logreport(a,b)
logreport(a,b)
\begin{tabular}{lrrrrrr} 
& minlog & maxlog & lowerbound & upperbound & noverflows & nunderflows \\
a & 3.141602 & 3.141602 & -4 & 3.999878 & 0 & 0 \\
\(b\) & -1 & 0.9921875 & -1 & 0.9921875 & 35 & 2
\end{tabular}
```


Version History

Introduced in R2008a

See Also

fipref|quantize|quantizer

lowerbound

Package: embedded
Lower bound of range of fi object

Syntax

l = lowerbound(a)

Description

$l=$ lowerbound (a) returns the lower bound of the range of fi object a .
If $l=$ lowerbound(a) and $u=$ upperbound(a), then $[l, u]=\operatorname{range(a).~}$

Examples

```
Lower Bound of fi Object
a = fi(pi,1,16,3,2)
a =
    2
            DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
            Slope: 3
                Bias: 2
l = lowerbound(a)
l =
    -98302
            DataTypeMode: Fixed-point: slope and bias scaling
                Signedness: Signed
            WordLength: 16
                    Slope: 3
                        Bias: 2
```


Input Arguments

a - Input fi object

fi object
Input fi object.
Data Types: fi
Complex Number Support: Yes

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

eps | intmax | intmin |lsb|range | realmax | realmin | upperbound

Isb

Package: embedded
Scaling of least significant bit of fi object, or value of least significant bit of quantizer object

Syntax

$\mathrm{b}=\operatorname{lsb}(\mathrm{a})$
$\mathrm{p}=\mathrm{lsb}(\mathrm{q})$

Description

$b=l s b(a)$ returns the scaling of the least significant bit of fi object a. The result is equivalent to the result given by the eps function.
$\mathrm{p}=\mathrm{lsb}(\mathrm{q})$ returns the quantization level of quantizer object q or the distance from 1.0 to the next largest floating-point number if q is a floating-point quantizer object.

Examples

Least Significant Bit of fi Object

Use the lsb function to find the value of the scaling of the least significant bit of fi object a.
Create a signed fi object that specifies a word length of 8 bits and a fraction length of 7 bits.
a = fi([],1,8,7)
a $=$
[]

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 8
FractionLength: 7
```

Determine the least significant bit of the fi object.
lsb(a)
ans $=$
0.0078

```
DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 8
FractionLength: 7
```


Least Significant Bit of quantizer Object

Use the lsb function to find the value of the least significant bit of the quantizer object q .
Create a fixed-point quantizer object that specifies a word length of 8 bits and a fraction length of 7 bits.

```
q = quantizer('fixed',[8 7])
```

$q=$

$$
\begin{aligned}
\text { DataMode } & =\text { fixed } \\
\text { RoundMode } & =\text { floor } \\
\text { OverflowMode } & =\text { saturate } \\
\text { Format } & =[87]
\end{aligned}
$$

Determine the quantization level of the quantizer object.
$\mathrm{p}=\mathrm{lsb}(\mathrm{q})$
$p=0.0078$
For both fixed-point and floating-point quantizer objects $q, l s b(q)=2^{\wedge}-\operatorname{FRACTIONLENGTH(q)}$.
$\mathrm{lsb}(q)=2^{\wedge}-7$
ans $=$ logical
1

Input Arguments

a - Input array
fi object
Input array, specified as a fi object.
Data Types: fi
Complex Number Support: Yes
q - Input quantizer object
quantizer object
Input quantizer object, specified as a quantizer object.

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Usage notes and limitations:

- Code generation supports scalar fixed-point signals only.
- Code generation supports scalar, vector, and matrix, fi single and fi double signals.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

eps | intmax| intmin| lowerbound | quantize | range | realmax|realmin|upperbound

It, <

Package: embedded
Determine whether real-world value of one array is less than another

Syntax

A < B
$\operatorname{lt}(A, B)$

Description

$A<B$ returns a logical array with elements set to logical 1 (true) where the real-world values of A is less than B, when A or B is a fi object. Otherwise, the element is logical 0 (false). The test compares only the real part of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point value is cast to a fixed-point type that preserves the relative order of the value with respect to the value in the fixed-point fi object.
$l t(A, B)$ is an alternate way to execute $A<B$, but is rarely used.

Examples

Compare Two fi Objects

Use the $l t$ function to determine whether the real-world value of one fi object is less than another.

```
a = fi(pi);
b = fi(pi, 1, 32);
a}< 
ans = logical
0
```

Input a has a 16 -bit word length, while input b has a 32 -bit word length. The lt function returns 0 because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the relative order of the value with respect to the value in the fixed-point fi object. This behavior allows relational operations to work between fi objects and floating-point constants without introducing floating-point values in generated code.

```
a = fi(pi);
b = pi;
lt(a,b)
ans =
    logical
    0
```


Input Arguments

A, B - Operands

scalars | vectors | matrices | multidimensional arrays
Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".

```
Data Types: single | double | int8| int16| int32 | int64 | uint8|uint16 |uint32| uint64 |
fi
Complex Number Support: Yes
```


Version History

Introduced before R2006a

R2022a: Implicit expansion change affects arguments for operators

Behavior changed in R2022a
Starting in R2022a with the addition of implicit expansion for fi lt, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

R2022a: Improved accuracy in comparing fi objects and floating-point numbers using relational operators
 Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was cast to the same word length and signedness of the fi object. This could lead to incorrect results. For example,

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    0
```

```
fi(65534)
fi(65534.25) == 65534.25
ans =
    65534
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: -1
ans =
    logical
    I
```

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always return the mathematically correct behavior. The previous examples now gives these results:

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    1 0
```

Note that the updated algorithm may produce subtle, but accurate, results. For example:

```
fi(pi) == pi
ans =
    logical
    0
```

Simulation results for relational operations between fi objects and floating-point singles or doubles may be more accurate than in previous releases. The updated algorithm requires a modest wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Fixed-point signals with different biases are not supported.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

eq|ge|gt|le|ne

mat2str

Convert matrix to string

Syntax

```
str = mat2str(A)
str = mat2str(A, n)
str = mat2str(A, 'class')
str = mat2str(A, n, 'class')
```


Description

str $=$ mat2str(A) converts fi object A to a string representation. The output is suitable for input to the eval function such that eval (str) produces the original fi object exactly.
$\operatorname{str}=$ mat2str(A, n) converts $f i$ object A to a string representation using n bits of precision.
str $=$ mat2str(A, 'class') creates a string representation with the name of the class of A included. This option ensures that the result of evaluating str will also contain the class information.
str $=$ mat2str(A, n, 'class') uses n bits of precision and includes the class of A .

Examples

Convert fi Object to a String

Convert the fi object a to a string.

```
a = fi(pi);
str = mat2str(a)
str =
'3.1416015625'
```


Convert fi Object to a String with Specified Precision

Convert the fi object a to a string using eight bits of precision.

```
a = fi(pi);
str = mat2str(a, 8)
str =
    '3.1416016'
```


Input Arguments

A - Input array
scalar | vector | matrix
Input array, specified as a scalar, vector, or matrix. A cannot be a multidimensional array.
Data Types: fi|single | double | int8|int16|int32|int64|uint8|uint16|uint32| uint64
\mathbf{n} - Number of bits of precision
positive integer
Number of bits of precision in the output, specified as a positive integer.
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64

Output Arguments

str - String representation of input array
character array
String representation of input array, returned as a character array.

Version History

Introduced in R2015b

See Also

mat2str|tostring

max

Largest element in array of fi objects

Syntax

$M=\max (A)$
M $=\max (A,[], d i m)$
[M,I] $=\max ($ \qquad)
$C=\max (A, B)$

Description

$M=\max (A)$ returns the largest elements along different dimensions of fi array A.

- If A is a vector, $\max (\mathrm{A})$ returns the largest element in A .
- If A is a matrix, $\max (A)$ treats the columns of A as vectors, returning a row vector containing the maximum element from each column.
- If A is a multidimensional array, max operates along the first nonsingleton dimension and returns an array of maximum values.
$M=\max (A,[], d i m)$ returns the largest elements along dimension dim.
$[\mathrm{M}, \mathrm{I}]=\max ($ \qquad) finds the indices of the maximum values and returns them in array I, using any of the input arguments in the previous syntaxes. If the largest value occurs multiple times, the index of the first occurrence is returned.
$C=\max (A, B)$ returns an array with the largest elements taken from A or B.

Examples

Largest Element in a Vector

Create a fixed-point vector and return the maximum value from the vector.

```
A = fi([1,5,4,9,2],1,16);
M = max(A)
M =
    9
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: 11
```


Largest Element of Each Matrix Row

Create a fixed-point matrix.

```
A = fi(magic(4),1,16)
A =
\begin{tabular}{rrrr}
16 & 2 & 3 & 13 \\
5 & 11 & 10 & 8 \\
9 & 7 & 6 & 12 \\
4 & 14 & 15 & 1
\end{tabular}
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
    FractionLength: 10
```

Find the largest element of each row by finding the maximum values along the second dimension.

```
M = max(A,[],2)
M =
    1 6
    11
    12
    15
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: 10
```

The output vector, M, is a column vector that contains the largest element of each row.

Largest Element of Each Matrix Column

Create a fixed-point matrix.

```
A = fi(magic(4),1,16)
A =
\begin{tabular}{rrrr}
16 & 2 & 3 & 13 \\
5 & 11 & 10 & 8 \\
9 & 7 & 6 & 12 \\
4 & 14 & 15 & 1
\end{tabular}
        DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
    FractionLength: 10
```

Find the largest element of each column.

```
M = max(A)
M =
    16 14 15
        13
```

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
        WordLength: 16
FractionLength: 10
```

The output, M, is a row vector that contains the largest elements from each column of A. Find the index of each of the maximum elements.

```
[M,I] = max(A)
M =
    16 14 15 13
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
            WordLength: 16
            FractionLength: 10
```

$I=1 \times 4$
$\begin{array}{llll}1 & 4 & 4 & 1\end{array}$

Vector I contains the indices to the minimum elements in M.

Maximum Elements from Two Arrays

Create two fixed-point arrays of the same size.

$$
\begin{aligned}
& A=f i([2.3,4.7,6 ; 0,7,9.23], 1,16) ; \\
& B=\mathrm{fi}([9.8,3.21,1.6 ; \text { pi,2.3,1],1,16);}
\end{aligned}
$$

Find the largest elements from A or B.

```
C = max (A,B)
C =
    9.7998 4.7002 6.0000
    3.1416 7.0000 9.2300
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 11
```

C contains the largest elements from each pair of corresponding elements in A and B.

Largest Element of a Complex Vector

Create a complex fixed-point vector, a.
$a=f i([1+2 i, 3+6 i, 6+3 i, 2-4 i], 1,16)$

```
a =
    1.0000 + 2.0000i 3.0000 + 6.0000i 6.0000 + 3.0000i 2.0000 - 4.0000i
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
    FractionLength: 12
```

The function finds the largest element of a complex vector by taking the element with the largest magnitude.

```
abs(a)
ans =
    2.2361 6.7083 6.7083 4.4722
    DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
        WordLength: 16
        FractionLength: 12
```

In vector a, the largest elements, at position 2 and 3 , have a magnitude of 6.7083. The max function returns the largest element in output x and the index of that element in output y.

```
[x,y] = max(a)
x =
    3.0000 + 6.0000i
    DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 12
y = 2
```

Although the elements at index 2 and 3 have the same magnitude, the index of the first occurrence of that value is always returned.

Input Arguments

A - Input fi array

scalar | vector | matrix | multidimensional array
Input fi array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions of A and B must match unless one is a scalar.

The max function ignores NaNs.
Data Types: fi
Complex Number Support: Yes
B - Additional input array
scalar | vector | matrix | multidimensional array

Additional input fi or numeric array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions of A and B must match unless one is a scalar.

The max function ignores NaNs.
Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

Complex Number Support: Yes
dim - dimension to operate along
positive integer scalar
Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If you do not specify a value, the default value is the first array dimension whose size does not equal 1.

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

Output Arguments

M - Maximum values

scalar | vector | matrix | multidimensional array
Maximum values, returned as a scalar, vector, matrix, or multidimensional array. M always has the same data type as the input.

I - Index

scalar | vector | matrix | multidimensional array
Index, returned as a scalar, vector, matrix, or multidimensional array. If the largest value occurs more than once, then I contains the index to the first occurrence of the value. I is always of data type double.

C - Maximum elements from A or B
scalar | vector | matrix | multidimensional array
Maximum elements from A or B, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms

When A or B is complex, the max function returns the elements with the largest magnitude. If two magnitudes are equal, then max returns the first value. This behavior differs from how the built-in max function resolves ties between complex numbers.

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

See Also

mean | median | min | sort

maxlog

Log maximums

Syntax

$y=m a x \log (a)$
$y=\max \log (q)$

Description

$y=\max \log (a)$ returns the largest real-world value of fi object a since logging was turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging for a fi object using the resetlog function.
$y=\max \log (q)$ is the maximum value after quantization during a call to quantize (q, \ldots) for quantizer object q. This value is the maximum value encountered over successive calls to quantize since logging was turned on, and is reset with resetlog $(q) \cdot \max \log (q)$ is equivalent to get (q, , maxlog') and q.maxlog.

Examples

Example 1: Using maxlog with fi objects

```
1 P = fipref('LoggingMode','on');
    format long g
    a = fi([-1.5 eps 0.5], true, 16, 15);
    a(1) = 3.0;
    maxlog(a)
    Warning: 1 overflow(s) occurred in the fi assignment operation.
    > In embedded.fi/fifactory
    In fi (line 226)
    Warning: 1 underflow(s) occurred in the fi assignment operation.
    > In embedded.fi/fifactory
    In fi (line 226)
    Warning: 1 overflow(s) occurred in the fi assignment operation.
    ans =
    0.999969482421875
```

The largest value maxlog can return is the maximum representable value of its input. In this example, a is a signed fi object with word length 16, fraction length 15 and range:

$$
-1 \leq x \leq 1-2^{-15}
$$

2 You can obtain the numerical range of any fi object a using the range function:

```
format long g
r = range(a)
r =
                    -1 0.999969482421875
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
    FractionLength: 15
```


Example 2: Using maxlog with quantizer objects

1 q = quantizer;
warning on
format long g
$x=$ [-20:10];
$y=$ quantize(q, $x)$;
maxlog(q)
Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)
ans $=$
0.999969482421875

The largest value maxlog can return is the maximum representable value of its input.
2 You can obtain the range of x after quantization using the range function:

```
format long g
r = range(q)
r =
```

 \(-1 \quad 0.999969482421875\)

Version History

Introduced before R2006a

See Also

fipref|minlog|noverflows|nunderflows|reset|resetlog

mean

Average or mean value of fixed-point array

Syntax

$M=\operatorname{mean}(A)$
$M=\operatorname{mean}(A, d i m)$

Description

$M=$ mean (A) computes the mean value of the real-valued fixed-point array A along its first nonsingleton dimension.
$M=$ mean (A, dim) computes the mean value of the real-valued fixed-point array A along dimension dim. dim must be a positive, real-valued integer with a power-of-two slope and a bias of 0 .

The fixed-point output array, M, has the same numerictype properties as the fixed-point input array, A.

If the input array, A, has a local fimath, then it is used for intermediate calculations. The output, M, is always associated with the default fimath.

When A is an empty fixed-point array (value = []), the value of the output array is zero.

Examples

Mean Along Columns of Fixed-Point Array

Create a matrix and compute the mean of each column. A is a signed fi object with a 32-bit word length and a best-precision fraction length of 28 bits.

```
A = fi([0 1 2; 3 4 5],1,32);
M = mean(A)
A =
    0
                DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
            WordLength: 32
            FractionLength: 28
M =
\begin{tabular}{rl}
\(1.5000 \quad 2.5000\) & 3.5000 \\
DataTypeMode: & Fixed-point: binary point scaling \\
Signedness: Signed
\end{tabular}
```


Mean Along Rows of Fixed-Point Array

Create a matrix and compute the mean of each row. A is a signed fi object with a 32 -bit word length and a best-precision fraction length of 28 bits.

```
A = fi([0 1 2; 3 4 5],1,32)
M = mean(A,2)
A =
    0 1 2
    3 4 5
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
            WordLength: }3
            FractionLength: 28
M =
    1
4
        DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
                FractionLength: 28
```


Input Arguments

A - Input array

vector | matrix | multidimensional array
Input array, specified as a vector, matrix, or multidimensional array.

- If A is a scalar, then mean (A) returns A .
- If A is an empty fixed-point array (value $=[]$), the value of the output array is zero.

Data Types: fi

dim - Dimension to operate along

positive integer scalar
Dimension to operate along, specified as a positive, real-valued, integer scalar with a power-of-two slope and a bias of 0 . If no value is specified, then the default is the first array dimension whose size does not equal 1.
Data Types: single | double | int8|int16|int32 | int64|uint8|uint16|uint32|uint64 | fi

Algorithms

The general equation for computing the mean of an array A , across dimension dim is:
$\operatorname{sum}(A, \operatorname{dim}) / \operatorname{size}(A, \operatorname{dim})$
Because size (a,dim) is always a positive integer, the algorithm for computing mean casts size(A, dim) to an unsigned 32-bit fi object with a fraction length of zero (denote this fi object
'SizeA'). The algorithm then computes the mean of A according to the following equation, where Tx represents the numerictype properties of the fixed-point input array A:
c = Tx.divide(sum(A,dim), SizeA)

Version History
 Introduced in R2010a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also

max | median \| min

median

Median value of fixed-point array

Syntax

$c=$ median (a)
$c=\operatorname{median}(a, d i m)$

Description

$c=$ median(a) computes the median value of the fixed-point array a along its first nonsingleton dimension.
$c=$ median (a, dim) computes the median value of the fixed-point array a along dimension dim. dim must be a positive, real-valued integer with a power-of-two slope and a bias of 0 .

The input to the median function must be a real-valued fixed-point array.
The fixed-point output array c has the same numerictype properties as the fixed-point input array a. If the input, a, has a local fimath, then it is used for intermediate calculations. The output, c, is always associated with the default fimath.

When a is an empty fixed-point array (value = []), the value of the output array is zero.

Examples

Compute the median value along the first dimension of a fixed-point array.

```
x = fi([0 1 2; 3 4 5; 7 2 2; 6 4 9], 1, 32)
% x is a signed FI object with a 32-bit word length
% and a best-precision fraction length of 27 bits
mx1 = median(x,1)
```

Compute the median value along the second dimension (columns) of a fixed-point array.

```
x = fi([0 1 2; 3 4 5; 7 2 2; 6 4 9], 1, 32)
% x is a signed FI object with a 32-bit word length
% and a best-precision fraction length of 27 bits
mx2 = median(x, 2)
```


Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.

See Also

max | mean \| min

min

Smallest element in array of fi objects

Syntax

$M=\min (A)$
$M=\min (A,[], d i m)$
[M,I] = min(\qquad)
$C=\min (A, B)$

Description

$M=\min (A)$ returns the smallest elements along different dimensions of fi array A.

- If A is a vector, min (A) returns the smallest element in A.
- If A is a matrix, $\min (A)$ treats the columns of A as vectors, returning a row vector containing the minimum element from each column.
- If A is a multidimensional array, min operates along the first nonsingleton dimension and returns an array of minimum values.
$M=\min (A,[], d i m)$ returns the smallest elements along dimension dim.
$[\mathrm{M}, \mathrm{I}]=\min ($ \qquad) finds the indices of the minimum values and returns them in array I, using any of the input arguments in the previous syntaxes. If the smallest value occurs multiple times, the index of the first occurrence is returned.
$C=\min (A, B)$ returns an array with the smallest elements taken from A or B.

Examples

Smallest Element in a Vector

Create a fixed-point vector and return the minimum value from the vector.

```
A = fi([1,5,4,9,2],1,16);
M = min(A)
M =
    1
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: 11
```


Minimum Element of Each Matrix Row

Create a matrix of fixed-point values.

```
A = fi(magic(4),1,16)
A =
\begin{tabular}{rrrr}
16 & 2 & 3 & 13 \\
5 & 11 & 10 & 8 \\
9 & 7 & 6 & 12 \\
4 & 14 & 15 & 1
\end{tabular}
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: 10
```

Find the smallest element of each row by finding the minimum values along the second dimension.

```
M = min(A,[],2)
M =
    2
    5
    6
    1
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: 10
```

The output, M , is a column vector that contains the smallest element of each row of A .

Minimum Element of Each Matrix Column

Create a fixed-point matrix.

```
A = fi(magic(4),1,16)
A =
\begin{tabular}{rrrr}
16 & 2 & 3 & 13 \\
5 & 11 & 10 & 8 \\
9 & 7 & 6 & 12 \\
4 & 14 & 15 & 1
\end{tabular}
        DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 10
```

Find the smallest element of each column.

```
M = min(A)
M =
    4 2 3 1
```

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 16
FractionLength: 10
```

The output, M, is a row vector that contains the smallest element of each column of A.

Find the index of each of the minimum elements.

```
[M,I] = min(A)
M =
    4 2 3 1
                DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
            WordLength: 16
            FractionLength: 10
I = 1\times4
    4 1 1 1 4
```


Minimum Elements from Two Arrays

Create two fixed-point arrays of the same size.
A = fi([2.3,4.7,6;0,7,9.23],1,16);
$B=$ fi([9.8,3.21,1.6;pi,2.3,1],1,16);
Find the minimum elements from A or B .

```
C = min(A,B)
C =
    2.2998 3.2100 1.6001
    0 2.2998 1.0000
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 11
```

C contains the smallest elements from each pair of corresponding elements in A and B.

Minimum Element of a Complex Vector

Create a complex fixed-point vector, A.
$\mathrm{A}=\mathrm{fi}([1+2 \mathrm{i}, 2+\mathrm{i}, 3+8 \mathrm{i}, 9+\mathrm{i}], 1,8)$

```
A =
    1.0000 + 2.0000i 2.0000 + 1.0000i 3.0000 + 8.0000i 9.0000 + 1.0000i
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 8
    FractionLength: 3
```

The min function finds the smallest element of a complex vector by taking the element with the smallest magnitude.

```
abs(A)
```

ans =
$2.2500 \quad 2.2500 \quad 8.5000 \quad 9.0000$
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3

In vector A, the smallest elements, at position 1 and 2 , have a magnitude of 2.25 . The min function returns the smallest element in output M , and the index of that element in output, I.

```
[M,I] = min(A)
M =
    1.0000 + 2.0000i
        DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 3
I = 1
```

Although the elements at index 1 and 2 have the same magnitude, the index of the first occurrence of that value is always returned.

Input Arguments

A - Input fi array

scalar | vector | matrix | multidimensional array
fi or numeric input array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions of A and B must match unless one is a scalar.

The min function ignores NaNs.
Data Types: fi|single | double | int8|int16|int32|int64|uint8|uint16|uint32| uint64

Complex Number Support: Yes
B - Additional input array
scalar | vector | matrix | multidimensional array

Additional input fi or numeric array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions of A and B must match unless one is a scalar.

The min function ignores NaNs.
Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

Complex Number Support: Yes
dim - dimension to operate along
positive integer scalar
Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If you do not specify a value, the default value is the first array dimension whose size does not equal 1.

Data Types: fi|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

Output Arguments

M - Minimum values
scalar | vector | matrix | multidimensional array
Minimum values, returned as a scalar, vector, matrix, or multidimensional array. M always has the same data type as the input.

I - Index

scalar | vector | matrix | multidimensional array
Index, returned as a scalar, vector, matrix, or multidimensional array. If the smallest value occurs more than once, then I contains the index to the first occurrence of the value. I is always of data type double.

C - Minimum elements from A or B

scalar | vector | matrix | multidimensional array
Minimum elements from A or B, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms

When A or B is complex, the min function returns the element with the smallest magnitude. If two magnitudes are equal, then min returns the first value. This behavior differs from how the built-in min function resolves ties between complex numbers.

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

See Also

mean | median | max | sort

minlog

Log minimums

Syntax

$y=\operatorname{minlog}(a)$
$y=\operatorname{minlog}(q)$

Description

$y=m i n l o g(a)$ returns the smallest real-world value of fi object a since logging was turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging for a fi object using the resetlog function.
$y=m i n \log (q)$ is the minimum value after quantization during a call to quantize (q, \ldots) for quantizer object q. This value is the minimum value encountered over successive calls to quantize since $\log g i n g$ was turned on, and is reset with resetlog(q). $\operatorname{minlog}(q)$ is equivalent to get (q, 'minlog') and q.minlog.

Examples

Example 1: Using minlog with fi objects

$1 \quad P=$ fipref('LoggingMode', 'on');
a = fi([-1.5 eps 0.5], true, 16, 15);
$a(1)=3.0$;
minlog(a)
Warning: 1 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 1 underflow(s) occurred in the fi assignment operation.
$>$ In embedded.fi/fifactory
In fi (line 226)
Warning: 1 overflow(s) occurred in the fi assignment operation.
ans =
-1
The smallest value minlog can return is the minimum representable value of its input. In this example, a is a signed fi object with word length 16 , fraction length 15 and range:

$$
-1 \leq x \leq 1-2^{-15}
$$

2 You can obtain the numerical range of any fi object a using the range function:

```
format long g
r = range(a)
```

```
r =
    -1 0.999969482421875
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 16
FractionLength: 15
```


Example 2: Using minlog with quantizer objects

1 q = quantizer;
warning on
$x=[-20: 10] ;$
$y=$ quantize($q, x)$;
minlog(q)
Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)
ans $=$
-1
The smallest value minlog can return is the minimum representable value of its input.
2 You can obtain the range of x after quantization using the range function:
format long g
$r=r a n g e(q)$
$r=$
0.999969482421875

Version History
 Introduced before R2006a

See Also

fipref|maxlog|noverflows | nunderflows | reset | resetlog

minus, -

Package: embedded
Matrix difference between fi objects

Syntax

$C=A-B$
$C=\operatorname{minus}(A, B)$

Description

$C=A-B$ subtracts matrix B from matrix A.
minus does not support fi objects of data type boolean.
$C=\operatorname{minus}(A, B)$ is an alternate way to execute $A-B$.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see "fimath Properties Usage for Fixed-Point Arithmetic" and "fimath ProductMode and SumMode".

Input Arguments

A - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in data types. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".
minus does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 |uint16 |uint32 |uint64 | fi
Complex Number Support: Yes

B - Input array

scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in data types. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".
minus does not support fi objects of data type boolean.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| fi
Complex Number Support: Yes

Version History

Introduced before R2006a
R2021b: Implicit expansion change affects arguments for operators
Behavior changed in R2021b
Starting in R2021b with the addition of implicit expansion for fi times, plus, and minus, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Any non-fi input must be constant; that is, its value must be known at compile time so that it can be cast to a fi object.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

mtimes | plus | times |uminus

mod

Modulus after division for fi objects

Syntax

$m=\bmod (x, y)$

Description

$m=\bmod (x, y)$ returns the modulus after division of x by y, where x is the dividend and y is the divisor. This function is often called the modulo operation, which can be expressed as $m=x$ floor(x./y).*y.

For fixed-point or integer input arguments, the output data type is the aggregate type of both input signedness, word lengths, and fraction lengths. For floating-point input arguments, the output data type is the same as the inputs.

The mod function ignores and discards any fimath attached to the inputs. The output is always associated with the default fimath.

Note The combination of fixed-point and floating-point inputs is not supported.

Examples

Modulus of two fi Objects

Calculate the mod of two fi objects.

```
x = fi(-3,1,7,0);
y = fi(2,1,15,0);
m1 = mod}(x,y
m2 = mod(y,x)
m1 =
1
            DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 15
            FractionLength: 0
m2 =
            -1
            DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
```

WordLength: 15
FractionLength: 0

Modulus of Two Floating-Point Inputs

Convert the fi inputs in the previous example to double type and calculate the mod.

```
Mf1 = mod(double(x),double(y))
Mf2 = mod(double(y),double(x))
Mf1 =
    1
Mf2 =
    -1
```


Input Arguments

x - Dividend

scalar | vector | matrix | multidimensional array
Dividend, specified as a scalar, vector, matrix, or multidimensional array. x must be a real-valued integer, fixed-point, or floating-point array, or real scalar. Numeric inputs x and y must either be the same size, or have sizes that are compatible.
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64 | fi
y - Divisor
scalar | vector | matrix | multidimensional array
Divisor, specified as a scalar, vector, matrix, or multidimensional array. y must be a real-valued integer, fixed-point, or floating-point array, or real scalar. Numeric inputs x and y must either be the same size, or have sizes that are compatible.
Data Types: single | double | int8 | int16| int32 | int64 | uint8 |uint16 |uint32 |uint64 | fi

Output Arguments

m - Result of modulus operation

scalar | vector | matrix | multidimensional array
Result of modulus operation, returned as a scalar, vector, matrix, or multidimensional array.
If both inputs x and y are floating-point, then the data type of m is the same as the inputs. If either input x or y is fixed-point, then the data type of m is the aggregate numerictype. This value equals that of fixed.aggregateType (x, y).

The output m is always associated with the default fimath.

Algorithms

$\bmod (x, y)$ for a fi object uses the same definition as the built-in MATLAB mod function.

Version History

Introduced in R2011b

See Also

fixed.aggregateType | mod

modByConstant

Modulus after division by a constant denominator

Syntax

$Y=\operatorname{modByConstant}(X, d)$

Description

$Y=\operatorname{modByConstant}(X, d)$ performs the modulo operation (remainder after division) of X with respect to the denominator d .

For simulation, the data type of the output Y is chosen based on the value of the denominator d and the range of X.

To generate code, the denominator d must be a constant.

Examples

Modulo by Constant Denominator
modByConstant(fi(10203),10)
ans $=$
3
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 5
FractionLength: 1
modByConstant(uint16(6930),1024)
ans $=$
786
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 10
FractionLength: 0

Input Arguments

X - Dividend
scalar | vector | matrix | multidimensional array
Dividend, specified as a scalar, vector, matrix, or multidimensional array.
If X is a fixed-point or scaled-double fi, it must use binary point scaling.

Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|fi

d - Divisor

positive scalar
Divisor, specified as a positive, real-valued scalar.
If d is a fixed-point or scaled-double fi, it must use binary point scaling.
To generate code, the denominator d must be a constant.
Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi

Output Arguments

Y - Result of modulus operation

scalar | vector | matrix | multidimensional array
Result of modulus operation, returned as a scalar, vector, matrix, or multidimensional array.
For simulation, the data type of the output Y is chosen based on the value of the denominator d and the range of X .

Version History

Introduced in R2021a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.

mpower,

Package: embedded
Fixed-point matrix power (${ }^{\wedge}$)

Syntax

$Y=A^{\wedge} k$
$Y=\operatorname{mpower}(A, k)$

Description

$Y=A^{\wedge} k$ computes A to the k power for $f i$ inputs and returns the result in Y.
The matrix power operation is performed using default fimath settings.
The fixed-point output array Y has the same local fimath as the input A. If A has no local fimath, the output Y also has no local fimath.
$Y=\operatorname{mpower}(A, k)$ is an alternate way to execute $A^{\wedge} k$.

Examples

Square a Matrix

Compute the power of a 2 -dimensional square matrix for exponent values $0,1,2$, and 3 .

```
x = fi([0 1; 2 4], 1, 32);
px0 = x^0
px0 =
        1
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Unsigned
                        WordLength: 1
            FractionLength: 0
px1 = x^1
px1 =
        0 1
        2 4
        DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
            FractionLength: 28
px2 = x^2
```

```
px2 =
    2 4
    8 18
        DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
            WordLength: 65
                FractionLength: 56
px3 = x^3
px3 =
    8 18
    36 80
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 98
FractionLength: 84
```


Input Arguments

A - Base
scalar | matrix
Base, specified as a scalar or matrix
Example: $x=$ fi([0 1; 24$], 1,32)$;
Data Types: fi
Complex Number Support: Yes
k - Exponent
positive real-valued integer
Exponent, specified as a real-valued integer.
Data Types: single | double | int8 | int16| int32|int64|uint8|uint16|uint32|uint64| fi

Version History

Introduced in R2010a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
Usage notes and limitations:

- When the exponent k is a variable and the input is a scalar, the ProductMode property of the governing fimath must be SpecifyPrecision.
- When the exponent k is a variable and the input is not scalar, the SumMode property of the governing fimath must be SpecifyPrecision.
- Variable-sized inputs are only supported when the SumMode property of the governing fimath is set to SpecifyPrecision or Keep LSB.
- For variable-sized signals, you may see different results between the generated code and MATLAB.
- In the generated code, the output for variable-sized signals is computed using the SumMode property of the governing fimath.
- In MATLAB, the output for variable-sized signals is computed using the SumMode property of the governing fimath when the first input, A, is nonscalar. However, when A is a scalar, MATLAB computes the output using the ProductMode of the governing fimath.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.
Both inputs must be scalar, and the exponent input, k , must be a constant integer.

See Also

mpower|power|fi|fimath

mpy

Multiply two objects using fimath object

Syntax

$c=\operatorname{mpy}(F, a, b)$

Description

$c=m p y(F, a, b)$ performs elementwise multiplication on a and b using fimath object F. This is helpful in cases when you want to override the fimath objects of a and b, or if the fimath properties associated with a and b are different. The output fi object c has no local fimath.
a and b can both be fi objects with the same dimensions unless one is a scalar. If either a or b is scalar, then c has the dimensions of the nonscalar object. a and b can also be doubles, singles, or integers.

Examples

In this example, c is the 40 -bit product of a and b with fraction length 30 .

```
a = fi(pi);
b = fi(exp(1));
F = fimath('ProductMode','SpecifyPrecision',...
    'ProductWordLength',40,'ProductFractionLength',30);
c = F.mpy(a, b)
c =
8.5397
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 40
FractionLength: 30
```


Algorithms

$c=m p y(F, a, b)$ is similar to
a. fimath $=\mathrm{F}$;
b.fimath = F;
c = a .* b
c =
8.5397

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 40

FractionLength: 30
RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: SpecifyPrecision
ProductWordLength: 40
ProductFractionLength: 30
SumMode: FullPrecision
but not identical. When you use mpy, the fimath properties of a and b are not modified, and the output fi object c has no local fimath. When you use the syntax $c=a . * b$, where a and b have their own fimath objects, the output fi object c gets assigned the same fimath object as inputs a and b. See "fimath Rules for Fixed-Point Arithmetic" in the Fixed-Point Designer User's Guide for more information.

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Code generation does not support the syntax $F \cdot m p y(a, b)$. You must use the syntax mpy (F, a, b).
- When you provide complex inputs to the mpy function inside of a MATLAB Function block, you must declare the input as complex before running the simulation. To do so, go to the Model Explorer and set the Complexity parameter for all known complex inputs to On.

See Also

add | divide \| fi|fimath | mrdivide \| numerictype \| rdivide \| sub \| sum

mrdivide, /

Package: embedded
Right-matrix division

Syntax

$X=A / b$
$X=\operatorname{mrdivide}(A, b)$

Description

$X=A / b$ performs right-matrix division.
$X=\operatorname{mrdivide}(A, b)$ is an alternative way to execute $X=A / b$.

Examples

Divide fi Matrix by a Constant

In this example, you use the forward slash (/) operator to perform right matrix division on a 3-by-3 magic square of fi objects. Because the numerator input is a fi object, the denominator input b must be a scalar.

```
A = fi(magic(3))
A =
    8
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 11
b = fi(3,1,12,8)
b =
    3
                DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 12
                FractionLength: 8
X = A/b
X =
\begin{tabular}{lll}
2.6250 & 0.3750 & 2.0000 \\
1.0000 & 1.6250 & 2.3750 \\
1.3750 & 3.0000 & 0.6250
\end{tabular}
```

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 16
FractionLength: 3
```


Perform Matrix Division

You can perform right-matrix division when neither input is a fi object. The matrix dimensions must be compatible for matrix division.

```
A = [2, 3, 1; 0, 8, 4; 1, 1, 0]
A = 3\times3
    2 3 1
    0 8 4
    1 1 0
B = [7, 6, 6; 1, 0, 5; 9, 0, 4]
B = 3\times3
\begin{tabular}{lll}
7 & 6 & 6 \\
1 & 0 & 5 \\
9 & 0 & 4
\end{tabular}
X = mrdivide(A,B)
X = 3\times3
\begin{tabular}{rrr}
0.5000 & -0.2927 & -0.1341 \\
1.3333 & 0.0325 & -1.0407 \\
0.1667 & -0.2033 & 0.0041
\end{tabular}
```


Input Arguments

A - Numerator

scalar | vector | matrix | multidimensional array
Numerator, specified as a scalar, vector, matrix, or multidimensional array. If one or both of the inputs is a fi object, then b must be a scalar. When b is a scalar, mrdivide is equivalent to rdivide.

Data Types: single | double | int8 | int16| int32 | int64 | uint8|uint16|uint32|uint64| logical|fi
Complex Number Support: Yes
b - Denominator
scalar | vector | matrix | multidimensional array

Denominator, specified as a real scalar, vector, matrix, or multidimensional array. If one or both of the inputs is a fi object, then b must be a scalar. When b is a scalar, mrdivide is equivalent to rdivide.

If neither input is a fi object, then the sizes of the input matrices must be compatible for matrix division.

Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi

Output Arguments

```
X - Quotient
scalar | vector | matrix | multidimensional array
```

Solution, returned as an array with the same dimensions as the numerator input A. When A is complex, the real and imaginary parts of A are independently divided by b .

Version History
 Introduced in R2009a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

```
See Also
add|divide|fi|fimath|numerictype| rdivide|sub|sum
```


mtimes

Matrix product of fi objects

Syntax

mtimes(a,b)

Description

mtimes (a, b) is called for the syntax $a * b$ when a or b is an object.
$\mathrm{a} * \mathrm{~b}$ is the matrix product of a and b . A scalar value (a 1-by-1 matrix) can multiply any other value. Otherwise, the number of columns of a must equal the number of rows of b.
mtimes does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see "fimath Properties Usage for Fixed-Point Arithmetic" and "fimath ProductMode and SumMode".

For information about calculations using Fixed-Point Designer software, see the Fixed-Point Designer documentation.

Version History

 Introduced before R2006a

 Introduced before R2006a}
Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Any non-fi input must be constant; that is, its value must be known at compile time so that it can be cast to a fi object.
- Variable-sized inputs are only supported when the SumMode property of the governing fimath is set to SpecifyPrecision or KeepLSB.
- For variable-sized signals, you may see different results between the generated code and MATLAB.
- In the generated code, the output for variable-sized signals is computed using the SumMode property of the governing fimath.
- In MATLAB, the output for variable-sized signals is computed using the SumMode property of the governing fimath when both inputs are nonscalar. However, if either input is a scalar, MATLAB computes the output using the ProductMode of the governing fimath.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

See Also

plus | minus | times | uminus

ne, ~=

Package: embedded
Determine whether real-world values of two arrays are not equal

Syntax

A ~= B
ne(A,B)

Description

A ~= B returns a logical array with elements set to logical 1 ($t r u e$) where the real-world values of A and B are not equal, when A or B is a fi object. Otherwise, the element is logical 0 (false). The test compares both real and imaginary parts of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point value is cast to a fixed-point type that preserves the relative order of the value with respect to the value in the fixed-point fi object.
ne (A, B) is an alternate way to execute $A \sim=B$, but is rarely used.

Examples

Compare Two fi Objects

Use the ne function to determine whether the real-world values of two fi objects are not equal.

```
a = fi(pi);
b = fi(pi, 1, 32);
a ~= b
ans = logical
    1
```

Input a has a 16 -bit word length, while input b has a 32 -bit word length. The ne function returns 1 because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the relative order of the value with respect to the value in the fixed-point fi object. This behavior allows relational operations to work between fi objects and floating-point constants without introducing floating-point values in generated code.

```
a = fi(pi);
b = pi;
ne(a,b)
ans =
    logical
    1
```


Input Arguments

A, B - Operands

scalars | vectors | matrices | multidimensional arrays
Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".

```
Data Types: single | double | int8| int16| int32 | int64 | uint8|uint16|uint32 | uint64 |
fi
Complex Number Support: Yes
```


Version History

Introduced before R2006a

R2022a: Implicit expansion change affects arguments for operators

Behavior changed in R2022a
Starting in R2022a with the addition of implicit expansion for fi ne, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

R2022a: Improved accuracy in comparing fi objects and floating-point numbers using relational operators
 Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was cast to the same word length and signedness of the fi object. This could lead to incorrect results. For example,

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    0 0
```

```
fi(65534)
fi(65534.25) == 65534.25
ans =
    65534
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: -1
ans =
    logical
    I
```

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always return the mathematically correct behavior. The previous examples now gives these results:

```
fi(0,0,8) > [-1,10]
ans =
    1\times2 logical array
    1 0
```

Note that the updated algorithm may produce subtle, but accurate, results. For example:

```
fi(pi) == pi
ans =
    logical
    0
```

Simulation results for relational operations between fi objects and floating-point singles or doubles may be more accurate than in previous releases. The updated algorithm requires a modest wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Fixed-point signals with different biases are not supported.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

eq|ge|gt|le|lt

nearest

Round toward nearest integer with ties rounding toward positive infinity

Syntax

$y=n e a r e s t(a)$

Description

$y=$ nearest (a) rounds fi object a to the nearest integer or, in case of a tie, to the nearest integer in the direction of positive infinity, and returns the result in fi object y.

Examples

Use nearest on a Signed fi Object

The following example demonstrates how the nearest function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 3 .

```
a = fi(pi,1,8,3)
a =
    3.1250
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
            WordLength: 8
            FractionLength: 3
y = nearest(a)
y =
    3
            DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 6
            FractionLength: 0
```

The following example demonstrates how the nearest function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 12.

```
a = fi(0.025,1,8,12)
a =
    0.0249
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 8
            FractionLength: 12
```

```
y = nearest(a)
y =
    0
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 2
FractionLength: 0
```


Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least significant digit is 5 .

- The convergent function rounds ties to the nearest even integer.
- The nearest function rounds ties to the nearest integer toward positive infinity.
- The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

```
a = fi([-3.5:3.5]');
y = [a convergent(a) nearest(a) round(a)]
y =
    -3.5000 -4.0000 -3.0000 -4.0000
    -2.5000 -2.0000 -2.0000 -3.0000
    -1.5000 -2.0000 -1.0000 -2.0000
    -0.5000 0
    0.5000 0 1.0000 1.0000
    1.5000 2.0000 2.0000 2.0000
    2.5000 2.0000 3.0000 3.0000
    3.5000 3.9999 3.9999 3.9999
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 13
```


Input Arguments

a - Input fi array

scalar | vector | matrix | multidimensional array
Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.
nearest does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is trivial when the slope is an integer power of 2 and the bias is 0 .
Data Types: fi
Complex Number Support: Yes

Algorithms

- y and a have the same fimath object and DataType property.
- When the DataType property of a is single, double, or boolean, the numerictype of y is the same as that of a.
- When the fraction length of a is zero or negative, a is already an integer, and the numerictype of y is the same as that of a.
- When the fraction length of a is positive, the fraction length of y is 0 , its sign is the same as that of a, and its word length is the difference between the word length and the fraction length of a, plus one bit. If a is signed, then the minimum word length of y is 2 . If a is unsigned, then the minimum word length of y is 1 .

Version History

Introduced in R2008a

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder ${ }^{\mathrm{TM}}$.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

See Also

ceil|convergent|fix|floor|round

nearestDiv

Round the result of division toward the nearest integer

Syntax

```
\(y=n e a r e s t D i v(x, d)\)
\(\mathrm{y}=\) nearestDiv( \(\mathrm{x}, \mathrm{d}, \mathrm{m}\) )
```


Description

$y=$ nearestDiv (x, d) returns the result of x / d rounded to the nearest integer value.
$y=$ nearestDiv(x, d, m) returns the result of x / d rounded to the nearest multiple of m.
The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to contain both the largest and smallest possible solutions given the data type of x, and the values of d and m .

Examples

Divide and Round to Nearest

Perform a division operation and round to the nearest integer value.

```
nearestDiv(int16(201),10)
ans =
    2 0
        DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                        WordLength: 13
            FractionLength: 0
```

Perform a division operation and round to the nearest multiple of 7.

```
nearestDiv(int16(201),10,7)
ans =
    2 1
        DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
            WordLength: 13
            FractionLength: 0
```


Divide and Generate Code

Define a function that uses nearestDiv.

```
function y = nearestDiv_example(x,d)
y = nearestDiv(x,d);
end
Define inputs and execute the function in MATLAB®.
```

```
x = fi(pi);
```

x = fi(pi);
d = fi(2);
d = fi(2);
y = nearestDiv_example(x,d)
y = nearestDiv_example(x,d)
y =
y =
1
1
DataTypeMode: Fixed-point: binary point scaling
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
Signedness: Signed
WordLength: 2
WordLength: 2
FractionLength: 0

```
FractionLength: 0
```

To generate code for this function, the denominator d must be defined as a constant.

```
codegen nearestDiv_example -args {x, coder.Constant(d)}
Code generation successful.
```

Alternatively, you can define the denominator, d, as constant in the body of the code.

```
function y = nearestDiv10(x)
y = nearestDiv(x,10);
end
x = fi(5*pi);
y = nearestDiv10(x)
y =
    1
            DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 2
            FractionLength: 0
codegen nearestDiv10 -args {x}
Code generation successful.
```


Input Arguments

x - Dividend

scalar
Dividend, specified as a scalar.
Data Types: single | double | int8|int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi

d - Divisor

scalar

Divisor, specified as a scalar.
Data Types: single | double | int8 | int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi
m - Value to round to nearest multiple of
1 (default) | scalar
Value to round to nearest multiple of, specified as a scalar.
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|fi

Output Arguments

y - Result of division and round to floor

scalar
Result of division and round to floor, returned as a scalar.
The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to contain both the largest and smallest possible solutions given the data type of x, and the values of d and m .

Version History

Introduced in R2021a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
Slope-bias representation is not supported for fixed-point data types.
To generate code, the denominator d must be declared as constant.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.

See Also

ceilDiv|fixDiv|floorDiv

nextpow2

Package: embedded
Exponent of next higher power of 2 of fi object

Syntax

$\mathrm{P}=$ nextpow2(N)

Description

$P=$ nextpow2(N) returns the first P such that $2 . \wedge P>=a b s(N)$. By convention, nextpow2(0) returns zero.

Examples

Next Power of 2 of fi Object

Define a fi object and calculate the exponent for the next higher power of 2.

```
N = fi(1000,1,18,2);
P = nextpow2(N)
P =
    10
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 6
FractionLength: 0
```


Next Power of 2 of fi Values

Define a vector of fi values and calculate the exponents for the next power of 2 higher than those values.

```
N = fi([1 -2 3 -4 5 9 519],1,16,3,2);
P = nextpow2(N)
P =
```

```
    1 
```

 1
 DataTypeMode: Fixed-point: binary point scaling
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
    ```
            Signedness: Unsigned
```

WordLength: 5
FractionLength: 0

Input Arguments

N - Input values
scalar | vector | N-dimensional array
Input values, specified as a real-valued scalar, vector, or N-dimensional array.
Data Types: fi

Output Arguments

P - Exponent of next higher power of 2

scalar | vector | N-dimensional array
Exponent of next higher power of 2, returned as a scalar, vector, or N -dimensional array.
The output is returned as an unsigned fi object with binary-point scaling, a fraction length of zero, and the smallest word length which can represent the value of the largest returned exponent.

Version History

Introduced in R2020a

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
Slope-bias representation is not supported for code generation.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.

See Also

nextpow2|fi

nnz

Package: embedded
Number of nonzero elements in fi object

Syntax

$\mathrm{N}=\mathrm{nnz}(\mathrm{X})$

Description

$\mathrm{N}=\mathrm{nnz}(\mathrm{X})$ returns the number of nonzero elements in X .
When X is a built-in MATLAB type, floating-point fi object, or scaled double fi object, N is returned as a double. When X is a fixed-point fi object, N is returned as a uint32 if X has fewer than 2^{32} elements. Otherwise, N is returned as a uint64.

Examples

Number of Nonzero Elements in fi Object

Create a fi object and determine the number of nonzero elements it contains.

```
p = fi([],1,24,12);
X = eye(2,3,'like',p)
X =
        1 0 0
            0 1 0
                DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                        WordLength: 24
            FractionLength: 12
N = nnz(X)
N =
    uint32
```

 2

Input Arguments

X - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double | int8|int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi
Complex Number Support: Yes

Version History

Introduced in R2020b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.

See Also

fi|nnz

noperations

Package: embedded
Number of quantization operations by quantizer object

Syntax

a = noperations(q)

Description

$\mathrm{a}=$ noperations(q) returns the number of quantization operations during a call to quantize (q, \ldots) for quantizer object q. This value accumulates over successive calls to quantize. You reset the value of noperations to zero by issuing the command reset (q) or resetlog(q).

Examples

Count Number of Quantization Operations by Quantizer Object

Create a default quantizer object, use it to quantize a vector of values, then return the number of quantization operations performed by the quantizer object.

```
q = quantizer;
y = quantize(q,-20:10);
noperations(q)
Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)
ans =
    3 1
```


Input Arguments

q - Input quantizer object

quantizer object
Input quantizer object.
Example: q = quantizer

Algorithms

Each time any data element is quantized, noperations is incremented by one. The real and complex parts are counted separately. For example, (complex*complex) counts four quantization operations for products and two for sum, because $(a+b i) *(c+d i)=(a * c-b * d)+(a * d+b * c)$. In contrast, (real*real) counts one quantization operation.

In addition, the real and complex parts of the inputs are quantized individually. As a result, for a complex input of length 204 elements, noperations counts 408 quantizations: 204 for the real part of the input and 204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all expanded from real values to complex values, with a corresponding increase in the number of quantization operations recorded by noperations. In concrete terms, (real*real) requires fewer quantizations than (real*complex) and (complex*complex). Changing all the values to complex because one is complex, such as the coefficient, makes the (real*real) into (real*complex), raising noperations count.

Version History

Introduced before R2006a

See Also

quantizer | quantize | reset | resetlog|maxlog|minlog

normalizedReciprocal

Compute normalized reciprocal

Syntax

[y, e] = normalizedReciprocal(u)

Description

[y,e] = normalizedReciprocal(u) returns y and e such that (2.^e).*y = 1./u and $0.5<$ $\operatorname{abs}(\mathrm{y})<=1$.

- If $u=0$ and u is a fixed-point or scaled-double data type, then $y=2-e p s(y)$ and $e=$ $2^{\wedge}($ nextpow $2(w))-w+f$, where w is the word length of u and f is the fraction length of u.
- If $u=0$ and u is a floating-point data type, then $y=\operatorname{Inf}$ and $t=1$.

Examples

Compute Normalized Reciprocal of a Fixed-Point Vector

This example shows how to compute the element-wise normalized reciprocal of a vector of fixed-point values.

```
u = fi([-pi,0.01,pi])
u =
    -3.1416 0.0100 3.1416
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 13
[y,e] = normalizedReciprocal(u)
y =
    -0.6367 0.7806 0.6367
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 14
e = 1x3 int32 row vector
    -1 7 -1
```


Input Arguments

u - Input to take normalized reciprocal of
scalar | vector | matrix | N-dimensional array
Input to take the normalized reciprocal of, specified as a real-valued scalar, vector, matrix, or N dimensional array.
Data Types: single | double | fi

Output Arguments

y - Normalized reciprocal

scalar | vector | matrix | N-dimensional array
Normalized reciprocal that satisfies $0.5<\operatorname{abs}(\mathrm{y})<=1$ and $\left(2 . \wedge^{\mathrm{e}}\right) . * \mathrm{y}=1 . / \mathrm{u}$, returned as a scalar, vector, matrix, or N-dimensional array.

- If the input u is a signed fixed-point or scaled-double data type with word length w, then y is a signed fixed-point or scaled-double with word length w and fraction length $w-2$.
- If the input \mathbf{u} is an unsigned fixed-point or scaled-double data type with word length w, then y is an unsigned fixed-point or scaled-double with word length w and fraction length $w-1$.
- If the input u is a double, then y is a double.
- If the input u is a single, the y is a single.

e-Exponent

scalar | vector | matrix | N-dimensional array
Exponent that satisfies $0.5<\operatorname{abs}(\mathrm{y})<=1$ and ($2 .{ }^{\wedge} \mathrm{e}$).*y $=1 . / \mathrm{u}$, returned as an integer scalar, vector, matrix, or N -dimensional array.

Version History

Introduced in R2020a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
Slope-bias representation is not supported for fixed-point data types.

See Also

Functions

fi

Blocks

Normalized Reciprocal HDL Optimized

Topics

"How to Use HDL Optimized Normalized Reciprocal"

noverflows

Number of overflows

Syntax

y = noverflows(a)
$y=$ noverflows(q)

Description

$y=$ noverflows(a) returns the number of overflows of fi object a since logging was turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a fi object using the resetlog function.
y = noverflows(q) returns the accumulated number of overflows resulting from quantization operations performed by a quantizer object q.

Version History
 Introduced before R2006a

See Also

maxlog|minlog|nunderflows|resetlog

num2bin

Convert number to binary representation using quantizer object

Syntax

```
y = num2bin(q,x)
```


Description

$y=$ num2bin (q, x) converts the numeric array x into a binary character vector returned in y using the data type properties specified by the quantizer object q .

If x is a cell array containing numeric matrices, then x will be a cell array of the same dimension containing binary strings. If x is a structure, then each numeric field of x is converted to binary.
$[y 1, y 2, \ldots]=$ num2bin $(q, x 1, x 2, \ldots)$ converts the numeric matrices $x 1, x 2, \ldots$ to binary strings $y 1, y 2$,

Examples

Convert Numeric Matrix to Binary Character Vector

Convert a matrix of numeric values to a binary character vector using the attributes specified by a quantizer object.

```
x = magic(3)/9
x = 3\times3
    0.8889 0.1111 0.6667
    0.3333 0.5556 0.7778
    0.4444 1.0000 0.2222
q = quantizer([5,3])
q =
            DataMode = fixed
            RoundMode = floor
        OverflowMode = saturate
            Format = [5 3 3]
y = num2bin(q,x)
y = 9x5 char array
    '00111'
    '00010'
    '00011'
    '00000 '
```

```
'00100'
'01000'
'00101'
'00110'
'00001'
```


Convert Between Binary String and Numeric Array

Convert between a binary character vector and a numeric array using the properties specified in a quantizer object.

Convert Numeric Array to Binary String

Create a quantizer object specifying a word length of 4 bits and a fraction length of 3 bits. The other properties of the quantizer object take the default values of specifying a signed, fixed-point data type, rounding towards negative infinity, and saturate on overflow.

```
q = quantizer([4 3])
```

q =

$$
\begin{aligned}
\text { DataMode } & =\text { fixed } \\
\text { RoundMode } & =\text { floor } \\
\text { OverflowMode } & =\text { saturate } \\
\text { Format } & =\left[\begin{array}{ll}
4 & 3
\end{array}\right]
\end{aligned}
$$

Create an array of numeric values.

```
[a,b] = range(q);
x = (b:-eps(q):a)
x = 1×16
    0.8750 0.7500 0.6250 0.5000 0.3750 0.2500 0.1250 0.0.1250
```

Convert the numeric vector x to binary representation using the properties specified by the quantizer object q. Note that num2bin always returns the binary representations in a column.

```
b = num2bin(q,x)
b = 16x4 char array
    '0111'
    '0110'
    '0101'
    '0100'
    '0011'
    '0010'
    '0001'
    '0000'
    '1111'
    '1110'
    '1101'
    '1100'
```

Use bin2num to perform the inverse operation.
$y=\operatorname{bin} 2 \operatorname{num}(q, b)$
$y=16 \times 1$
0.8750
0.7500
0.6250
0.5000
0.3750
0.2500
0.1250

0
-0. 1250
-0. 2500

Convert Binary String to Numeric Array

All of the 3-bit fixed-point two's-complement numbers in fractional form are given by:

```
q = quantizer([3 2]);
b = ['011 111'
    '010 110'
    '001 101'
    '000 100'];
```

Use bin2num to view the numeric equivalents of these values.

```
x = bin2num(q,b)
x = 4×2
    0.7500 -0.2500
    0.5000 -0.5000
    0.2500 -0.7500
        0-1.0000
```


Input Arguments

q - Data type properties to use for conversion

quantizer object
Data type properties to use for conversion, specified as a quantizer object.
Example: q = quantizer([16 15]);
x - Numeric input array
scalar | vector | matrix | multidimensional array | cell array | structure

Numeric input array, specified as a scalar, vector, matrix, multidimensional array, cell array, or structure.

Data Types: single | double | int8 | int16| int32|int64|uint8|uint16|uint32|uint64| struct|cell

Tips

- num2bin and bin2num are inverses of one another. Note that num2bin always returns the binary representations in a column.

Algorithms

- The fixed-point binary representation is two's complement.
- The floating-point binary representation is in IEEE Standard 754 style.

Version History

Introduced before R2006a

See Also

bin2num | quantizer | hex2num | num2hex | num2int

num2hex

Convert number to hexadecimal equivalent using quantizer object

Syntax

$y=\operatorname{num} 2 h e x(q, x)$

Description

$y=$ num2hex (q, x) converts numeric matrix x into a hexadecimal string returned in y. The attributes of the number are specified by the quantizer object q.
$[y 1, y 2, \ldots]=$ num2hex $(q, x 1, x 2, \ldots)$ converts numeric matrices $x 1, x 2, \ldots$ to hexadecimal strings $y 1$, y2,....

Examples

Convert Numeric Matrix to Hexadecimal

Use num2hex to convert a matrix of numeric values to hexadecimal representation.

Convert Floating-Point Values

This is a floating-point example using a quantizer object q that has a 6-bit word length and a 3-bit exponent length.

```
x = magic(3);
q = quantizer('float',[6 3]);
y = num2hex(q,x)
y = 9x2 char array
    '18'
    '12'
    '14'
    '0c'
    '15'
    '18'
    '16'
    '17'
    '10'
```


Convert Fixed-Point Values

All of the 4-bit fixed-point two's complement numbers in fractional form are given by:
q = quantizer([4 3]);
$\mathrm{x}=\left[\begin{array}{rrrr}0.875 & 0.375 & -0.125 & -0.625 \\ 0.750 & 0.250 & -0.250 & -0.750 \\ 0.625 & 0.125 & -0.375 & -0.875 \\ 0.500 & 0 & -0.500 & -1.000\end{array}\right.$
$y=\operatorname{num} 2 \operatorname{hex}(q, x)$

```
y = 16x1 char array
    '7'
    '6'
    '5'
    '4'
    '3'
    '2'
    '1'
    '0'
    'f'
    'e'
    'd'
    'c'
    'b'
    'a'
    '9'
    '8'
```


Input Arguments

q - Attributes of the number

quantizer object
Attributes of the number, specified as a quantizer object.

x - Numeric values to convert

scalar | vector | matrix | multidimensional array | cell array
Numeric values to convert, specified as a scalar, vector, matrix, multidimensional array, or cell array of doubles.

Data Types: double | cell
Complex Number Support: Yes

Output Arguments

y - Hexadecimal strings

column vector | cell array
Hexadecimal strings, returned as a column vector. If x is a cell array containing numeric matrices, then y is returned as a cell array of the same dimension containing hexadecimal strings.

Tips

- num2hex and hex2num are inverses of each other, except that hex2num returns the hexadecimal values in a column.

Algorithms

- For fixed-point quantizer objects, the representation is two's complement.
- For floating-point quantizer objects, the representation is IEEE Standard 754 style.

For example, for q = quantizer('double'):

```
q = quantizer('double');
num2hex(q,nan)
ans =
    'fff8000000000000'
```

The leading fraction bit is 1 , and all the other fraction bits are 0 . Sign bit is 1 , and exponent bits are all 1.

```
num2hex(q,inf)
ans =
    '7ff0000000000000'
```

Sign bit is 0 , exponent bits are all 1 , and all fraction bits are 0.

```
num2hex(q,-inf)
ans =
    'fff0000000000000'
```

Sign bit is 1 , exponent bits are all 1 , and all fraction bits are 0.

Version History

Introduced before R2006a

See Also
bin2num | hex2num | num2bin | num2int | quantizer

num2int

Convert number to signed integer using quantizer object

Syntax

$y=n u m 2 i n t(q, x)$

Description

$y=$ num2int (q, x) converts numeric values in x to output y containing integers using the data type properties specified by the fixed-point quantizer object q. If x is a cell array containing numeric matrices, then y will be a cell array of the same dimension.
$[y 1, y 2, \ldots]=\operatorname{num} 2 \operatorname{int}(q, x 1, x 2, \ldots)$ uses q to convert numeric values $x 1, x 2, \ldots$ to integers $y 1, y 2, \ldots$.

Examples

Convert Matrix of Numeric Values to Signed Integer

All the two's complement 4-bit numbers in fractional form are given by:

```
x = [0.875 0.375 -0.125 -0.625
    0.750 0.250-0.250-0.750
    0.625 0.125 -0.375 -0.875
    0.500 0.000 -0.500 -1.000];
```

Define a quantizer object to use for conversion.
$\mathrm{q}=$ quantizer([4 3]);
Use num2int to convert to signed integer.

```
y = num2int(q,x)
```

$y=$

7	3	-1	-5
6	2	-2	-6
5	1	-3	-7
4	0	-4	-8

Input Arguments

q - Data type format to use for conversion

fixed-point quantizer object
Data type format to use for conversion, specified as a fixed-point quantizer object.
Example: $q=$ quantizer([5 4]);

x - Numeric values to convert

scalar | vector | matrix | multidimensional array | cell array
Numeric values to convert, specified as a scalar, vector, matrix, multidimensional array, or cell array.
Data Types: single | double | int8 | int16|int32 | int64 |uint8|uint16|uint32|uint64 | cell
Complex Number Support: Yes

Algorithms

- When q is a fixed-point quantizer object, f is equal to $\mathrm{fractionlength(q)}$,$\mathrm{and} x is numeric:$

$$
y=x \times 2^{f}
$$

- num2int is meaningful only for fixed-point quantizer objects. When q is a floating-point quantizer object, x is returned unchanged ($y=x$).
- y is returned as a double, but the numeric values will be integers, also known as floating-point integers or flints.

Version History
 Introduced before R2006a

See Also

bin2num | hex2num | num2bin | num2hex | quantizer

num2str

Convert numbers to character array

Syntax

$s=n u m 2 s t r(A)$
$s=$ num2str(A,precision)
s = num2str(A,formatSpec)

Description

$s=$ num2str(A) converts fi object A into a character array representation. The output is suitable for input to the eval function such that eval(s) produces the original fi object exactly.
$\mathrm{s}=$ num2str(A, precision) converts fi object A to a character array representation using the number of digits of precision specified by precision.
$s=$ num2str(A,formatSpec) applies a format specified by formatSpec to all elements of A.

Examples

Convert a fi Object to a Character Vector

Create a fi object, A, and convert it to a character vector.
$A=f i(p i)$
A $=$
3.1416

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 13
$\mathrm{S}=$ num2str(A$)$
S =
'3.1416'

Convert a fi Object to a Character with Specified Precision

Create a fi object and convert it to a character vector with 8 digits of precision.
A $=f i(p i)$
A $=$
3.1416

```
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: 13
    '3.1416016'
```

$S=\operatorname{num} 2 s t r(A, 8)$
$S=$

Input Arguments

A - Input array

numeric array
Input array, specified as a numeric array.
Data Types: fi | double | single |int8|int16|int32 | int64 | uint8|uint16|uint32| uint64| logical
Complex Number Support: Yes

precision - Number of digits of precision

positive integer
Maximum number of significant digits in the output string, specified as a positive integer.
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64

formatSpec - Format of output fields

formatting operators
Format of the output fields, specified using formatting operators. formatSpec also can include ordinary text and special characters.

For more information on formatting operators, see the num2str reference page in the MATLAB documentation.

Output Arguments

s - Text representation of input array
character array
Text representation of the input array, returned as a character array.

Version History
 Introduced in R2016a

See Also

num2str|mat2str|tostring

numel

Number of data elements in fi array

Syntax

$\mathrm{n}=\operatorname{numel}(\mathrm{A})$

Description

$\mathrm{n}=$ numel(A) returns the number of elements, n , in fi array A .
Using numel in your MATLAB code returns the same result for built-in types and fi objects. Use numel to write data-type independent MATLAB code for array handling.

Examples

Number of Elements in 2-D fi Array

Create a 2-by-3- array of fi objects.

```
X = fi(ones(2,3),1,24,12)
X =
    l lll
        DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 12
```

numel counts 6 elements in the matrix.
$\mathrm{n}=\operatorname{numel}(\mathrm{X})$
$\mathrm{n}=6$

Number of Elements in Multidimensional fi Array

Create a 2-by-3-by-4 array of fi objects.
$X=$ fi(ones $(2,3,4), 1,24,12)$
X =
$(:,:, 1)=$

$(:,:, 2)=$
$1 \quad 1 \quad 1$

numel counts 24 elements in the matrix.
$\mathrm{n}=\operatorname{numel}(\mathrm{X})$
$\mathrm{n}=24$

Input Arguments

A - Input array
scalar | vector \mid matrix \mid multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.
Complex Number Support: Yes

Version History

Introduced in R2013b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

numel

numerictype

Construct an embedded. numerictype object describing fixed-point or floating-point data type

Syntax

$\mathrm{T}=$ numerictype
T = numerictype(s)
$\mathrm{T}=$ numerictype(s,w)
T = numerictype(s,w,f)
T = numerictype(s,w,slope,bias)
T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)
T = numerictype(__, Name,Value)
T = numerictype(T1,Name,Value)
T = numerictype('Double')
T = numerictype('Single')
T = numerictype('Half')
T = numerictype('Boolean')

Description

$\mathrm{T}=$ numerictype creates a default numerictype object.
T = numerictype(s) creates a fixed-point numerictype object with unspecified scaling, a signed property value of s, and a 16 -bit word length.

T = numerictype(s,w) creates a fixed-point numerictype object with unspecified scaling, a signed property value of s, and word length of w.

T = numerictype(s, w, f) creates a fixed-point numerictype object with binary point scaling, a signed property value of s, word length of w, and fraction length of f.

T = numerictype(s,w,slope,bias) creates a fixed-point numerictype object with slope and bias scaling, a signed property value of s, word length of $w, s l o p e$, and bias.

T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias) creates a fixed-point numerictype object with slope and bias scaling, a signed property value of s, word length of w, slopeadjustmentfactor, and bias.

T = numerictype(\qquad ,Name, Value) allows you to set properties using name-value pairs. All properties that you do not specify a value for are assigned their default values.

T = numerictype(T1,Name, Value) allows you to make a copy, T1, of an existing numerictype object, T , while modifying any or all of the property values.

T = numerictype('Double') creates a numerictype object of data type double.
T = numerictype('Single') creates a numerictype object of data type single.
T = numerictype('Half') creates a numerictype object of data type half.
$\mathrm{T}=$ numerictype('Boolean') creates a numerictype object of data type Boolean.

Examples

Create a Default numerictype Object

This example shows how to create a numerictype object with default property settings.
$\mathrm{T}=$ numerictype
$T=$

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 16
FractionLength: 15
```


Create a numerictype Object with Default Word Length and Scaling

This example shows how to create a numerictype object with the default word length and scaling by omitting the arguments for word length, w, and fraction length, f.
$\mathrm{T}=$ numerictype(1)
$\mathrm{T}=$

```
DataTypeMode: Fixed-point: unspecified scaling
    Signedness: Signed
    WordLength: 16
```

The object is signed, with a word length of 16 bits and unspecified scaling.
You can use the signedness argument, s, to create an unsigned numerictype object.
$\mathrm{T}=$ numerictype(0)
$T=$

```
DataTypeMode: Fixed-point: unspecified scaling
    Signedness: Unsigned
    WordLength: 16
```

The object is has the default word length of 16 bits and unspecified scaling.

Create a numerictype Object with Unspecified Scaling

This example shows how to create a numerictype object with unspecified scaling by omitting the fraction length argument, f.
$\mathrm{T}=$ numerictype $(1,32)$

```
DataTypeMode: Fixed-point: unspecified scaling
    Signedness: Signed
    WordLength: 32
```

The object is signed, with a 32-bit word length.

Create a numerictype Object with Specified Word and Fraction Length

This example shows how to create a signed numerictype object with binary-point scaling, a 32-bit word length, and 30 -bit fraction length.
$T=$ numerictype (1, 32, 30)
$T=$

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 32
FractionLength: 30

Create a numerictype Object with Slope and Bias Scaling

This example shows how to create a numerictype object with slope and bias scaling. The real-world value of a slope and bias scaled number is represented by:

$$
\text { realworldvalue }=\text { (slope } \times \text { integer })+ \text { bias }
$$

Create a numerictype object that describes a signed, fixed-point data type with a word length of 16 bits, a slope of $2^{\wedge}-2$, and a bias of 4 .
$\mathrm{T}=$ numerictype(1,16,2^-2,4)
$\mathrm{T}=$

```
DataTypeMode: Fixed-point: slope and bias scaling
    Signedness: Signed
    WordLength: 16
            Slope: 0.25
            Bias: 4
```

Alternatively, the slope can be represented by:

$$
\text { slope }=\text { slopeadjustmentfactor } \times 2^{\text {fixedexponent }}
$$

Create a numerictype object that describes a signed, fixed-point data type with a word length of 16 bits, a slope adjustment factor of 1 , a fixed exponent of -2 , and a bias of 4 .

```
T = numerictype(1,16,1,-2,4)
```

$\mathrm{T}=$

```
DataTypeMode: Fixed-point: slope and bias scaling
    Signedness: Signed
    WordLength: 16
        Slope: 0.25
            Bias: 4
```


Create a numerictype Object with Specified Property Values

This example shows how to use name-value pairs to set numerictype properties at object creation.

```
T = numerictype('Signed',true,...
    'DataTypeMode',...
    'Fixed-point: slope and bias scaling', ...
    'WordLength',32,...
    'Slope',2^-2,...
    'Bias',4)
T =
DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: }3
            Slope: 0.25
            Bias: 4
```


Create a numerictype Object with Unspecified Sign

This example shows how to create a numerictype object with an unspecified sign by using namevalue pairs to set the Signedness property to Auto.

T = numerictype('Signedness','Auto')
$\mathrm{T}=$

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Auto
    WordLength: 16
FractionLength: 15
```


Create a numerictype Object with Specified Data Type

This example shows how to create a numerictype object with a specific data type by using arguments and name-value pairs.

```
T = numerictype(0,24,12,'DataType','ScaledDouble')
```

$\mathrm{T}=$

DataTypeMode: Scaled double: binary point scaling
Signedness: Unsigned
WordLength: 24
FractionLength: 12
The returned numerictype object, T , is unsigned, and has a word length of 24 bits, a fraction length of 12 bits, and a data type set to scaled double.

Create a Double, Single, Half, or Boolean numerictype Object

This example shows how to create a numerictype object with data type set to double, single, half, or Boolean at object creation.

Create a numerictype object with the data type mode set to double.

```
T = numerictype('Double')
```

$T=$

DataTypeMode: Double
Create a numerictype object with the data type mode set to single.

```
T = numerictype('Single')
```

$T=$

DataTypeMode: Single
Create a numerictype object with the data type mode set to half.

```
T = numerictype('Half')
```

$T=$

DataTypeMode: Half
Create a numerictype object with the data type mode set to Boolean.
T = numerictype('Boolean')
$T=$

DataTypeMode: Boolean

Input Arguments

s - Whether object is signed

true or 1 (default) | false or 0
Whether the object is signed, specified as a numeric or logical 1 (true) or 0 (false).
Example: $\mathrm{T}=$ numerictype(true)
Data Types: logical
w- Word length
16 (default) | positive integer
Word length, in bits, of the stored integer value, specified as a positive integer.
Example: T = numerictype(true,16)
Data Types: half|single | double |int8|int16|int32|int64|uint8|uint16|uint32| uint64

f - Fraction length

15 (default) | integer
Fraction length, in bits, of the stored integer value, specified as an integer.
Fraction length can be greater than word length. For more information, see "Binary Point Interpretation" (Fixed-Point Designer).
Example: T = numerictype(true,16,15)
Data Types: half | single | double | int8|int16|int32|int64|uint8|uint16|uint32| uint64
slope - Slope
3.0518e-05 (default) | finite floating-point number greater than zero

Slope, specified as a finite floating-point number greater than zero.
The slope and the bias determine the scaling of a fixed-point number.

Note

$$
\text { slope }=\text { slopead justmentfactor } \times 2^{\text {fixedexponent }}
$$

Changing one of these properties affects the others.

```
Example: T = numerictype(true,16,2^-2,4)
Data Types: half| single| double| int8| int16| int32| int64|uint8|uint16||int32|
uint64
```


bias - Bias associated with object

0 (default) | floating-point number
Bias associated with the object, specified as a floating-point number.

The slope and the bias determine the scaling of a fixed-point number.
Example: $T=$ numerictype(true, $\left.16,2^{\wedge}-2,4\right)$
Data Types: half|single| double | int8| int16|int32|int64|uint8|uint16|uint32| uint64
slopeadjustmentfactor - Slope adjustment factor
1 (default) | positive scalar
Slope adjustment factor, specified as a positive scalar.
The slope adjustment factor must be greater than or equal to 1 and less than 2 . If you input a slopeadjustmentfactor outside this range, the numerictype object automatically applies a scaling normalization to the values of slopeadjustmentfactor and fixedexponent so that the revised slope adjustment factor is greater than or equal to 1 and less than 2 , and maintains the value of the slope.

The slope adjustment is equivalent to the fractional slope of a fixed-point number.

Note

$$
\text { slope }=\text { slopead justmentfactor } \times 2^{\text {fixedexponent }}
$$

Changing one of these properties affects the others.

```
Data Types: half|single| double| int8| int16|int32|int64|uint8|uint16|uint32|
uint64
```


fixedexponent - Fixed-point exponent

- 15 (default) | integer

Fixed-point exponent associated with the object, specified as an integer.

Note The FixedExponent property is the negative of the FractionLength. Changing one property changes the other.

```
Data Types: half|single| double| int8| int16| int32|int64|uint8|uint16|uint32|
uint64
```


Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = numerictype('DataTypeMode','Fixed-point: binary point scaling','DataType0verride','Inherit')

Note When you create a numerictype object by using name-value pairs, Fixed-Point Designer creates a default numerictype object, and then, for each property name you specify in the
constructor, assigns the corresponding value. This behavior differs from the behavior that occurs when you use a syntax such as $\mathrm{T}=$ numerictype (s, w). See "Example: Construct a numerictype Object with Property Name and Property Value Pairs".

Bias - Bias

0 (default) | floating-point number
Bias, specified as a floating-point number.
The slope and bias determine the scaling of a fixed-point number.

```
Example: T = numerictype('DataTypeMode','Fixed-point: slope and bias
scaling','Bias',4)
Data Types: half| single | double | int8 | int16 | int32 | int64 | uint8 | uint16| uint32 | uint64
```


DataType - Data type category

'Fixed' (default)|'Boolean'|'Double' | 'ScaledDouble' |'Single' |'Half'
Data type category, specified as one of these values:

- 'Fixed' - Fixed-point or integer data type
- 'Boolean' - Built-in MATLAB Boolean data type
- 'Double' - Built-in MATLAB double data type
- 'ScaledDouble' - Scaled double data type
- 'Single' - Built-in MATLAB single data type
- 'Half' - MATLAB half-precision data type

Example: T = numerictype('Double')
Data Types: char

DataTypeMode - Data type and scaling mode

'Fixed-point: binary point scaling' (default)|'Fixed-point: slope and bias scaling'|'Fixed-point: unspecified scaling'|'Scaled double: binary point scaling'|'Scaled double: slope and bias scaling'|'Scaled double: unspecified scaling' | 'Double'|'Single'|'Half'|'Boolean'

Data type and scaling mode associated with the object, specified as one of these values:

- 'Fixed-point: binary point scaling' - Fixed-point data type and scaling defined by the word length and fraction length
- 'Fixed-point: slope and bias scaling' - Fixed-point data type and scaling defined by the slope and bias
- 'Fixed-point: unspecified scaling' - Fixed-point data type with unspecified scaling
- 'Scaled double: binary point scaling' - Double data type with fixed-point word length and fraction length information retained
- 'Scaled double: slope and bias scaling' - Double data type with fixed-point slope and bias information retained
- 'Scaled double: unspecified scaling' - Double data type with unspecified fixed-point scaling
- 'Double' - Built-in double
- 'Single' - Built-in single
- 'Half' - MATLAB half-precision data type
- 'Boolean' - Built-in boolean

Example: T = numerictype('DataTypeMode','Fixed-point: binary point scaling')
Data Types: char

DataType0verride - Data type override settings

'Inherit' (default) | 'Off'
Data type override settings, specified as one of these values:

- 'Inherit' - Turn on DataType0verride
- 'Off' - Turn off DataTypeOverride

Note The DataTypeOverride property is not visible when its value is set to the default, 'Inherit'.

Example: T = numerictype('DataType0verride', 'Off')
Data Types: char
FixedExponent - Fixed-point exponent

- 15 (default) | integer

Fixed-point exponent associated with the object, specified as an integer.

Note The FixedExponent property is the negative of the FractionLength. Changing one property changes the other.

Example: T = numerictype('FixedExponent' , -12)
Data Types: half|single|double|int8|int16|int32|int64|uint8|uint16|uint32| uint64

FractionLength - Fraction length of the stored integer value
best precision (default) | integer
Fraction length, in bits, of the stored integer value, specified as an integer.
The default value is the best precision fraction length based on the value of the object and the word length.

```
Example: T = numerictype('FractionLength',12)
Data Types: half|single| double| int8| int16| int32|int64|uint8|uint16|uint32|
uint64
```


Scaling - Fixed-point scaling mode

'BinaryPoint' (default)|'SlopeBias'|'Unspecified'

Fixed-point scaling mode of the object, specified as one of these values:

- 'BinaryPoint' - Scaling for the numerictype object is defined by the fraction length.
- 'SlopeBias' - Scaling for the numerictype object is defined by the slope and bias.
- 'Unspecified ' - Temporary setting that is only allowed at numerictype object creation, and allows for the automatic assignment of a best-precision binary point scaling.

Example: T = numerictype('Scaling','BinaryPoint')
Data Types: char

Signed - Whether the object is signed

true or 1 (default) | false or 0
Whether the object is signed, specified as a numeric or logical 1 (true) or 0 (false).

Note Although the Signed property is still supported, the Signedness property always appears in the numerictype object display. If you choose to change or set the signedness of your numerictype object using the Signed property, MATLAB updates the corresponding value of the Signedness property.

Example: $\mathbf{T}=$ numerictype('Signed',true)
Data Types: logical

Signedness - Whether the object is signed

'Signed' (default)|'Unsigned'| 'Auto'
Whether the object is signed, specified as one of these values:

- 'Signed ' - Signed
- 'Unsigned ' - Unsigned
- 'Auto' - Unspecified sign

Note Although you can create numerictype objects with an unspecified sign (Signedness: Auto), all fixed-point numerictype objects must have a Signedness of Signed or Unsigned. If you use a numerictype object with Signedness: Auto to construct a numerictype object, the Signedness property of the numerictype object automatically defaults to Signed.

Example: T = numerictype('Signedness','Signed')

Data Types: char

Slope - Slope

3.0518e-05 (default) | finite, positive floating-point number

Slope, specified as a finite, positive floating-point number.
The slope and bias determine the scaling of a fixed-point number.

Note

$$
\text { slope }=\text { slopead justmentfactor } \times 2^{\text {fixedexponent }}
$$

Changing one of these properties affects the others.

```
Example: T = numerictype('DataTypeMode','Fixed-point: slope and bias
scaling','Slope',2^-2)
Data Types: half| single| double | int8| int16 | int32|int64|uint8|uint16|uint32|
uint64
```


SlopeAdjustmentFactor - Slope adjustment factor

1 (default) | positive scalar
Slope adjustment factor, specified as a positive scalar.
The slope adjustment factor must be greater than or equal to 1 and less than 2 . If you input a slopeadjustment factor outside this range, the numerictype object automatically applies a scaling normalization to the values of slopeadjustmentfactor and fixedexponent so that the revised slope adjustment factor is greater than or equal to 1 and less than 2 , and maintains the value of the slope.

The slope adjustment is equivalent to the fractional slope of a fixed-point number.

Note

$$
\text { slope }=\text { slopead justmentfactor } \times 2^{\text {fixedexponent }}
$$

Changing one of these properties affects the others.

```
Example: T = numerictype('DataTypeMode','Fixed-point: slope and bias
scaling','SlopeAdjustmentFactor',1.5)
Data Types: half| single| double|int8| int16| int32|int64|uint8|uint16|uint32|
uint64
```


WordLength - Word length of the stored integer value

16 (default) | positive integer
Word length, in bits, of the stored integer value, specified as a positive integer.
Example: T = numerictype('WordLength', 16)
Data Types: half | single | double | int8| int16|int32|int64|uint8|uint16|uint32| uint64

Version History

Introduced before R2006a

R2021a: Inexact property names for fi, fimath, and numerictype objects not supported

In previous releases, inexact property names for fi, fimath, and numerictype objects would result in a warning. In R2021a, support for inexact property names was removed. Use exact property names instead.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Fixed-point signals coming in to a MATLAB Function block from Simulink are assigned a numerictype object that is populated with the signal's data type and scaling information.
- Returns the data type when the input is a non fixed-point signal.
- Use to create numerictype objects in generated code.
- All numerictype object properties related to the data type must be constant.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

See Also

fi|fimath|fipref|quantizer

Topics

"numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects"
"numerictype Object Properties"

NumericTypeScope

Determine fixed-point data type

Description

The NumericTypeScope object provides information about the dynamic range of your data. The scope provides a visual representation of the dynamic range of your data in the form of a log2 histogram.

Creation

Syntax

H = NumericTypeScope

Description

H = NumericTypeScope returns a NumericTypeScope object. After you create a NumericTypeScope object, use the step function to process your data and view the NumericTypeScope.

The NumericTypeScope window visualizes the dynamic range of a fi object in a log2 histogram. Bit weights appear along the x-axis of the histogram and the percentage of occurrences along the y axis. Each bin of the histogram corresponds to a bit in the binary word. For example, 2^{0} corresponds to the first integer bit in the binary word, and 2^{-1} corresponds to the first fractional bit in the binary word.

The NumericTypeScope identifies potential overflows and underflows based on the current data type. The scope indicates values that may cause overflow or underflow, or are in range of the data type by color-coding the histogram bars as follows:

- Blue - Histogram bin contains values that are in range of the current data type.
- Red - Histogram bin contains values that may cause overflow.
- Yellow - Histogram bin contains values that may cause underflow.

The table below the histogram breaks down each category of values by their signed value.
The Data Browser pane displays the current fixed-point data type as the Proposed Data Type. You can change the data type by entering a value directly in this box.

Object Functions

step Process data and visualize dynamic range
show Open NumericTypeScope object
reset Clear stored information from NumericTypeScope object

Examples

View the Dynamic Range of a fi Object

Use the NumericTypeScope to view the dynamic range of a fi object.
Create a fi object and set the DataTypeOverride to ScaledDoubles.
$a=f i(m a g i c(10), 1,8,2) ;$
$b=f i([a ; 2 . \wedge(-5: 4)], 1,8,3)$;
fp = fipref;
initialDTOSetting = fp.DataTypeOverride;
fp.DataTypeOverride = 'ScaledDoubles';
Create a NumericTypeScope object. You can use the reset method to ensure that all stored information is cleared from the NumericTypeScope object h .

```
h = NumericTypeScope;
reset(h)
```

Use the step method to process your data and visualize the dynamic range of the fi object b.
step(h,b);

Closing the NumericTypeScope window does not delete the object from your workspace. Close the NumericTypeScope window and reopen it using the show function.
show(h);
The NumericTypeScope displays a log2 histogram which shows that the values appear both outside of the range and below the precision of the data type of the variable. Pause on one bar of the histogram to view the percentage of the total values that are represented by that bar.

Simulation Data Overview using numerictype $(1,8,3)$

Data Browser 0
Proposed Data Type:
numerictype($1,8,3$)

In this case, the data type of b is numerictype $(1,8,3)$. The numerictype $(1,8,3)$ data type provides 5 integer bits, including the signed bit, and 3 fractional bits. Thus, this data type can represent only values between $-2^{\wedge} 4$ and $2 \wedge 4-2^{\wedge}-3$ (from -16 to 15.8750). Given the range and precision of this data type, values greater than $2^{\wedge} 4$ fall outside the range and values less than $2 \wedge-3$ fall below the precision of the data type.

The NumericTypeScope shows that values requiring bits 5, 6, and 7 are outside the range and values requiring fractional bits 4 and 5 are below precision. Given this information, you can prevent values that are outside range and below precision by changing the data type of the variable b to numerictype $(0,13,5)$.

Given this information, you can prevent values that are outside range and below precision by changing the data type of the variable b to numerictype $(0,13,5)$. In the NumericTypeScope, enter numerictype $(0,13,5)$ in the Proposed Data Type box.

Simulation Data Overview using numerictype(0,13,5)

Values	Potential Overflows	In-Range	Potential Underflows
Positive	$\square 0$	$\square 110$	0
Negative	K0	$\boxed{0}$	
Zero	0	0	0

Data Browser
Proposed Data Type:
numerictype($0,13,5$)

Return to the original data type override setting.
fp.DataTypeOverride = initialDTOSetting;

Determine Numeric Type For fi Object

View the dynamic range and determine an appropriate numeric type for a fi object with a DataTypeMode of Scaled double: binary point scaling.

Create a numerictype object with a DataTypeMode of Scaled double: binary point scaling. Then, use that numerictype object to construct your fi objects.

T = numerictype;
T.DataTypeMode = 'Scaled double: binary point scaling';
T.WordLength = 8;
T.FractionLength = 6;
$a=f i(\sin (0: 100) * 3.5, T) ;$
b $=\mathrm{fi}(\cos (0: 100) * 1.75, \mathrm{~T})$;
acc $=\mathrm{fi}(0, \mathrm{~T})$;
Create a NumericTypeScope object h . Then, use the step function in a for loop to view the dynamic range of the accumulator object, acc.

```
h = NumericTypeScope;
for i = 1:length(a)
    acc(:) = a(i)*0.7+b(i);
    step(h,acc)
end
```

Simulation Data Overview using numerictype(1,8,6)

As

This dynamic range analysis shows that you can represent the entire range of data in the accumulator with 5 bits, two to the left of the binary point (integer bits) and three to the right of it (fractional bits). You can verify that this data type is able to represent all the values by changing the WordLength and FractionLength properties of the numerictype object T. Then, use T to redefine the accumulator.
T.WordLength = 5;
T.FractionLength = 2;
$\mathrm{acc}=\mathrm{fi}(0, \mathrm{~T})$;
To view the dynamic range analysis based on this new data type, reset the NumericTypeScope object h, and rerun the loop.

```
reset(h)
for i = 1:length(a)
    acc(:) = a(i)*0.7 + b(i);
    step(h,acc)
end
```

Simulation Data Overview using numerictype $(1,5,2)$

Values	Potential Overflows	In-Range	Potential Underflows
Positive	$\square 0$	■48	\square
Negative	$\geqslant 0$	\% 46	$\because 4$
Zero	0	0	0

0
Proposed Data Type:
numerictype(1,5,2)

Clear the information stored in the NumericTypeScope object h.
reset(h);

Version History

Introduced in R2010a
R2023a: Updated Programmatic Interface
Behavior changed in R2023a
The NumericTypeScope, step, show, and reset functions now launch the updated Numeric Type Scope interface. The release function has been removed.

R2022b: Updated Numeric Type Scope Interface
Behavior change in future release
The NumericTypeScope has a new interface when you launch the scope from the Instrumentation Report Viewer. For an example, see showInstrumentationResults.

The NumericTypeScope, show, step, release, and reset functions will be updated in a future release to launch the updated interface.

See Also

step | show | reset | showInstrumentationResults

nunderflows

Number of underflows

Syntax

y = nunderflows(a)
$y=$ nunderflows(q)

Description

$y=$ nunderflows(a) returns the number of underflows of fi object a since logging was turned on or since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a fi object using the resetlog function.
$\mathrm{y}=$ nunderflows(q) returns the accumulated number of underflows resulting from quantization operations performed by a quantizer object q.

Version History
 Introduced before R2006a

See Also

maxlog|minlog|noverflows | resetlog

oct

Package: embedded
Octal representation of stored integer of fi object

Syntax

b $=\operatorname{oct}(\mathrm{a})$

Description

$b=\operatorname{oct}(a)$ returns the stored integer of fi object a in octal format as a character vector.
Fixed-point numbers can be represented as
real-worldvalue $=2^{- \text {fractionlength }} \times$ storedinteger
or, equivalently as
real-worldvalue $=($ slope \times storedinteger $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.

Tip oct returns the octal representation of the stored integer of a fi object. To obtain the base-n representation of the real-world value of a fi object, use dec2base.

Examples

View Stored Integer of fi Object in Octal Format

Create a signed fi object with values -1 and 1 , a word length of 8 bits, and a fraction length of 7 bits.

```
a = fi([-1 1], 1, 8, 7)
a =
    -1.0000 0.9922
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 8
        FractionLength: 7
```

Find the octal representation of the stored integers of fi object a.

```
b = oct(a)
b =
    '200 177'
```


Input Arguments

a - Input array
fi object
Input array, specified as a fi object.
Data Types: fi

Version History

Introduced before R2006a

See Also

bin | dec|hex|storedInteger|dec2hex|dec2base|dec2bin

ones

Create array of all ones with fixed-point properties

Syntax

X = ones('like', p)
X = ones($\mathrm{n}, \mathrm{'like}$ ', p)
X = ones(sz1,...,szN,'like', p)
X = ones(sz,'like', p)

Description

$\mathrm{X}=$ ones('like', p) returns a scalar 1 with the same numerictype, complexity (real or complex), and fimath as p.
$X=$ ones(n, 'like', p) returns an n-by-n array of ones like p.
$X=$ ones(sz1, ...,szN,'like', p) returns an sz1-by-...-by-szN array of ones like p.
$X=$ ones($s z, '$ like',p) returns an array of ones like p. The size vector, $s z$, defines size (X).

Examples

2-D Array of Ones With Fixed-Point Attributes

Create a 2-by-3 array of ones with specified numerictype and fimath properties.
Create a signed fi object with word length of 24 and fraction length of 12.
$p=f i([], 1,24,12) ;$
Create a 2-by-3- array of ones that has the same numerictype properties as p.

```
X = ones(2,3,'like',p)
X =
    1
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 24
    FractionLength: 12
```


Size Defined by Existing Array

Define a 3-by-2 array A.

```
A = [1 4 ; 2 5 ; 3 6];
sz = size(A)
sz = 1\times2
    3 2
```

Create a signed fi object with word length of 24 and fraction length of 12.
p = fi([],1,24,12);
Create an array of ones that is the same size as A and has the same numerictype properties as p.
X = ones(sz,'like', p)
$X=$
$\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}$
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12

Square Array of Ones With Fixed-Point Attributes

Create a 4-by-4 array of ones with specified numerictype and fimath properties.
Create a signed fi object with word length of 24 and fraction length of 12.
$p=f i([], 1,24,12)$;
Create a 4-by-4 array of ones that has the same numerictype properties as p.

```
X = ones(4, 'like', p)
X =
    llll
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 24
FractionLength: 12
```


Create Array of Ones with Attached fimath

Create a signed fi object with word length of 16, fraction length of 15 and OverflowAction set to Wrap.

```
format long
p = fi([],1,16,15,'OverflowAction','Wrap');
```

Create a 2-by-2 array of ones with the same numerictype properties as p.

```
X = ones(2,'like',p)
X =
    0.999969482421875 0.999969482421875
    0.999969482421875 0.999969482421875
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
            WordLength: 16
            FractionLength: 15
            RoundingMethod: Nearest
            OverflowAction: Wrap
            ProductMode: FullPrecision
                    SumMode: FullPrecision
```

1 cannot be represented by the data type of p, so the value saturates. The output fi object X has the same numerictype and fimath properties as p .

Complex Fixed-Point One

Create a scalar fixed-point 1 that is not real valued, but instead is complex like an existing array.
Define a complex fi object.

```
p = fi( [1+2i 3i],1,24,12);
```

Create a scalar 1 that is complex like p.

```
X = ones('like',p)
X =
    1.0000 + 0.0000i
        DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 12
```


Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing the algorithm itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types. You can then test the algorithm with different fixed-point data types and compare the fixed-point behavior to the baseline without making any modifications to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T , which is a structure that defines the data types of the coefficients and the input and output data.

```
function [y,z] = my_filter(b,a,x,z,T)
    % Cast the coefficients to the coefficient type
    b = cast(b,'like',T.coeffs);
    a = cast(a,'like',T.coeffs);
    % Create the output using zeros with the data type
    y = zeros(size(x),'like',T.data);
    for i = l:length(x)
        y(i) = b(1)*x(i) + z(1);
        z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
        z(2) = b(3)*x(i) - a(3) * y(i);
    end
end
```

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a floating-point step input and a fixed-point step input, and then compares the results.

```
function zeros_ones_cast_example
% Define coefficients for a filter with specification
% [b,a] = butter(2,0.25)
b = [l0.097631072937818 0.195262145875635 0.097631072937818}]
a=[[1.000000000000000 -0.942809041582063 0.333333333333333}]
% Define floating-point types
T_float.coeffs = double([]);
T_float.data = double([]);
% Create a step input using ones with the
% floating-point data type
t = 0:20;
x_float = ones(size(t),'like',T_float.data);
% Initialize the states using zeros with the
% floating-point data type
z_float = zeros(1,2,'like',T_float.data);
% Run the floating-point algorithm
y_float = my_filter(b,a,x_float,z_float,T_float);
% Define fixed-point types
T fixed.coeffs = fi([],true,8,6);
T_fixed.data = fi([],true,8,6);
% Create a step input using ones with the
% fixed-point data type
x_fixed = ones(size(t),'like',T_fixed.data);
% Initialize the states using zeros with the
% fixed-point data type
z_fixed = zeros(1,2,'like',T_fixed.data);
% Run the fixed-point algorithm
y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);
% Compare the results
```

```
    coder.extrinsic('clf','subplot','plot','legend')
    clf
    subplot(211)
    plot(t,y_float,'co-',t,y_fixed,'kx-')
    legend('Floating-point output','Fixed-point output')
    title('Step response')
    subplot(212)
    plot(t,y_float - double(y_fixed),'rs-')
    legend('Error')
    figure(gcf)
```

end

Input Arguments

n - Size of square matrix

integer value
Size of square matrix, specified as an integer value, defines the output as a square, n-by-n matrix of ones.

- If n is zero, X is an empty matrix.
- If n is negative, it is treated as zero.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8|uint16|uint32|uint64

sz1, ...,szN - Size of each dimension

two or more integer values
Size of each dimension, specified as two or more integer values, defines X as a sz1-by...-by-szN array.

- If the size of any dimension is zero, X is an empty array.
- If the size of any dimension is negative, it is treated as zero.
- If any trailing dimensions greater than two have a size of one, the output, X, does not include those dimensions.

Data Types: double | single | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64
sz - Output size
row vector of integer values
Output size, specified as a row vector of integer values. Each element of this vector indicates the size of the corresponding dimension.

- If the size of any dimension is zero, X is an empty array.
- If the size of any dimension is negative, it is treated as zero.
- If any trailing dimensions greater than two have a size of one, the output, X, does not include those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 |uint64
p - Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a complex object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

If the value 1 overflows the numeric type of p, the output saturates regardless of the specified OverflowAction property of the attached fimath. All subsequent operations performed on the output obey the rules of the attached fimath.

Complex Number Support: Yes

Tips

Using the $b=$ cast (a, 'like', p) syntax to specify data types separately from algorithm code allows you to:

- Reuse your algorithm code with different data types.
- Keep your algorithm uncluttered with data type specifications and switch statements for different data types.
- Improve readability of your algorithm code.
- Switch between fixed-point and floating-point data types to compare baselines.
- Switch between variations of fixed-point settings without changing the algorithm code.

Version History
 Introduced in R2013a

See Also

zeros|cast|ones

Topics

"Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types Using cast and zeros"
"Manual Fixed-Point Conversion Workflow"
"Manual Fixed-Point Conversion Best Practices"

plus, +

Package: embedded
Matrix sum of fi objects

Syntax

$C=A+B$
$C=p l u s(A, B)$

Description

$C=A+B$ adds the matrix A to matrix B.
plus does not support fi objects of data type boolean.
$C=p l u s(A, B)$ is an alternate way to execute $A+B$.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see "fimath Properties Usage for Fixed-Point Arithmetic" and "fimath ProductMode and SumMode".

Examples

Use Implicit Expansion to Add Vectors, Matrices, and Multidimensional Arrays

This example shows how to use implicit expansion to add vectors and matrices with compatible dimensions.

Add Row and Column Vectors

Create a 3 -by-1 column vector and 1-by-5 row vector and add them.
$x=f i([1 ; 2 ; 3]) ;$
$y=f i([1,2,3,4,5])$;
$z=x+y$
z =

2	3	4	5	6
3	4	5	6	7
4	5	6	7	8

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 18
FractionLength: 13
The result is a 3-by-5 matrix, where each (i, j) element in the matrix is given by $z(i, j)=x(i)+$ $y(j)$.

Add Matrix and Column Vector

Create an M-by-N matrix and a M-by-1 column vector and add them.

```
x = fi([ll 2 3 4 5
    6 7 8 9 10
    11 12 13 14 15]);
y = fi([1;2;3]);
z = x + y
z =
\begin{tabular}{rrrrr}
2 & 3 & 4 & 5 & 6 \\
8 & 9 & 10 & 11 & 12 \\
14 & 15 & 16 & 17 & 18
\end{tabular}
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 19
        FractionLength: 13
```

The result is an M-by-N matrix, where each (i, j) element in the matrix is given by $\mathrm{z}(\mathrm{i}, \mathrm{j})=$ $x(i, j)+y(i)$.

Add Matrix and Row Vector

Create a M-by-N matrix and a 1-by-N row vector and add them.

```
x = fi([lllllll
    6 7 8 9 10
    11 12 13 14 15]);
y = fi([llllll
z = x + y
z =
\begin{tabular}{rrrrr}
2 & 4 & 6 & 8 & 10 \\
7 & 9 & 11 & 13 & 15 \\
12 & 14 & 16 & 18 & 20
\end{tabular}
        DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                WordLength: 18
            FractionLength: 12
```

The result is an M-by-N matrix, where each (i, j) element in the matrix is given by $\mathrm{z}(\mathrm{i}, \mathrm{j})=\mathrm{x}(\mathrm{i}, \mathrm{j})+\mathrm{y}(\mathrm{j})$.

Add Matrix to Multidimensional Array

Create a M-by-N matrix and a M-by-N-by-P array and add them.

```
\(x=\) fi(ones \((3,5)) ;\)
\(y=f i(o n e s(3,5,3)) ;\)
z = \(\mathrm{x}+\mathrm{y}\)
z =
(:, : , 1) =
\begin{tabular}{lllll}
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2
\end{tabular}
\((:,:, 2)=\)
```

```
2
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
        WordLength: 17
FractionLength: 14
```

The result is an M -by-N-by-P array, where each $(\mathrm{i}, \mathrm{j}, \mathrm{k})$ element in the array is given by $\mathrm{z}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\mathrm{x}(\mathrm{i}, \mathrm{j})+$ $y(i, j, k)$.

Input Arguments

A - Input array

scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in data types. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".
plus does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16|int32 | int64 | uint8 | uint16|uint32|uint64 | fi
Complex Number Support: Yes
B - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in data types. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".
plus does not support fi objects of data type boolean.
Data Types: single | double |int8 | int16|int32 | int64 | uint8 | uint16 |uint32|uint64 | fi
Complex Number Support: Yes

Version History

Introduced before R2006a
R2021b: Implicit expansion change affects arguments for operators
Behavior changed in R2021b
Starting in R2021b with the addition of implicit expansion for fi times, plus, and minus, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.
Usage notes and limitations:

- Any non-fi inputs must be constant; that is, its value must be known at compile time so that it can be cast to a fi object.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.
Inputs cannot be of data type logical.

See Also

minus|mtimes | times |uminus

pow 10

Base 10 power and scale half-precision numbers

Syntax

$\mathrm{Y}=\operatorname{pow} 10(\mathrm{X})$

Description

$Y=$ pow10 (X) returns an array, Y, whose elements are 10 raised to the power X.

Note This function supports only half-precision inputs.

Examples

Base 10 Power

Create a half-precision vector, X.
$X=\operatorname{half}([1 ; 2 ; 3 ; 4])$
X =
4×1 half column vector
1
2
3
4
Compute an array, Y, whose elements are 10 raised to the power X.
$Y=\operatorname{pow10}(X)$
$Y=$
4×1 half column vector
10
100
1000
10000

Input Arguments

X - Power
scalar | vector | matrix | multidimensional array
Power, specified as a half-precision numeric scalar, vector, matrix, or multidimensional array

Data Types: Half

Output Arguments

Y - Output array
scalar | vector | matrix | multidimensional array
Array whose elements are 10 raised to the power X , returned as a half-precision scalar, vector, matrix, or multidimensional array.

Version History

Introduced in R2018b

See Also

half

pow2

Efficient fixed-point multiplication by 2^{K}

Syntax

b $=\operatorname{pow} 2(\mathrm{a}, \mathrm{K})$

Description

$b=\operatorname{pow} 2(a, K)$ returns the value of a shifted by K bits where K is an integer and a and b are fi objects. The output b always has the same word length and fraction length as the input a .

Note In fixed-point arithmetic, shifting by K bits is equivalent to, and more efficient than, computing $b=a^{*} 2^{K}$.

If K is a non-integer, the pow2 function will round it to floor before performing the calculation.
The scaling of a must be equivalent to binary point-only scaling; in other words, it must have a power of 2 slope and a bias of 0 .
a can be real or complex. If a is complex, pow2 operates on both the real and complex portions of a.
The pow2 function obeys the OverflowAction and RoundingMethod properties associated with a. If obeying the RoundingMethod property associated with a is not important, try using the bitshift function.

The pow2 function does not support fi objects of data type Boolean.
The function also does not support the syntax $b=\operatorname{pow} 2(a)$ when a is a fi object.

Examples

Example 4.1. Example 1

In the following example, a is a real-valued fi object, and K is a positive integer.
The pow 2 function shifts the bits of a 3 places to the left, effectively multiplying a by 2^{3}.

```
a = fi(pi,1,16,8)
b = pow2(a,3)
binary_a = bin(a)
binary_b = bin(b)
a =
3.140625
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
```

```
        FractionLength: 8
b =
                    25.125
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
            FractionLength: 8
binary_a =
    '0000001100100100'
binary_b =
    '0001100100100000'
```


Example 4.2. Example 2

In the following example, a is a real-valued $f i$ object, and K is a negative integer.
The pow2 function shifts the bits of a 4 places to the right, effectively multiplying a by 2^{-4}.

```
a = fi(pi,1,16,8)
b = pow2(a,-4)
binary_a = bin(a)
binary_b = bin(b)
a =
                    3.140625
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
                        WordLength: 16
                FractionLength: 8
b =
                    0.1953125
            DataTypeMode: Fixed-point: binary point scaling
                        Signedness: Signed
            WordLength: 16
            FractionLength: 8
binary_a =
    '0000001100100100'
binary_b =
    '0000000000110010'
```


Example 4.3. Example 3

The following example shows the use of pow 2 with a complex fi object:
format long g
P = fipref('NumericTypeDisplay', 'short');
a = fi(57 - 2i, 1, 16, 8)
a =
numerictype(1,16,8)
pow2 (a,2)
ans =
127.99609375

8i
numerictype(1,16,8)

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\mathrm{TM}}$.

See Also

bitshift|bitsll|bitsra|bitsrl

power, :^

Package: embedded
Fixed-point element-wise power

Syntax

$\mathrm{C}=\mathrm{A} \cdot{ }^{\wedge} \mathrm{B}$
$C=\operatorname{power}(A, B)$

Description

$C=A . \wedge B$ raises each element of A to the corresponding power in B.
$C=\operatorname{power}(A, B)$ is an alternative way to compute $A .{ }^{\wedge} B$.

Examples

Raise Each Element of a Matrix to a Scalar Power

Create a fixed-point matrix and raise it to a scalar power.

```
A = fi([1, 3; 4, 2])
A =
    1 3
    4
                DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 12
C = A.^3
C =
            1 27
        64 8
        DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 48
        FractionLength: 36
```


Input Arguments

A - Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and B must either be the same size or have sizes that are compatible (for example, A is an M-by- N matrix and B is a scalar or 1-by- N row vector).
Data Types: single | double | int8|int16|int32 | int64|uint8|uint16|uint32|uint64| logical|fi
Complex Number Support: Yes

B - Exponent

scalar
Exponent, specified as a non-negative, real, integer-valued scalar.
Data Types: single | double | int8|int16|int32 |int64|uint8|uint16|uint32|uint64| logical|fi

Output Arguments

C - Power

scalar | vector | matrix | multidimensional array
Power, returned as an array with the same dimensions as the input A. When A has a local fimath object, the output C also has the same local fimath object. The array power operation is always performed using the default fimath settings.

Version History

Introduced in R2010a
R2021a: Improved numerical accuracy and generated code efficiency for fi inputs to power, .^

Fixed-Point Designer now has improved numerical accuracy for fixed-point inputs to the power function in simulation and generated code. Additionally, generated code is more efficient.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- When the exponent B is a variable, the ProductMode property of the governing fimath must be SpecifyPrecision.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.
Both inputs must be scalar, and the exponent input, B, must be a constant integer.

See Also

power | mpower

qr

Orthogonal-triangular decomposition

Description

The Fixed-Point Designer qr function differs from the MATLAB qr function as follows:

- The input A in qr(A) must be a real, signed fi object.
- The qr function ignores and discards any fimath attached to the input. The output is always associated with the default fimath.
- Pivoting is not supported for fixed-point inputs. You cannot use the following syntaxes:
- [~,~,E] = qr(...)
- $q r(A, ' v e c t o r ')$
- $\quad \operatorname{rr}(A, B, ' v e c t o r ')$
- Economy size decomposition is not supported for fixed-point inputs. You cannot use the following syntax: $[Q, R]=\operatorname{qr}(A, 0)$.
- The least-squares-solution form is not supported for fixed-point inputs. You cannot use the following syntax: $\operatorname{qr}(A, B)$.

Refer to the MATLAB qr reference page for more information.

Version History

Introduced in R2014a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.

See Also

Topics

"Determine Fixed-Point Types for QR Decomposition"

quantize

Package: embedded
Quantize fixed-point numbers

Note quantize is not recommended. Use cast, zeros, ones, eye, or subsasgn instead. For more information, see "Compatibility Considerations".

Syntax

```
y = quantize(x)
y = quantize(x,nt)
y = quantize(x,nt,rm)
y = quantize(x,nt,rm,oa)
yBP = quantize(x, s)
yBP = quantize(x,s,wl)
yBP = quantize(x,s,wl,fl)
yBP = quantize(x,s,wl,fl,rm)
yBP = quantize(x,s,wl,fl,rm,oa)
```


Description

Quantize Using a numerictype Object

$y=$ quantize(x) quantizes the input x values using the default settings.
The numerictype, rounding method, and overflow action apply only during the quantization. The output y does not have an attached fimath.
$y=$ quantize $(x, n t)$ quantizes x to the specified numerictype, $n t$.
$y=$ quantize($x, n t, r m$) quantizes x to the specified numerictype, nt using the specified rounding method, rm.
$y=$ quantize($x, n t, r m, o a)$ quantizes x to the specified numerictype, nt using the specified rounding method, rm, and overflow action, oa.

Quantize by Specifying Numeric Type Properties

$y B P=q u a n t i z e(x, s)$ quantizes x to a binary-point scaled fixed-point number with signedness s.
$y B P=$ quantize $(x, s, w l)$ quantizes x to a binary-point scaled fixed-point number with signedness s and word length $w l$.
$y B P=$ quantize($x, s, w l, f l)$ quantizes x to a binary-point scaled fixed-point number with signedness s, word length $w l$, and fraction length $f l$.
$y B P=$ quantize $(x, s, w l, f l, r m)$ quantizes x to a binary-point scaled fixed-point number with signedness s, word length $w l$, and fraction length $f l$ using rounding method $r m$.
yBP = quantize($x, s, w l, f l, r m, o a)$ quantizes x to a binary-point scaled fixed-point number with signedness s, word length $w l$, and fraction length $f l$ using rounding method rm and overflow action oa.

Examples

Quantize Binary-Point Scaled to Binary-Point Scaled Data

Define the input fi value to quantize.

```
x_BP = fi(pi)
x_BP =
    3.1416
        DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: 13
```


Use a numerictype Object

Create numerictype object which specifies a signed fixed-point data type with 8-bit word length and 4 -bit fraction length.

```
ntBP = numerictype(1,8,4);
```

Use the defined numerictype object ntBP to quantize the input x_BP to a binary-point scaled fixedpoint data type.

```
yBP1 = quantize(x_BP,ntBP)
yBP1 =
    3.1250
            DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
            FractionLength: 4
```


Specify Numeric Type Properties at the Input

```
yBP2 = quantize(x_BP,1,8,4)
yBP2 =
    3.1250
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 8
        FractionLength: 4
```


Quantize Binary-Point Scaled to Slope-Bias Data

Create a numerictype object that specifies a slope-bias scaled fixed-point data type.

```
ntSB = numerictype('Scaling','SlopeBias',...
    'SlopeAdjustmentFactor',1.8,...
    'Bias',1,...
    'FixedExponent',-12);
```

Define the input fi value to quantize.

```
x_BP = fi(pi)
x_BP =
    3.1416
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 16
        FractionLength: 13
```

Use the defined numerictype ntSB to quantize the input x_BP to a slope-bias scaled fixed-point data type.

```
ySB1 = quantize(x_BP, ntSB)
ySB1 =
    3.1415
        DataTypeMode: Fixed-point: slope and bias scaling
        Signedness: Signed
        WordLength: 16
            Slope: 0.000439453125
                Bias: 1
```


Quantize Slope-Bias Scaled to Binary-Point Scaled Data

Define the input fi values to quantize.

```
x_SB = fi(rand(5,3),numerictype('Scaling','SlopeBias','Bias',-0.125))
x_SB =
    0.8147 0.0975 0.1576
    0.8750 0.2785 0.8750
    0.1270 0.5469 0.8750
    0.8750 0.8750 0.4854
    0.6324 0.8750 0.8003
            DataTypeMode: Fixed-point: slope and bias scaling
                Signedness: Signed
                WordLength: 16
                    Slope: 3.0517578125e-5
                        Bias: -0.125
```


Use a numerictype Object

Create a numerictype object ntBP that specifies a signed, binary-point scaled fixed-point data type with 8 -bit word length and 4 -bit fraction length.

```
ntBP = numerictype(1,8,4);
```

Use the defined numerictype ntBP to quantize the input x _SB to a binary-point scaled fixed-point data type. Additionally, round to nearest and saturate on overflow.

```
yBP1 = quantize(x_SB,ntBP,'Nearest','Saturate')
yBP1 =
    0.8125 0.1250 0.1875
    0.8750 0.2500 0.8750
    0.1250 0.5625 0.8750
    0.8750 0.8750 0.5000
    0.6250 0.8750 0.8125
                DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 8
            FractionLength: 4
```


Specify Numeric Type Properties at the Input

```
yBP2 = quantize(x_SB,1,8,4,'Nearest','Saturate')
yBP2 =
    0.8125 0.1250 0.1875
    0.8750 0.2500 0.8750
    0.1250 0.5625 0.8750
    0.8750 0.8750 0.5000
    0.6250 0.8750 0.8125
            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 8
            FractionLength: 4
```


Quantize Slope-Bias Scaled to Slope-Bias Scaled Data

Define the input fi values to quantize.

```
x_SB = fi(rand(5,3),numerictype('Scaling','SlopeBias','Bias',-0.125))
x_SB =
    0.8147 0.0975 0.1576
    0.8750 0.2785 0.8750
    0.1270 0.5469 0.8750
    0.8750 0.8750 0.4854
    0.6324 0.8750 0.8003
            DataTypeMode: Fixed-point: slope and bias scaling
                Signedness: Signed
                WordLength: 16
                    Slope: 3.0517578125e-5
                        Bias: -0.125
```

Create a numerictype object which specifies a slope-bias scaled fixed-point data type.

```
ntSB = numerictype('Scaling','SlopeBias', ...
    'SlopeAdjustmentFactor',1.8,'Bias',...
    1,'FixedExponent',-12);
```

Use the defined numerictype ntSB to quantize the input x_SB to a slope-bias scaled fixed-point data type. Additionall, round to ceiling.

```
ySB2 = quantize(x_SB,ntSB,'Ceiling')
ySB2 =
    0.8150 0.0978 0.1580
    0.8752 0.2789 0.8752
    0.1272 0.5469 0.8752
    0.8752 0.8752 0.4854
    0.6326 0.8752 0.8005
        DataTypeMode: Fixed-point: slope and bias scaling
        Signedness: Signed
        WordLength: 16
            Slope: 0.000439453125
            Bias: 1
```


Quantize Built-in Integer to Binary-Point Scaled Data

Define the input values to quantize.

```
xInt = int8(-16:4:16)
xInt = 1x9 int8 row vector
    -16 -12 -12 -8 -4 
```


Use a numerictype Object

Create a numerictype object that specifies a signed binary-point scaled fixed-point data type with 8bit word length and 4-bit fraction length.
ntBP = numerictype(1,8,4);
Use the defined numerictype ntBP to quantize the input xInt to a binary-point scaled fixed-point data type.

```
yBP1 = quantize(xInt,ntBP,'Zero')
yBP1 =
    0
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 8
FractionLength: 4
```

Show the range of the quantized output.

```
range(yBP1)
ans =
    -8.0000 7.9375
```

```
    DataTypeMode: Fixed-point: binary point scaling
    Signedness: Signed
    WordLength: 8
FractionLength: 4
```

The first two and last three values are wrapped because they are outside the representable range of the output type.

Specify Numeric Type Properties at the Input

```
yBP2 = quantize(xInt,1,8,4,'Zero')
yBP2 =
    0
    DataTypeMode: Fixed-point: binary point scaling
        Signedness: Signed
        WordLength: 8
            FractionLength: 4
```


Quantize Built-in Integer to Slope-Bias Data

Define the input values to quantize.

```
xInt = int8(-16:4:16)
xInt = 1x9 int8 row vector
```

-16	-12	-8	-4	0	4	8	12	16

Create a numerictype object that specifies a slope-bias scaled fixed-point data type.

```
ntSB = numerictype('Scaling','SlopeBias', ...
    'SlopeAdjustmentFactor',1.8,'Bias',...
    1,'FixedExponent',-12);
```

Use the defined numerictype ntSB to quantize the input xInt to a slope-bias scaled fixed-point data type.

```
ySB = quantize(xInt,ntSB,'Round','Saturate')
ySB =
    -13.4000 -11.9814 -7.9877 -3.9939 
        DataTypeMode: Fixed-point: slope and bias scaling
        Signedness: Signed
        WordLength: 16
            Slope: 0.000439453125
            Bias: 1
```

Show the range of the quantized output.

```
range(ySB)
```

ans $=$
-13.4000 15.3996

```
DataTypeMode: Fixed-point: slope and bias scaling
    Signedness: Signed
    WordLength: 16
            Slope: 0.000439453125
            Bias: 1
```

The first and last values saturate because they are at the limits of he representable range of the output type.

Input Arguments

x - Input data to quantize
fi object | built-in integer
Input data to quantize, specified as:

- Built-in signed or unsigned integers
- Binary point scaled fixed-point fi
- Slope-bias scaled fixed-point fi

Although fi doubles and fi singles are allowed as inputs, they pass through the quantize function without being quantized.
Data Types: int8|int16|int32|int64|uint8|uint16|uint32|uint64|fi
Complex Number Support: Yes

nt - numerictype object

numerictype(true, 16, 15) (default)| numerictype object
numerictype object that describes a fixed-point data type.

rm - Rounding method to use

'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round ' | 'Zero'
Rounding method to use for quantization, specified as one of the following:

- 'Ceiling' - Round up to the next allowable quantized value.
- 'Convergent ' - Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit after rounding would be set to 0 .
- 'Floor' - Round down to the next allowable quantized value.
- 'Nearest' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.
- 'Round ' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up in absolute value.
- 'Zero' - Round negative numbers up and positive numbers down to the next allowable quantized value.

Data Types: char

oa - Action to take on overflow

'Wrap ' (default)|'Saturate'
Action to take on overflow, specified as one of these values:

- 'Saturate' - Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers, as specified by the numeric type properties, these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.

- 'Wrap' - Overflows wrap.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers, as specified by the numeric type properties, these values are wrapped back into that range using modular arithmetic relative to the smallest representable number.

Data Types: char
s - Signedness
1 (default) | 0
Signedness of the quantized fixed-point number, specified as 1 (signed) or 0 (unsigned).
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32 |uint64 | logical

wl - Word length

16 (default) | positive scalar integer
Word length of the stored integer value of the output data, in bits.

fl - Fraction length

wh-1 (default) | scalar integer
Fraction length of the quantized value, specified as a scalar integer.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64

Version History

Introduced before R2006a

R2013a: quantize is not recommended

Not recommended starting in R2013a
quantize is not recommended. Use cast, zeros, ones, eye, or subsasgn instead. There are no plans to remove quantize.

Starting in R2013a, use cast, zeros, ones, eye, or subsasgn instead. The cast, zeros, ones, eye, and subsasgn functions can quantize other data types in addition to fi objects and encapsulate type information for quantization in an object rather than as separate input arguments.

Not Recommended	Recommended
```x_BP = fi(pi); ntBP = numerictype(1,8,4); yBP = quantize(x_BP,ntBP) yBP = 3.1250 DataTypeMode: Fixed-point: bin Signedness: Signed WordLength: 8 FractionLength: 4```	```x_BP = fi(pi); ntBP = fi([],1,8,4); yBP = cast(x_BP,'like',ntBP) yBP = 3.1250 ary point sfatlaingpeMode: Fixed-point: binary Signedness: Signed WordLength: 8 FractionLength: 4```

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

## See Also

fi|numerictype|cast|zeros

## quantizenumeric

Package: embedded
Quantize numeric data

## Syntax

$y=$ quantizenumeric ( $x, s, w, f$ )
$y=$ quantizenumeric $(x, s, w, f, r)$
$y=$ quantizenumeric $(x, s, w, f, r, o)$

## Description

$y=$ quantizenumeric ( $x, s, w, f$ ) quantizes the value specified in $x$ using signedness $s$, word length $w$, and fraction length $f$.

Use quantizenumeric when you want to simulate full-precision arithmetic with doubles and then add quantization at certain steps in your algorithm without casting to fixed-point types.
$y=$ quantizenumeric ( $x, s, w, f, r$ ) also specifies rounding mode $r$.
$y=$ quantizenumeric ( $x, s, w, f, r, o$ ) also specifies overflow mode $o$.

## Examples

## Quantize Value of pi

Quantize the value of pi using a signed numeric type with a word length of 16 bits, a fraction length of 13 bits, and rounding towards positive infinity.

```
x = pi;
y = quantizenumeric(x,1,16,13,'ceil')
y = 3.1416
```

Specify a different rounding method. Observe that rounding towards zero affects the quantized value.

```
x = pi;
y = quantizenumeric(x,1,16,13,'fix')
y = 3.1415
```


## Quantize Numeric Data

This example shows the effect of overflow action on the quantization of numeric data.
Create some data and quantize it with saturation on overflow specified.
x = linspace(-5,5,100);
$y=$ quantizenumeric $\left(x, 1,6,4, ' f l o o r^{\prime}, ' s a t u r a t e '\right) ;$
$p \operatorname{lot}(x, x, x, y)$


Change the overflow action to wrap on overflow and observe how the quantized data changes.

```
z = quantizenumeric(x,1,6,4,'floor','wrap');
```

plot $(x, x, x, z)$;


## Input Arguments

## x - Value to quantize

scalar | vector | matrix | multidimensional array
Value to quantize, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double
Complex Number Support: Yes
s - Signedness
0 or 'false' | 1 or 'true'
Signedness of quantized value, specified as either 0 or 'false' (unsigned) or 1 or 'true' (signed).
Data Types: double
w - Word length
positive scalar integer
Word length of quantized value, specified as a positive scalar integer.
Data Types: double

## f - Fraction length

scalar integer

Fraction length of quantized value, specified as a scalar integer.
Data Types: double

## $\mathbf{r}$ - Rounding method

```
'nearest' (default)| 'ceil'| 'ceiling' | 'convergent' | 'fix'|'floor' |'round'|
'zero'
```

Rounding method to use for quantization, specified as a character vector:

- 'ceil' - Round towards positive infinity (same as 'ceiling')
- 'ceiling' - Round towards positive infinity (same as 'ceil')
- 'convergent ' - Convergent rounding
- 'fix'-Round towards zero (same as 'zero')
- 'floor'- Round towards negative infinity
- ' nearest ' - Round towards nearest with ties rounding towards positive infinity
- ' round ' - Round towards nearest with ties rounding up in absolute value
- 'zero' - Round towards zero (same as 'fix')

Data Types: char
o - Overflow action
'saturate' (default) |'wrap'
Overflow action to use for quantization, specified as either 'saturate' or 'wrap '.
Data Types: char

## Output Arguments

## y - Quantized output value

scalar | vector $\mid$ matrix $\mid$ multidimensional array
Quantized output value, returned as a scalar, vector, matrix, or multidimensional array. y always has the same dimensions as $x$ and is always a double.

## Tips

- Use quantizenumeric when you want to simulate full-precision arithmetic with doubles and then add quantization at certain steps in your algorithm without casting to fixed-point types.
- When designing fixed-point algorithms, use cast, zeros, ones, eye, and subsasgn to separate the core algorithm from data type definitions.


## Version History <br> Introduced in R2016a

R2021b: Change in default behavior of quantizenumeric for complex input
Behavior changed in R2021b

In previous releases, quantizenumeric would remove the imaginary part of a complex input $x$. For example,

```
x = complex(pi, exp(1))
y = quantizenumeric(x,1,16,12,'floor')
x =
 3.1416 + 2.7183i
y =
 3.1414
```

quantizenumeric now preserves the imaginary part, in the same way as other quantize functions behave for complex inputs. For example,

```
x = complex(pi, exp(1))
y = quantizenumeric(x,1,16,12,'floor')
x =
 3.1416 + 2.7183i
y =
 3.1414 + 2.7183i
```


## See Also

quantize | quantizer |cast

## quantize

Package: embedded
Quantize numeric data using quantizer object

## Syntax

$y=$ quantize (q, $x$ )
$[y 1, y 2, \ldots]=$ quantize $(q, x 1, x 2, \ldots)$

## Description

$y=$ quantize $(q, x)$ uses the quantizer object $q$ to quantize $x$.

- When x is a numeric array, each element of x is quantized. The output y is returned as a built-in double.
- When x is a cell array, each numeric element of the cell array is quantized. The fields of output y are returned as built-in doubles.
- When $x$ is a structure, each numeric field of $x$ is quantized. The fields of output $y$ are returned as built-in doubles.
quantize does not change nonnumeric elements or fields of $x$, nor does it issue warnings for nonnumeric values.

The quantizer object states max, min, noverflows, nunderflows, and noperations are updated during the call to quantize, and running totals are kept until a call to reset is made.
$[y 1, y 2, \ldots]$ = quantize( $q, x 1, x 2, \ldots)$ is equivalent to $y 1=q u a n t i z e(q, x 1), y 2=$ quantize( $q, \times 2$ ), ... and so forth.

## Examples

## Quantize Data to Custom-Precision Floating-Point Type

Use quantize to quantize data to a custom-precision floating-point type.

```
x = linspace(-15,15,1000);
q = quantizer('float','floor',[6 3]);
range(q)
ans = 1\times2
 -14 14
y = quantize(q,x);
Warning: 68 overflow(s) occurred in the fi quantize operation.
plot(x,y); title(tostring(q))
```



## Quantize to Fixed-Point Type

Use quantize to quantize data to a fixed-point type with a wordlength of 6 bits, a fraction length of 2 bits, round to floor, and wrap on overflow.
$x=$ linspace (-15, 15, 1000) ;
q = quantizer('fixed','floor','wrap',[6 2])
$q=$

$$
\begin{aligned}
\text { DataMode } & =\text { fixed } \\
\text { RoundMode } & =\text { floor } \\
\text { OverflowMode } & =\text { wrap } \\
\text { Format } & =\left[\begin{array}{ll}
6 & 2
\end{array}\right]
\end{aligned}
$$

range (q)
ans $=1 \times 2$
-8.0000 7.7500
$y=$ quantize (q, $x)$;
Warning: 468 overflow(s) occurred in the fi quantize operation.
plot( $x, y$ ); title(tostring(q))


Use quantize to quantize data to a fixed-point type with a wordlength of 3 bits, a fraction length of 2 bits, convergent rounding, and wrap on overflow.

```
q = quantizer('fixed','convergent','wrap',[3 2]);
x = (-2:eps(q)/4:2)';
y = quantize(q,x);
```

Warning: 33 overflow(s) occurred in the fi quantize operation.
plot(x,[x,y],'.-'); title(tostring(q)); axis square


## Input Arguments

$q$ - Data type properties to use for quantization
quantizer object
Data type properties to use for quantization, specified as a quantizer object.
Example: q = quantizer('fixed','ceil','saturate',[5 4]);
x - Data to quantize
scalar | vector | matrix | multidimensional array | cell array | structure
Data to quantize, specified as a scalar, vector, matrix, multidimensional array, cell array, or structure.

- When $x$ is a numeric array, each element of $x$ is quantized.
- When $x$ is a cell array, each numeric element of the cell array is quantized.
- When $x$ is a structure, each numeric field of $x$ is quantized.
quantize does not change nonnumeric elements or fields of $x$, nor does it issue warnings for nonnumeric values.

Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64 | logical| struct|cell
Complex Number Support: Yes

## $\mathrm{x} 1, \mathrm{x} 2, \ldots$ - Data to quantize (as separate elements)

scalar | vector $\mid$ matrix $\mid$ multidimensional array | cell array | structure
Data to quantize (as separate elements), specified as a scalar, vector, matrix, multidimensional array, cell array, or structure.
Data Types: single | double | int8|int16|int32 |int64|uint8|uint16|uint32|uint64| logical|struct|cell
Complex Number Support: Yes

## Output Arguments

## y - Quantized data

scalar | vector | matrix | multidimensional array | cell array | structure
Quantized data, returned as a scalar, vector, matrix, multidimensional array, cell array, or structure.

- When x is a numeric array, the output y is returned as a built-in double.
- When x is a cell array, the fields of output y are returned as built-in doubles.
- When x is a structure, the fields of output y are returned as built-in doubles.


## [ $\mathrm{y} 1, \mathrm{y} 2, \ldots]$ - Quantized data (as separate elements)

scalar | vector | matrix | multidimensional array | cell array | structure
Quantized data (as separate elements), returned as a scalar, vector, matrix, multidimensional array, cell array, or structure.

## Version History

Introduced in R2012b
R2021b: Change in rounding behavior for quantize function
Behavior changed in R2021b
In previous releases, quantize would round to infinity for values in the range realmax < input < realmax +0.5 *eps (realmax) and negative infinity for values in the range - realmax $>x>-$ realmax - 0.5*eps. Starting in R2021b, values in these ranges quantize as follows, depending on the rounding method used.

Rounding Method	Values in the range realmax < input < realmax + 0.5*eps (realmax) round to	Values in the range - realmax > x > -realmax - 0.5*eps round to
floor	```realmax (for x < realmax + eps)```	- Inf
ceil	Inf	-realmax (for $\mathrm{x}>$-realmax   - eps)
round	realmax	- realmax
convergent	realmax	- realmax
fix	```realmax (for x < realmax + eps)```	-realmax (for x > -realmax   - eps)


Rounding Method	Values in the range realmax   < input < realmax +   $0.5^{*} e p s(r e a l m a x) ~ r o u n d ~ t o ~$	Values in the range-realmax   $>x>-$ realmax - 0.5*eps   round to
nearest	realmax	-realmax

## See Also

quantizer| reset|unitquantize

## quantizer

Create quantizer object

## Description

The quantizer object describes data type properties to use for quantization. After you create a quantizer object, use quantize to quantize double-precision data. You can use the quantizer object to simulate custom floating-point data types with arbitrary word length and exponent length.

## Creation

## Syntax

```
q = quantizer
q = quantizer(Name,Value)
q = quantizer(Value1,Value2)
q = quantizer(s)
q = quantizer(pn,pv)
```


## Description

$q=$ quantizer creates a quantizer object with properties set to their default values. To use this object to quantize values, use quantize.
q = quantizer(Name, Value) sets named properties using name-value arguments. You can specify multiple name-value arguments. Enclose each property name in single quotes.
$\mathrm{q}=$ quantizer(Value1, Value2) sets properties using property values. Property values are unique; you can set the property names by specifying just the property values in the command. When two values conflict, quantizer sets the last property value in the list.
$\mathrm{q}=\mathrm{quantizer}(\mathrm{s})$ sets properties named in each field name with the values contained in the structure s .
$q=q u a n t i z e r(p n, p v)$ sets the named properties specified in the cell array of character vectors pn to the corresponding values in the cell array pv .

You can use a combination of name-value string arguments, structures, and name-value cell array arguments to set property values when creating a quantizer object.

## Properties

## DataMode - Data type mode

'fixed' (default)|'ufixed'|'float' | 'single'|'double'
Data type mode used in quantization, specified as one of these values:

- 'fixed' - Signed fixed-point mode.
- 'ufixed' - Unsigned fixed-point mode.
- 'float' - Custom-precision floating-point mode.
- 'single' - Single-precision mode. This mode overrides all other property settings.
- 'double' - Double-precision mode. This mode overrides all other property settings.

Data Types: char | struct | cell

## RoundMode - Rounding method to use

'floor' (default)|'ceil'|'convergent'|'fix'|'nearest'|'round'
Rounding method to use, specified as one of these values:

- 'ceil' - Round up to the next allowable quantized value.
- ' convergent ' - Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit after rounding would be set to 0 .
- ' fix' - Round negative numbers up and positive numbers down to the next allowable quantized value.
- 'floor' - Round down to the next allowable quantized value.
- ' nearest' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.
- 'round ' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up in absolute value.

Data Types: char|struct | cell

## OverflowMode - Action to take on overflow

'saturate' (default)|'wrap'
Action to take on overflow, specified as one of these values:

- 'saturate' - Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers as specified by the data format properties, these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.

- 'wrap ' - Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers as specified by the data format properties, these values are wrapped back into that range using modular arithmetic relative to the smallest representable number.

This property only applies to fixed-point data type modes. This property becomes a read-only property when you set the DataMode property to float, double, or single.

Note Floating-point numbers that extend beyond the dynamic range overflow to $\pm$ Inf.

Data Types: char | struct | cell

## Format - Data format of quantizer object

[16 15] (default) | [wordlength fractionlength] | [wordlength exponentlength] | [64 11] |[32 8]

Data format of quantizer object. The interpretation of this property value depends on the value of the DataMode property.

DataMode Property Value	Interpreting the Format Property Values
fixed or ufixed	[wordlength fractionlength]   Specify the Format property value as a twoelement row vector, where the first element is the number of bits for the quantizer object word length and the second element is the number of bits for the quantizer object fraction length.   The word length can range from 2 to the limits of memory on your PC. The fraction length can range from 0 to one less than the word length.
float	[wordlength exponentlength]   Specify the Format property value as a twoelement row vector, where the first element is the number of bits for the quantizer object word length and the second element is the number of bits for the quantizer object exponent length.   The word length can range from 2 to the limits of memory on your PC. The fraction length can range from 0 to 11.
double	$\left[\begin{array}{ll} 64 & 11 \end{array}\right]$   The read-only Format property value automatically specifies the word length and exponent length.
single	$\left[\begin{array}{ll} 32 & 8 \end{array}\right.$   The read-only Format property value automatically specifies the word length and exponent length.

Data Types: single | double | int8 | int16|int32| int64|uint8|uint16|uint32|uint64

## Read-Only quantizer Object States

Read-only quantizer object states are updated when quantize is called. To reset these states, use reset.

## max - Maximum value before quantization

scalar
Maximum value before quantization during a call to quantize ( $\mathrm{q}, . .$. ) for quantizer object q . This value is the maximum value recorded over successive calls to quantize.

Example: max (q)
Example: q.max
min - Minimum value before quantization
scalar
Minimum value before quantization during a call to quantize ( $\mathrm{q}, \ldots$...) for quantizer object q . This value is the minimum value recorded over successive calls to quantize.
Example: min (q)
Example: q.min

## noverflows - Number of overflows

scalar
Number of overflows during a call to quantize ( $q, \ldots$,..) for quantizer object $q$. This value accumulates over successive calls to quantize. An overflow is defined as a value that when quantized is outside the range of $q$.
Example: noverflows (q)
Example: q. noverflows
nunderflows - Number of underflows
scalar
Number of underflows during a call to quantize ( $q$,...) for quantizer object $q$. This value accumulates over successive calls to quantize. An underflow is defined as a number that is nonzero before it is quantized and zero after it is quantized.

## Example: nunderflows(q)

Example: q.nunderflows

## noperations - Number of data points quantized <br> scalar

Number of quantization operations during a call to quantize( $q, \ldots$...) for quantizer object q. This value accumulates over successive calls to quantize.
Example: noperations(q)
Example: q. noperations

## Object Functions

quantize Quantize numeric data using quantizer object wordlength Word length of quantizer object

## Examples

## Create quantizer Object

Create a quantizer object with default property values.

```
q = quantizer
q =
\[
\begin{aligned}
\text { DataMode } & =\text { fixed } \\
\text { RoundMode } & =\text { floor } \\
\text { OverflowMode } & =\text { saturate } \\
\text { Format } & =\left[\begin{array}{ll}
16 & 15
\end{array}\right]
\end{aligned}
\]
```

To copy a quantizer object, use assignment.

```
q = quantizer;
r = q;
isequal(q,r)
ans = logical
 1
```

Use property name-value arguments to set quantizer object properties.

```
q = quantizer('Mode','fixed','RoundMode','ceil',...
'OverflowMode','saturate','Format',[5 4])
q =
```

```
 DataMode = fixed
```

        DataMode = fixed
        RoundMode = ceil
        RoundMode = ceil
    OverflowMode = saturate
OverflowMode = saturate
Format = [5 4]

```
 Format = [5 4]
```

Set quantizer object properties by listing property values only in the command.

```
q = quantizer('fixed','ceil','saturate',[5 4])
q =
```

```
 DataMode = fixed
```

        DataMode = fixed
        RoundMode = ceil
        RoundMode = ceil
    OverflowMode = saturate
OverflowMode = saturate
Format = [5 4 4]

```
 Format = [5 4 4]
```

Use a structure to set quantizer object properties.
struct.DataMode = 'fixed';
struct.RoundMode = 'ceil';
struct.OverflowMode = 'saturate';
struct. Format = [5 4];
q = quantizer(struct)
$q=$

```
 DataMode = fixed
 RoundMode = ceil
 OverflowMode = saturate
 Format = [5 4 4]
```

Use property name and property value cell arrays to set quantizer object properties.

```
pn = {'Mode','RoundMode','Overflowmode','Format'};
pv = {'fixed','ceil','saturate',[5 4]};
q = quantizer(pn,pv)
q =
```

```
 DataMode = fixed
```

        DataMode = fixed
    RoundMode = ceil
    RoundMode = ceil
    OverflowMode = saturate
OverflowMode = saturate
Format = [5 4 4]

```
 Format = [5 4 4]
```


## Quantize Data with quantizer Objects

Use quantize to quantize data, see how quantization affects quantizer object states, and reset quantizer object states to their default values using reset.

Construct an example data set and create a quantizer object to specify the quantization parameters to use when you quantize the data set.

```
format long g
rng(0,'twister');
x = rng(100);
q = quantizer([16,14])
q =
```

```
 DataMode = fixed
```

        DataMode = fixed
    RoundMode = floor
    RoundMode = floor
    OverflowMode = saturate
OverflowMode = saturate
Format = [16 14]

```
 Format = [16 14]
```

Retrieve the values of max and noverflows.

```
q.max
q.noverflows
ans =
 -1.79769313486232e+308
ans =
 0
```

Note that max is equal to - realmax, which indicates that the quantizer $q$ is in a reset state.
Use the quantize function to quantize the data set according to the specifications of the quantizer object.

```
y = quantize(q,x);
```

```
Warning: 625 overflow(s) occurred in the fi quantize operation.
```

Check the values of max and noverflows.
q.max
q. noverflows
ans =
1.99993896484375
ans =
625
Note that the maximum logged value was taken after quantization, that is, q. $\max ==\max (\mathrm{y})$.
Reset and check the quantizer states.

```
reset(q)
```

q.maxlog
q.noverflows
ans =
$-1.79769313486232 e+308$
ans =

0

## Quantize Data Using the quantizer Object

This example shows how to quantize data using the properties specified by the quantizer object.
First, create some data to quantize.
x = linspace(-15, 15, 1000);

## Quantize to Custom-Precision Floating-Point

Create a quantizer object specifying a custom-precision floating-point data mode with a word length of 6 bits and an exponent length of 4 bits.
q = quantizer('DataMode','float','Format',[64])
$q=$

$$
\begin{aligned}
\text { DataMode } & =\text { float } \\
\text { RoundMode } & =\text { floor } \\
\text { Format } & =\left[\begin{array}{ll}
6 & 4
\end{array}\right]
\end{aligned}
$$

The RoundMode property uses the default setting of 'Floor'.

Use the quantize function to quantize the data in x using the properties specified by the quantizer object.
$y=$ quantize $(q, x)$;
Plot $y$ against $x$ to visualize the effect of the specified quantization properties on this data.
plot(x, $x, x, y)$; title(tostring(q));
legend('Input Data','Quantized Data','Location','northwest');


You can use read-only properties of the quantizer object to access more information.
q. noverflows
ans $=0$
q. nunderflows
ans $=0$
In this example, there were 0 overflows and 0 underflows that occurred in the quantization operation.

## Quantize to Fixed-Point

Create a quantizer object specifying a signed fixed-point data mode with a word length of 6 bits, a fraction length of 1 bit, and wrap on overflow.
q = quantizer([6 1],'wrap')
$q=$

$$
\begin{aligned}
\text { DataMode } & =\text { fixed } \\
\text { RoundMode } & =\text { floor } \\
\text { OverflowMode } & =\text { wrap } \\
\text { Format } & =\left[\begin{array}{ll}
6 & 1
\end{array}\right]
\end{aligned}
$$

quantizer uses the default DataMode property, 'fixed', and the default RoundMode property, 'Floor'.

Use the quantize function to quantize the data in $x$ using the properties specified by the quantizer object.
$y=$ quantize $(q, x)$;
Plot $y$ against $x$ to visualize the effect of the specified quantization properties on this data.
plot(x,x,x,y); title(tostring(q));
legend('Input Data','Quantized Data','Location','northwest');


You can use read-only properties of the quantizer object to access more information.
q.noverflows
ans $=0$
q. nunderflows

```
ans = 17
```

In this example, there were 0 overflows and 17 underflows that occurred in the quantization operation.

## Version History

Introduced before R2006a

```
See Also
quantize| reset|unitquantize|assignmentquantizer
```


## randquant

Generate uniformly distributed, quantized random number using quantizer object

## Syntax

```
randquant(q,n)
randquant (q,m,n)
randquant(q,m,n,p,\ldots.)
randquant(q,[m,n])
randquant(q,[m,n,p,\ldots.])
```


## Description

randquant ( $q, n$ ) uses quantizer object $q$ to generate an $n$-by-n matrix with random entries whose values cover the range of $q$ when $q$ is a fixed-point quantizer object. When $q$ is a floating-point quantizer object, randquant populates the $n$-by-n array with values covering the range
-[square root of realmax(q)] to [square root of realmax(q)]
randquant ( $q, m, n$ ) uses quantizer object $q$ to generate an $m$-by-n matrix with random entries whose values cover the range of $q$ when $q$ is a fixed-point quantizer object. When $q$ is a floatingpoint quantizer object, randquant populates the m-by-n array with values covering the range
-[square root of realmax(q)] to [square root of realmax(q)]
randquant ( $q, m, n, p, \ldots$ ) uses quantizer object $q$ to generate an m-by-n-by-p-by ... matrix with random entries whose values cover the range of $q$ when $q$ is fixed-point quantizer object. When $q$ is a floating-point quantizer object, randquant populates the matrix with values covering the range
-[square root of realmax(q)] to [square root of realmax(q)]
randquant ( $q,[m, n]$ ) uses quantizer object $q$ to generate an $m$-by-n matrix with random entries whose values cover the range of $q$ when $q$ is a fixed-point quantizer object. When $q$ is a floatingpoint quantizer object, randquant populates the m-by-n array with values covering the range
-[square root of realmax(q)] to [square root of realmax(q)]
randquant ( $q,[m, n, p, \ldots]$ ) uses quantizer object $q$ to generate $p m-b y-n$ matrices containing random entries whose values cover the range of $q$ when $q$ is a fixed-point quantizer object. When $q$ is a floating-point quantizer object, randquant populates the m-by-n arrays with values covering the range
-[square root of realmax(q)] to [square root of realmax(q)]
randquant produces pseudorandom numbers. The number sequence randquant generates during each call is determined by the state of the generator. Because MATLAB resets the random number generator state at startup, the sequence of random numbers generated by the function remains the same unless you change the state.
randquant works like rng in most respects.

## Examples

q = quantizer([4 3]);
rng('default')
randquant $(q, 3)$
ans $=$

0.5	0.625	-0.5
0.625	0.125	0
-0.875	-0.875	0.75

## Version History

Introduced before R2006a

## See Also <br> quantizer | rand | range | realmax

## range

Numerical range of fi or quantizer object

## Syntax

```
\(y=r a n g e(a)\)
[min_a, max_a] = range(a)
\(r=r a n g e(q)\)
[min_q, max_q] = range(q)
```


## Description

## Range of fi Object

$y=$ range (a) returns a fi object with the minimum and maximum possible values of the fi object a. All possible quantized real-world values of a are in the range returned. If a is a complex number, then all possible values of real (a) and imag(a) are in the range returned.
[min_a,max_a] = range(a) returns the minimum and maximum values of fi object a in separate output variables.

## Range of quantizer Object

$r=r a n g e(q)$ returns the two-element row vector $r=$ [min_q max_q] such that for all real $x, y$ $=$ quantize $(q, x)$ returns $y$ in the range min_q $\leq y \leq m a x \_q$.
[min_q, max_q] = range(q) returns the minimum and maximum values of the range in separate output variables.

## Examples

## Range of fi Object

Create a signed fi object with a value of 0 , word length of 4 , and fraction length of 2 .
a = fi(0,true, 4, 2);
Find the numerical range of the fi object a and return the result in fi object $y$.

```
y = range(a)
y =
 -2.0000 1.7500
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 4
 FractionLength: 2
```

Find the numerical range of the fi object a and return the result in separate output variables.

```
[min_a, max_a] = range(a)
min_a =
 -2
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 4
 FractionLength: 2
max a =
 1.7500
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 4
 FractionLength: 2
Note that max_a \(=1.75=2-\mathrm{eps}(\mathrm{a})\).
```


## Range of quantizer Object

Create a quantizer object that describes a floating-point data type having a word length of 6 and an exponent length of 3 . Find the numerical range of the quantizer object $q$.

```
q = quantizer('float',[6 3]);
r = range(q)
r= 1\times2
 -14 14
```

Create a quantizer object that describes a signed fixed-point data type having a word length of 4, and fraction length of 2 , saturate on overflow, and round to floor. Find the numerical range of the quantizer object $q$ and return the result in separate output variables.

```
q = quantizer('fixed',[4 2],'floor');
[min_q, max_q] = range(q)
min_q = -2
max_q = 1.7500
```

Note that max_q = $1.75=2-e p s(q)$.

## Input Arguments

## a - fi object

fi object
Input fi object.
Data Types: fi

Complex Number Support: Yes
q - quantizer object
quantizer object
Input quantizer object.

## Output Arguments

## $y$ - Numerical range of fi object

fi object
Numerical range of input fi object a, returned as a fi object. y is a two-element row vector containing the minimum and maximum possible values of fi object a.

## min_a - Minimum value of fi object

fi object
Minimum value of input fi object a, returned as a scalar fi object.
max_a - Maximum value of fi object
fi object
Maximum value of input fi object $a$, returned as a scalar fi object.

## $\mathbf{r}$ - Numerical range of quantizer object

two-element row vector
Numerical range of quantizer object $q$, returned as the two-element row vector $r=$ [min_q max_q] such that for all real $x, y=q u a n t i z e(q, x)$ returns $y$ in the range min_q $\leq y \leq m a x \_q$.
min_q - Minimum value of quantizer object range scalar

Minimum value of quantizer object range, returned as a scalar.
max_q - Maximum value of quantizer object range
scalar
Maximum value of quantizer object range, returned as a scalar.

## Algorithms

If $q$ is a floating-point quantizer object, min_q $=-\operatorname{realmax}(q)$ and max_q $=r e a l m a x(q)$.
If $q$ is a signed fixed-point quantizer object (datamode = 'fixed'), then

$$
\begin{aligned}
& \min _{-} q=-\operatorname{realmax}(q)-\operatorname{eps}(q)=-2^{\mathrm{w}-1} / 2^{\mathrm{f}} \\
& \max _{-} q=\operatorname{realmax}(q)=\left(2^{\mathrm{w}-1}-1\right) / 2^{\mathrm{f}}
\end{aligned}
$$

where $w$ is the word length and $f$ is the fraction length.
If $q$ is an unsigned fixed-point quantizer object (datamode = 'ufixed'),

$$
\begin{aligned}
& a=0 \\
& b=\operatorname{realmax}(q)=\left(2^{\mathrm{w}}-1\right) / 2^{\mathrm{f}}
\end{aligned}
$$

See realmax for more information.

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## See Also

eps | exponentmax | exponentmin|fractionlength | intmax | intmin|lowerbound|lsb|
$\max |\min |$ realmax $\mid$ realmin $\mid$ upperbound

## rdivide, ./

Package: embedded
Right-array division

## Syntax

$X=A . / B$
$X=\operatorname{rdivide}(A, B)$

## Description

$X=A . / B$ performs right-array division by dividing each element of $A$ by the corresponding element of $B$.
$X=\operatorname{rdivide}(A, B)$ is an alternative way to execute $X=A . / B$.

## Examples

## Perform Right-Array Division of Two Matrices

This example shows how perform right-array division on a 3-by-3 magic square of fi objects. Each element of the 3 -by- 3 magic square is divided by the corresponding element in the 3-by-3 input array b.

The rdivide function outputs a 3-by-3 array of signed fi objects, each of which has a word length of 16 bits and fraction length of 11 bits.

```
a = fi(magic(3))
a =
 8
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
b = int8([3 3 4; 1 2 4 ; 3 1 2])
b = 3x3 int8 matrix
 3}33
 1 2 4
 3 2
c = a./b
```

```
C =
 2.6665 0.3335 1.5000
 3.0000 2.5000 1.7500
 1.3335 9.0000 1.0000
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
```


## Input Arguments

A - Numerator<br>scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".

If $A$ is complex, the real and imaginary parts of $A$ are independently divided by $B$.
Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi
Complex Number Support: Yes

## B - Denominator

scalar | vector | matrix | multidimensional array

Denominator, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".

Data Types: single | double | int8 | int16| int32 | int64 | uint8|uint16|uint32|uint64| logical|fi

## Output Arguments

## X - Quotient

scalar | vector $\mid$ matrix $\mid$ multidimensional array
Quotient, returned as a scalar, vector, matrix, or multidimensional array.
The following table shows the rules used to assign property values to the output of the rdivide function.

Output Property	Rule
Signedness	If either input is Signed, then the output is Signed.   If both inputs are Unsigned, then the output is Unsigned.
WordLength	The output word length equals the maximum of the input word   lengths.


Output Property	Rule
FractionLength	For $\mathrm{c}=\mathrm{a} \cdot / \mathrm{b}$, the fraction length of output c equals the   fraction length of a minus the fraction length of b.

## Algorithms

The following table shows the rules the rdivide function uses to handle inputs with different data types.

Case	Rule				
Interoperation of fi objects and   built-in integers	Built-in integers are treated as fixed-point objects.				
	For example, $\mathrm{B}=$ int8 (2) is treated as an s8,0 fi object.	$	$	Interoperation of fi objects and   constants	MATLAB for code generation treats constant integers as fixed-   point objects with the same word length as the fi object and a   fraction length of 0.
:---	:---				
Interoperation of mixed data types	Similar to all other fi object functions, when inputs a and b   have different data types, the data type with the higher   precedence determines the output data type. The order of   precedence is as follows:				
	$\mathbf{1} \quad$ ScaledDouble				
$\mathbf{2}$	Fixed-point				
$\mathbf{3}$	Built-in double				
$\mathbf{4}$	Built-in single				
	When both inputs are fi objects, the only data types that are   allowed to mix are ScaledDouble and Fixed - point.				

## Version History

## Introduced in R2009a

## R2022a: Implicit expansion change affects arguments for operators

Behavior changed in R2022a
Starting in R2022a with the addition of implicit expansion for fi rdivide (./), some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

## See Also <br> add |divide | fi|fimath|mrdivide | numerictype | sub| sum

## realmax

Largest positive fixed-point value or quantized number

## Syntax

```
realmax(a)
realmax(q)
```


## Description

realmax (a) is the largest real-world value that can be represented in the data type of fi object a. Anything larger overflows.
$\operatorname{realmax}(\mathrm{q})$ is the largest quantized number that can be represented where q is a quantizer object. Anything larger overflows.

## Examples

```
q = quantizer('float',[6 3]);
x = realmax(q)
x =
 1 4
```


## Algorithms

If q is a floating-point quantizer object, the largest positive number, $x$, is

$$
x=2^{E_{\max }} \cdot(2-e p s(q))
$$

If q is a signed fixed-point quantizer object, the largest positive number, $x$, is

$$
x=\frac{2^{w-1}-1}{2^{f}}
$$

If $q$ is an unsigned fixed-point quantizer object (datamode = 'ufixed'), the largest positive number, $x$, is

$$
x=\frac{2^{w}-1}{2^{f}}
$$

## Version History <br> Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## See Also

eps | exponentmax | exponentmin | fractionlength | intmax | intmin | lowerbound | lsb | quantizer | range | realmin | upperbound

## realmin

Smallest positive normalized fixed-point value or quantized number

## Syntax

$x=r e a l m i n(a)$
$x=$ realmin $(q)$

## Description

$x=r e a l m i n(a)$ is the smallest positive real-world value that can be represented in the data type of fi object a. Anything smaller than $x$ underflows or is an IEEE "denormal" number.
$\mathrm{x}=\mathrm{realmin}(\mathrm{q})$ is the smallest positive normal quantized number where q is a quantizer object. Anything smaller than x underflows or is an IEEE "denormal" number.

## Examples

```
q = quantizer('float',[6 3]);
x = realmin(q)
x =
\[
0.25
\]
```


## Algorithms

If q is a floating-point quantizer object, $x=2^{E_{\text {min }}}$ where $E_{\text {min }}=\operatorname{exponentmin}(q)$ is the minimum exponent.

If q is a signed or unsigned fixed-point quantizer object, $x=2^{-f}=\varepsilon$ where $f$ is the fraction length.

## Version History

## Introduced before R2006a

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {rM }}$.

## See Also

eps | exponentmax | exponentmin | fractionlength | intmax | intmin | lowerbound | lsb | range | realmax | upperbound

## reinterpretcast

Convert fixed-point or integer data types without changing underlying data

## Syntax

c = reinterpretcast(a,T)

## Description

$c=$ reinterpretcast $(\mathrm{a}, \mathrm{T})$ converts the input a to the data type specified by numerictype object $T$ without changing the underlying data. The result is returned in fi object c .

The reinterpretcast function differs from the MATLAB typecast and cast functions in that it only operates on fi objects and built-in integers, and it does not allow the word length of the input to change.

## Examples

## Convert fi Object to New Data Type

In this example, $a$ is a signed fi object with a word length of 8 its and a fraction length of 7 bits. The reinterpretcast function converts a into an unsigned fi object c with a word length of 8 bits and a fraction length of 0 bits. The real-world values of a and c are different, but their binary representations are the same.

```
a = fi([-1 pi/4],1,8,7)
a =
 -1.0000 0.7891
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7
T = numerictype(0,8,0);
c = reinterpretcast(a,T)
C =
 128 101
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0
```

To verify that the underlying data has not changed, compare the binary representations of $a$ and $c$.

```
binary_a = bin(a)
binary_a =
 '100000000 01100101'
```

```
binary_c = bin(c)
binary_c =
'10000000 01100101'
```


## Input Arguments

a - Input fixed-point or integer array
scalar \| vector | matrix \| multidimensional array
Input fixed-point or integer array, specified as a scalar, vector, matrix, or multidimensional array.
The word length of inputs a and T must be the same.
Data Types: int8|int16|int32| int64|uint8|uint16|uint32|uint64|fi
Complex Number Support: Yes

## T - New data type <br> numerictype object

New data type, specified as a numerictype object that fully specified a fixed-point data type.
The word length of inputs a and T must be the same.

## Version History

Introduced in R2008b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## See Also

cast|fi|numerictype|typecast

## removefimath

Remove fimath object from fi object

## Syntax

$y=r e m o v e f i m a t h(x)$

## Description

$y=$ removefimath $(x)$ returns a fi object $y$ with $x$ 's numerictype and value, and no fimath object attached. You can use this function as $y=$ removefimath ( $y$ ), which gives you localized control over the fimath settings. This function also is useful for preventing errors about embedded.fimath of both operands needing to be equal.

## Examples

## Remove fimath Object from fi Object

This example shows how to define a fi object, define a fimath object, attach the fimath object to the fi object and then, remove the attached fimath object.

```
a = fi(pi)
a =
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
f = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
a = setfimath(a,f)
a =
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision
b = removefimath(a)
b =
 3.1416
```

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
FractionLength: 13
```


## Set and Remove fimath for Code Generation

Use the pattern $x=\operatorname{setfimath}(x, f)$ and $y=$ removefimath $(y)$ to insulate variables from fimath settings outside the function. This pattern does not create copies of the data in generated code.

```
function y = fixed_point_32bit_KeepLSB_plus_example(a,b)
 f = fimath('OverflowAction','Wrap',...
 'RoundingMethod','Floor',...
 'SumMode','KeepLSB',...
 'SumWordLength',32);
 a = setfimath(a,f);
 b = setfimath(b,f);
 y = a + b;
 y = removefimath(y);
end
```

If you have the MATLAB Coder product, you can generate $C$ code. This example generates $C$ code on a computer with 32-bit, native integer type.

```
a = fi(0,1,16,15);
b = fi(0,1,16,15);
codegen -config:lib fixed_point_32bit_KeepLSB_plus_example...
 -args {a,b} -launchreport
int fixed_point_32bit_KeepLSB_plus_example(short a, short b)
{
 return a + b;
}
```


## Input Arguments

## x - Input data

```
fi object | built-in integer | double | single
```

```
fi object | built-in integer | double | single
```

Input data, specified as a fi object or built-in integer, from which to copy the data type and value to the output. x must be a fi object or an integer data type (int8, int16, int32, int64, uint8, uint16, uint32, or uint64). If $x$ is not a fi object or integer data type, then $y=x$.

## Output Arguments

## y - Output fi object

fi object | built-in integer | double | single
Output fi object, returned as a fi object with no fimath object attached. The data type and value of the output match the input. If the input, $x$, is not a fi object $y=x$.

# Version History 

Introduced in R2012b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

## See Also

fi|fimath|setfimath

## rescale

Change scaling of fi object

## Syntax

b = rescale(a, fractionlength)
b = rescale(a, slope, bias)
b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)
b = rescale(a, ..., PropertyName, PropertyValue, ...)

## Description

The rescale function acts similarly to the fi copy function with the following exceptions:

- The fi copy constructor preserves the real-world value, while rescale preserves the stored integer value.
- rescale does not allow the Signed and WordLength properties to be changed.


## Examples

In the following example, fi object $a$ is rescaled to create fi object b . The real-world values of a and $b$ are different, while their stored integer values are the same:

```
p = fipref('FimathDisplay','none',...
 'NumericTypeDisplay','short');
a = fi(10, 1, 8, 3)
a =
 10
 numerictype(1,8,3)
b = rescale(a,1)
b =
 40
 numerictype(1,8,1)
stored_integer_a = storedInteger(a);
stored_integer_b = storedInteger(b);
isequā̄(stored_integer_a,stored_integer_b)
ans =
 logical
 1
```


## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

## See Also

fi

## reset

Reset objects to initial conditions

## Syntax

reset ( P )
reset(q)

## Description

reset $(P)$ resets the fipref object $P$ to its initial conditions.
reset $(\mathrm{q})$ resets the following quantizer object properties to their initial conditions:

- minlog
- maxlog
- noverflows
- nunderflows
- noperations


## Version History

Introduced before R2006a

## See Also

resetlog

## reset

Clear stored information from NumericTypeScope object

## Syntax

reset (H)

## Description

reset (H) clears all stored information from the NumericTypeScope object H. Doing so allows you to reuse H to process data from a different variable. Resetting the object clears the information displayed in the scope window.

## Examples

## View the Dynamic Range of a fi Object

Use the NumericTypeScope to view the dynamic range of a fi object.
Create a fi object and set the DataTypeOverride to ScaledDoubles.

```
a = fi(magic(10),1,8,2);
b = fi([a; 2.^(-5:4)],1,8,3);
fp = fipref;
initialDTOSetting = fp.DataTypeOverride;
fp.DataTypeOverride = 'ScaledDoubles';
```

Create a NumericTypeScope object. You can use the reset method to ensure that all stored information is cleared from the NumericTypeScope object h .
h = NumericTypeScope;
reset (h)
Use the step method to process your data and visualize the dynamic range of the fi object b .
step (h,b);


Closing the NumericTypeScope window does not delete the object from your workspace. Close the NumericTypeScope window and reopen it using the show function.
show(h);
The NumericTypeScope displays a log2 histogram which shows that the values appear both outside of the range and below the precision of the data type of the variable. Pause on one bar of the histogram to view the percentage of the total values that are represented by that bar.

Simulation Data Overview using numerictype $(1,8,3)$


Data Browser 0
Proposed Data Type:
numerictype $(1,8,3)$

In this case, the data type of $b$ is numerictype $(1,8,3)$. The numerictype $(1,8,3)$ data type provides 5 integer bits, including the signed bit, and 3 fractional bits. Thus, this data type can represent only values between $-2^{\wedge} 4$ and $2^{\wedge} 4-2^{\wedge}-3$ (from -16 to 15.8750 ). Given the range and precision of this data type, values greater than $2^{\wedge} 4$ fall outside the range and values less than $2^{\wedge}-3$ fall below the precision of the data type.

The NumericTypeScope shows that values requiring bits 5, 6, and 7 are outside the range and values requiring fractional bits 4 and 5 are below precision. Given this information, you can prevent values that are outside range and below precision by changing the data type of the variable $b$ to numerictype (0,13,5).

Given this information, you can prevent values that are outside range and below precision by changing the data type of the variable b to numerictype $(0,13,5)$. In the NumericTypeScope, enter numerictype (0, 13,5 ) in the Proposed Data Type box.

Simulation Data Overview using numerictype( $0,13,5$ )


Values	Potential Overflows	In-Range	Potential Underflows
Positive	$\square 0$	-110	$\square$
Negative	\% 0	\% 0	$\geqslant 0$
Zero	0	0	0

## Data Browser

Proposed Data Type:
numerictype(0,13,5)

Return to the original data type override setting.
fp.DataTypeOverride = initialDTOSetting;

## Input Arguments

H - NumericTypeScope object
NumericTypeScope object
NumericTypeScope object, specified as a NumericTypeScope object.
Example: reset (H)

## Version History

Introduced in R2010a

## See Also

NumericTypeScope \| step | show

## resetglobalfimath

Set global fimath to MATLAB factory default

## Syntax

resetglobalfimath

## Description

resetglobalfimath sets the global fimath to the MATLAB factory default in your current MATLAB session. The MATLAB factory default has the following properties:

```
RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision
```


## Examples

In this example, you create your own fimath object $F$ and set it as the global fimath. Then, using the resetglobalfimath command, reset the global fimath to the MATLAB factory default setting.

```
F = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
globalfimath(F);
F1 = fimath
a = fi(pi)
F1 =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision
a =
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
```

Now, set the global fimath back to the factory default setting using resetglobalfimath:

```
resetglobalfimath;
F2 = fimath
a = fi(pi)
F2 =
```

```
 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision
a =
3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
```

You've now set the global fimath in your current MATLAB session back to the factory default setting. To use the factory default setting of the global fimath in future MATLAB sessions, you must use the removeglobalfimathpref command.

## Alternatives

$\operatorname{reset}(G)$ - If $G$ is a handle to the global fimath, reset ( $G$ ) is equivalent to using the resetglobalfimath command.

## Version History

## Introduced in R2010a

## See Also

fimath|globalfimath| removeglobalfimathpref

# removeglobalfimathpref 

Remove global fimath preference

## Syntax

removeglobalfimathpref

## Description

removeglobalfimathpref removes your global fimath from the MATLAB preferences. Once you remove the global fimath from your preferences, you cannot save it to them again. It is best practice to remove global fimath from the MATLAB preferences so that you start each MATLAB session using the default fimath settings.

The removeglobalfimathpref function does not change the global fimath for your current MATLAB session. To revert back to the factory default setting of the global fimath in your current MATLAB session, use the resetglobalfimath command.

## Examples

## Example 4.4. Removing Your Global fimath from the MATLAB Preferences

Typing
removeglobalfimathpref;
at the MATLAB command line removes your global fimath from the MATLAB preferences. Using the removeglobal fimathpref function allows you to:

- Continue using your global fimath in the current MATLAB session
- Use the MATLAB factory default setting of the global fimath in all future MATLAB sessions

To revert back to the MATLAB factory default setting of the global fimath in both your current and future MATLAB sessions, use both the resetglobalfimath and the removeglobalfimathpref commands:

```
resetglobalfimath;
removeglobalfimath;
```


## See Also

fimath | globalfimath | resetglobalfimath

## resetlog

Clear log for fi or quantizer object

## Syntax

resetlog(a)
resetlog(q)

## Description

resetlog(a) clears the log for fi object a.
reset $\log (q)$ clears the log for quantizer object $q$.
Turn logging on or off by setting the fipref property LoggingMode.

## Version History

Introduced before R2006a

## See Also

fipref|maxlog|minlog|noperations|noverflows|nunderflows|reset

## round

Round fi object toward nearest integer or round input data using quantizer object

## Syntax

```
y = round(a)
```

$y=\operatorname{round}(q, x)$

## Description

$y=$ round (a) rounds fi object $a$ to the nearest integer. In the case of a tie, round rounds values to the nearest integer with greater absolute value. The rounded value is returned in fi object $y$.
$y=\operatorname{round}(q, x)$ uses the RoundingMethod and FractionLength settings of quantizer object $q$ to round the numeric data x , but does not check for overflows during the operation. Input x must be a built-in numeric variable. Use the cast function to work with fi objects.

## Examples

## Use round on a Signed fi Object

The following example demonstrates how the round function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 3 .

```
a = fi(pi,1,8,3)
a =
 3.1250
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3
```

```
y = round(a)
```

y = round(a)
y =
y =
3
3
DataTypeMode: Fixed-point: binary point scaling
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
Signedness: Signed
WordLength: 6
WordLength: 6
FractionLength: 0

```
 FractionLength: 0
```

The following example demonstrates how the round function affects the numerictype properties of a signed fi object with a word length of 8 and a fraction length of 12 .
$a=f i(0.025,1,8,12)$
a $=$

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12
y = round(a)
y =
 0
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0
```


## Use quantizer Object to Round Numeric Data

This example shows how to use the rounding method and fraction length specified by quantizer object $q$ to round the numeric data in $x$.

```
q = quantizer('fixed','convergent','wrap',[3 2])
q =
```

```
 DataMode = fixed
```

        DataMode = fixed
        RoundMode = convergent
        RoundMode = convergent
    OverflowMode = wrap
    OverflowMode = wrap
        Format = [3 2]
        Format = [3 2]
    x = (-2:eps(q)/4:2)';
x = (-2:eps(q)/4:2)';
y = round(q,x);
plot(x,[x,y],'.-'); axis square

```
plot(x,[x,y],'.-'); axis square
```



## Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least significant digit is 5 .

- The convergent function rounds ties to the nearest even integer.
- The nearest function rounds ties to the nearest integer toward positive infinity.
- The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

```
a = fi([-3.5:3.5]');
y = [a convergent(a) nearest(a) round(a)]
y =
\begin{tabular}{rrrr}
-3.5000 & -4.0000 & -3.0000 & -4.0000 \\
-2.5000 & -2.0000 & -2.0000 & -3.0000 \\
-1.5000 & -2.0000 & -1.0000 & -2.0000 \\
-0.5000 & 0 & 0 & -1.0000 \\
0.5000 & 0 & 1.0000 & 1.0000 \\
1.5000 & 2.0000 & 2.0000 & 2.0000 \\
2.5000 & 2.0000 & 3.0000 & 3.0000 \\
3.5000 & 3.9999 & 3.9999 & 3.9999
\end{tabular}
```

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

## Input Arguments

a - Input fi array
scalar | vector | matrix | multidimensional array
Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.
round does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is trivial when the slope is an integer power of 2 and the bias is 0 .
Data Types: fi
Complex Number Support: Yes

## $q$ - RoundingMethod and FractionLength settings <br> quantizer object

RoundingMethod and FractionLength settings, specified as a quantizer object.
Example: q = quantizer('fixed', 'round', [3 2]);
x - Input array
scalar | vector | matrix | multidimensional array
Input array to quantize using the quantizer object q, specified as a scalar, vector, matrix, or multidimensional array.

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |uint32|uint64 |
logical
Complex Number Support: Yes
```


## Algorithms

- $y$ and a have the same fimath object and DataType property.
- When the DataType property of a is single, double, or boolean, the numerictype of $y$ is the same as that of a.
- When the fraction length of a is zero or negative, a is already an integer, and the numerictype of $y$ is the same as that of $a$.
- When the fraction length of a is positive, the fraction length of $y$ is 0 , its sign is the same as that of a, and its word length is the difference between the word length and the fraction length of a, plus one bit. If a is signed, then the minimum word length of $y$ is 2 . If a is unsigned, then the minimum word length of y is 1 .


## Version History

## Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

## See Also

ceil|convergent|fix|floor|nearest|quantize|quantizer

## rsqrt

Reciprocal square root

## Syntax

$Y=\operatorname{rsqrt}(X)$

## Description

$Y=r s q r t(X)$ returns the reciprocal square root of each element of the half-precision input array,
X.

Note This function supports only half-precision inputs.

## Examples

## Reciprocal Square Root of Matrix Elements

Create a matrix of half-precision values.

```
X = half(magic(3))
X =
 3x3 half matrix
\begin{tabular}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{tabular}
```

Compute the reciprocal square root of each element of $X$.
$y=\operatorname{rsqrt}(X)$
$y=$
$3 x 3$ half matrix

0.3535	1.0000	0.4082
0.5771	0.4473	0.3779
0.5000	0.3333	0.7070

## Input Arguments

X - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a half-precision numeric scalar, vector, matrix, or multidimensional array

Data Types: Half

## Version History

Introduced in R2018b

## See Also

half

## savefipref

Save fi preferences for next MATLAB session

## Syntax

savefipref

## Description

savefipref saves the settings of the current fipref object for the next MATLAB session.

## Version History

Introduced before R2006a

## See Also

fipref

## sdec

Signed decimal representation of stored integer of fi object

## Syntax

sdec (a)

## Description

Fixed-point numbers can be represented as
real-worldvalue $=2^{- \text {fractionlength }} \times$ storedinteger
or, equivalently as
real-worldvalue $=($ slope $\times$ storedinteger $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
$\operatorname{sdec}(\mathrm{a})$ returns the stored integer of fi object a in signed decimal format.

## Examples

The code

```
a = fi([-1 1],1,8,7);
sdec(a)
returns
ans =
 '-128 127'
```


## Version History

Introduced before R2006a

## See Also

bin | dec | hex | storedInteger|oct

## set

Set or display property values for quantizer objects

## Syntax

```
set(q, PropertyValue1, PropertyValue2,...)
```

set ( $q, s$ )
$\operatorname{set}(q, p n, p v)$
set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...)
q. PropertyName = Value
$s=\operatorname{set}(q)$

## Description

set (q, PropertyValue1, PropertyValue2,...) sets the properties of quantizer object $q$. If two property values conflict, the last value in the list is the one that is set.
set ( $q, s$ ), where $s$ is a structure whose field names are object property names, sets the properties named in each field name with the values contained in the structure.
set ( $q, p n, p v$ ) sets the named properties specified in the cell array of strings $p n$ to the corresponding values in the cell array pv.
set(q,'PropertyName1',PropertyValue1,'PropertyName2', PropertyValue2,....) sets multiple property values with a single statement.

Note You can use property name/property value string pairs, structures, and property name/property value cell array pairs in the same call to set.
q. PropertyName = Value uses dot notation to set property PropertyName to Value.
set (q) displays the possible values for all properties of quantizer object $q$.
$\mathrm{s}=\operatorname{set}(\mathrm{q})$ returns a structure containing the possible values for the properties of quantizer object q.

## Version History <br> Introduced before R2006a

## See Also

get

## setfimath

Attach fimath object to fi object

## Syntax

$Y=\operatorname{setfimath}(X, F)$

## Description

$Y=\operatorname{set} f i m a t h(X, F)$ returns a fi object $Y$ with $X$ 's numerictype and value, and attached fimath object $F$.

The $Y=\operatorname{setfimath}(X, F)$ syntax does not modify the input $X$. To modify $X$, use $X=$ setfimath (X,F). This usage gives you more localized control over the fimath settings without making a data copy in the generated code.

If you use setfimath in an expression, such as a*setfimath $(b, F)$, the fimath object is used in the temporary variable, but b is not modified.

This function and the related removefimath function are useful for preventing errors about the fimath of both operands needing to be equal.

## Examples

## Attach fimath Object to fi Object

Create a fi object.
$a=f i(p i)$
a $=$
3.1416

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 13
Create a fimath object and use setfimath to attach it to the fi object.

```
f = fimath('OverflowAction','Wrap','RoundingMethod','Floor');
b = setfimath(a,f)
b}
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
```

RoundingMethod: Floor
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

## Set and Remove fimath for Code Generation

This example shows how to use the pattern $X=\operatorname{setfimath}(X, F)$ and $Y=$ removefimath $(Y)$ to insulate variables from fimath settings outside the function. This pattern does not create copies of the data in generated code.

```
type fixed_point_32bit_KeepLSB_plus_example.m
function y = fixed_point_32bit_KeepLSB_plus_example(a,b)
f = fimath('RoundingMethōd', '\overline{Floor', ...}
 'OverflowAction', 'Wrap', ...
 'SumMode', 'KeepLSB', ...
 'SumWordLength', 32)
a = setfimath(a,f);
b = setfimath(b,f);
y = a + b;
y = removefimath(y);
end
a = fi(0,1,16,15);
b = fi(0,1,16,15);
```

You can use MATLAB® ${ }^{\text {C }}$ Coder $^{\text {rM }}$ to generate C code. This example generates C code on a computer with a 32-bit native integer type.

```
codegen -config:lib fixed_point_32bit_KeepLSB_plus_example...
 -args {a,b} -launchreport
Code generation successful: View report
```

Trace the code in the code generation report.

```
32 int fixed_point_32bit_KeepLSB_plus_example(short a, short b)
33 {
34 /* Copyright 2011-2012 The MathWorks, Inc. */
35 return a + b;
36 }
```


## Input Arguments

## X - Input array

scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array.
If X is a fi object or integer data type, then the fimath object is applied. Otherwise, the fimath object is not applied and $Y=X$.

Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi
Complex Number Support: Yes

## F - Fixed-point math settings to attach to the output <br> fimath object

Fixed-point math settings to attach to the output, specified as an existing fimath object. If $F$ is not a fimath object, an error occurs.

## Output Arguments

Y - Output fi object
fi object
Output fi object, returned as a fi object with the same data type and value as the input $X$ and the attached fimath object $F$.

If the input X is not a fi object or integer data type, then $\mathrm{Y}=\mathrm{X}$.

## Version History

Introduced in R2012b

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.

## See Also

fi|fimath|fixed.fimathLike|removefimath

## sfi

(Not recommended) Construct signed fixed-point numeric object

Note sfi is not recommended. Use fi instead.

## Syntax

$a=s f i$
$\mathrm{a}=\mathrm{sfi}(\mathrm{v})$
$a=s f i(v, w)$
$a=s f i(v, w, f)$
a $=$ sfi(v,w,slope,bias)
a = sfi(v,w,slopeadjustmentfactor,fixedexponent,bias)

## Description

$a=s f i$ is the default constructor and returns a signed fi object with no value, 16 -bit word length, and 15 -bit fraction length.

The fi object created by the sfi constructor function has data properties, fimath properties, and numerictype properties. These properties are described in detail in fi Object Data Properties, fimath Object Properties and numerictype Object Properties.

The fi object created by the sfi constructor function has no local fimath object. You can attach a fimath object to that fi object if you do not want to use the default fimath settings. For more information, see "fimath Object Construction".
$\mathrm{a}=\mathrm{sfi}(\mathrm{v})$ returns a signed fixed-point object with value $\mathrm{v}, 16$-bit word length, and best-precision fraction length. Best-precision is when the fraction length is set automatically to accommodate the value $v$ for the given word length.
$\mathrm{a}=\mathrm{sfi}(\mathrm{v}, \mathrm{w})$ returns a signed fixed-point object with value v , word length w , and best-precision fraction length.
$a=s f i(v, w, f)$ returns a signed fixed-point object with value $v$, word length $w$, and fraction length f.
a $=$ sfi(v,w,slope,bias) returns a signed fixed-point object with value $v$, word length $w, ~ s l o p e$, and bias.
$a=s f i(v, w, s l o p e a d j u s t m e n t f a c t o r, f i x e d e x p o n e n t, b i a s)$ returns a signed fixed-point object with value $v$, word length $w$, slopeadjustmentfactor, fixedexponent, and bias.

## Examples

## Create a Signed fi Object with Default Values

The default constructor returns a signed fi object with no value, 16 -bit word length, and 15 -bit fraction length.
$\mathrm{a}=\mathrm{sfi}$
a $=$
[]
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 15

## Create a Signed fi Object with Default Word Length and Best-Precision Fraction Length

Create a signed fi object with the default word length of 16 bits and best-precision fraction length.

```
a = sfi(pi)
a =
3.1416
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 13
```


## Create a Signed fi Object with Best-Precision Fraction Length

If you omit the argument f , the fraction length is set automatically to the best precision possible.

```
a = sfi(pi,8)
a =
3.1563
DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 8
FractionLength: 5
```


## Create a Signed fi Object with Specified Word Length and Fraction Length

Create a signed fi object with a value of pi, a word length of 8 bits, and a fraction length of 3 bits.
$a=s f i(p i, 8,3)$
a $=$
3.1250

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
FractionLength: 3
```

Default fimath properties are associated with a. When a fi object does not have a local fimath object, no fimath object properties are displayed in its output. To determine whether a fi object has a local fimath object, use the isfimathlocal function.

```
isfimathlocal(a)
```

ans $=$
0

A returned value of 0 means the fi object does not have a local fimath object. When the isfimathlocal function returns a 1, the fi object has a local fimath object.

The value $v$ can also be an array.

```
a = sfi((magic(3)/10),16,12)
a =
\begin{tabular}{lll}
0.8000 & 0.1001 & 0.6001 \\
0.3000 & 0.5000 & 0.7000 \\
0.3999 & 0.8999 & 0.2000
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12
```


## Input Arguments

## v-Value

scalar | vector | matrix | multi-dimensional array
Value of the signed fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16|int32 | int64|uint8|uint16|uint32|uint64| fi

## w- Word length

16 (default) | scalar integer
Word length, in bits, of the signed fi object, specified as a scalar integer.
Data Types: single | double |int8|int16|int32|int64|uint8|uint16|uint32|uint64

## f - Fraction length

15 (default) | scalar integer
Fraction length, in bits, of the signed fi object, specified as a scalar integer. If you do not specify a fraction length, the signed fi object automatically uses the fraction length that gives the best precision while avoiding overflow for the specified value and word length.

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

## slope - Slope

scalar integer
Slope of the scaling, specified as a scalar integer. The following equation represents the real-world value of a slope bias scaled number.
real - worldvalue $=($ slope $\times$ integer $)+$ bias
Data Types: single |double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

## bias - Bias

scalar
Bias of the scaling, specified as a scalar. The following equation represents the real-world value of a slope bias scaled number.
real - worldvalue $=($ slope $\times$ integer $)+$ bias
Data Types: single | double | int8 | int16|int32| int64|uint8|uint16|uint32|uint64

## slopeadjustmentfactor - Slope adjustment factor

scalar integer
The slope adjustment factor of a slope bias scaled number. The following equation demonstrates the relationship between the slope, fixed exponent, and slope adjustment factor.
slope $=$ slopead justmentfactor $\times 2^{\text {fixedexponent }}$
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64

## fixedexponent - Fixed exponent

scalar integer
The fixed exponent of a slope bias scaled number. The following equation demonstrates the relationship between the slope, fixed exponent, and slope adjustment factor.

$$
\text { slope }=\text { slopead justmentfactor } \times 2^{\text {fixedexponent }}
$$

Data Types: single | double |int8|int16|int32|int64|uint8|uint16|uint32|uint64

## Version History <br> Introduced in R2009b

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.
Usage notes and limitations:

- All properties related to data type must be constant for code generation.


## HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

## See Also

fi|fimath|fipref|isfimathlocal|numerictype|quantizer|ufi

## Topics

"View Fixed-Point Data"
"Cast fi Objects"

## shiftdata

Shift data to operate on specified dimension

## Syntax

```
[x,perm,nshifts] = shiftdata(x,dim)
```


## Description

[x, perm,nshifts] = shiftdata(x, dim) shifts data $x$ to permute dimension dim to the first column using the same permutation as the built-in filter function. The vector perm returns the permutation vector that is used.

If dim is missing or empty, then the first non-singleton dimension is shifted to the first column, and the number of shifts is returned in nshifts.
shiftdata is meant to be used in tandem with unshiftdata, which shifts the data back to its original shape. These functions are useful for creating functions that work along a certain dimension, like filter, goertzel, sgolayfilt, and sosfilt.

## Examples

## Example 1

1 Create a $3-x-3$ magic square:
$x=f i(\operatorname{magic}(3))$
$x=$

8	1	6
3	5	7
4	9	2

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed
WordLength: 16
FractionLength: 11
2 Shift the matrix $x$ to work along the second dimension:

```
[x,perm,nshifts] = shiftdata(x,2)
x =
\begin{tabular}{lll}
8 & 3 & 4 \\
1 & 5 & 9 \\
6 & 7 & 2
\end{tabular}
DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
```

```
 FractionLength: 11
perm =
 2 1
nshifts =
 []
```

The permutation vector, perm, and the number of shifts, nshifts, are returned along with the shifted matrix, $x$.
3 Shift the matrix back to its original shape:

```
y = unshiftdata(x,perm,nshifts)
y =
 8
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
```


## Example 2

1 Define $x$ as a row vector:
$x=1: 5$
$x=$
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
2 Define dim as empty to shift the first non-singleton dimension of $x$ to the first column:

```
[x,perm,nshifts] = shiftdata(x,[])
 x =
 1
 2
 3
 4
 5
perm =
 []
nshifts =
```

$x$ is returned as a column vector, along with perm, the permutation vector, and nshifts, the number of shifts.
3 Using unshiftdata, restore $x$ to its original shape:
$y=$ unshiftdata(x,perm,nshifts)
$y=$
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

## Version History <br> Introduced in R2008a

## See Also

unshiftdata

## show

Open NumericTypeScope object

## Syntax

show (H)

## Description

show (H) opens the NumericTypeScope object H and brings it into view. Closing the scope window does not delete the object from your workspace. If the scope object still exists in your workspace, you can open it and bring it back into view using the show function.

## Examples

## View the Dynamic Range of a fi Object

Use the NumericTypeScope to view the dynamic range of a fi object.
Create a fi object and set the DataTypeOverride to ScaledDoubles.

```
a = fi(magic(10),1,8,2);
b = fi([a; 2.^(-5:4)],1,8,3);
fp = fipref;
initialDTOSetting = fp.DataTypeOverride;
fp.DataTypeOverride = 'ScaledDoubles';
```

Create a NumericTypeScope object. You can use the reset method to ensure that all stored information is cleared from the NumericTypeScope object h.
h = NumericTypeScope;
reset (h)
Use the step method to process your data and visualize the dynamic range of the fi object b .
step(h,b);

## Simulation Data Overview using numerictype(1,8,3)



Values	Potential Overflows	In-Range	Potential Underflows
Positive	$\square 95$	$\square 13$	$\square$
Negative	V0	$\mathscr{V} 0$	$\dddot{0}$
Zero	0	0	0



Closing the NumericTypeScope window does not delete the object from your workspace. Close the NumericTypeScope window and reopen it using the show function.
show(h);
The NumericTypeScope displays a log2 histogram which shows that the values appear both outside of the range and below the precision of the data type of the variable. Pause on one bar of the histogram to view the percentage of the total values that are represented by that bar.

Simulation Data Overview using numerictype $(1,8,3)$


Data Browser 0
Proposed Data Type:
numerictype $(1,8,3)$

In this case, the data type of $b$ is numerictype $(1,8,3)$. The numerictype $(1,8,3)$ data type provides 5 integer bits, including the signed bit, and 3 fractional bits. Thus, this data type can represent only values between $-2^{\wedge} 4$ and $2^{\wedge} 4-2^{\wedge}-3$ (from -16 to 15.8750 ). Given the range and precision of this data type, values greater than $2^{\wedge} 4$ fall outside the range and values less than $2 \wedge-3$ fall below the precision of the data type.

The NumericTypeScope shows that values requiring bits 5, 6, and 7 are outside the range and values requiring fractional bits 4 and 5 are below precision. Given this information, you can prevent values that are outside range and below precision by changing the data type of the variable $b$ to numerictype (0,13,5).

Given this information, you can prevent values that are outside range and below precision by changing the data type of the variable b to numerictype $(0,13,5)$. In the NumericTypeScope, enter numerictype (0, 13,5 ) in the Proposed Data Type box.

Simulation Data Overview using numerictype( $0,13,5$ )


Values	Potential Overflows	In-Range	Potential Underflows
Positive	$\square 0$	-110	$\square$
Negative	\% 0	\% 0	\% 0
Zero	0	0	0

## Data Browser

Proposed Data Type:
numerictype(0,13,5)

Return to the original data type override setting.
fp.DataTypeOverride = initialDTOSetting;

## Input Arguments

H - NumericTypeScope object
NumericTypeScope object
NumericTypeScope object, specified as a NumericTypeScope object.
Example: show(H)

## Version History

Introduced in R2010a

## See Also

NumericTypeScope | step | reset

## showfixptsimerrors

Show overflows from most recent fixed-point simulation

## Compatibility

Note showfixptsimerrors will be removed in a future release. Use fxptdlg instead.

## Syntax

showfixptsimerrors

## Description

The showfixptsimerrors script displays any overflows from the most recent fixed-point simulation. This information is also visible in the Fixed-Point Tool.

## Version History <br> Introduced before R2006a

## See Also

autofixexp|fxptdlg

## showfixptsimranges

Show logged maximum values, minimum values, and overflow data from fixed-point simulation

## Compatibility

Note showfixptsimranges will be removed in a future release. Use fxptdlg instead.

## Syntax

showfixptsimranges
showfixptsimranges(action)

## Description

showfixptsimranges displays the logged maximum values, minimum values, and overflow data from the most recent fixed-point simulation in the MATLAB Command Window.
showfixptsimranges(action) stores the logged maximum values, minimum values, and overflow data from the most recent fixed-point simulation in the workspace variable FixPtSimRanges. If action is 'verbose', the logged data also appears in the MATLAB Command Window. If action is 'quiet', no data appears.

## Version History

Introduced before R2006a

See Also<br>autofixexp|fxptdlg

## showInstrumentationResults

Results logged by instrumented, compiled C code function

## Syntax

```
showInstrumentationResults('mex_fcn')
showInstrumentationResults('mex_fcn','-options')
showInstrumentationResults mex_fcn
showInstrumentationResults mex_fcn -options
```


## Description

showInstrumentationResults('mex_fcn') opens the Instrumentation Report Viewer, showing results from calling the instrumented MEX function mex fcn.

Hovering over variables and expressions in the report displays the logged information. The logged information includes minimum and maximum values, proposed fraction or word lengths, percent of current range, and whether the value is always a whole number, depending on which options you specify. If you specify to include them in the buildInstrumentedMex function, histograms are also included. The same information is displayed in a summary table in the Variables tab.

When you call showInstrumentationResults, a file named instrumentation/mex fcn/html/ printable. html is created. mex_fcn is the name of the corresponding instrumented MEX function. Selecting this file opens a web-based version of the Instrumentation Report Viewer. To open this file from within MATLAB, right-click on the file and select Open Outside MATLAB.

The showInstrumentationResults function returns an error if the instrumented mex_fcn has not yet been called.

Note The logged results from the showInstrumentationResults function are an accumulation of all previous calls to the instrumented MEX function. To clear the log, see clearInstrumentationResults.
showInstrumentationResults('mex_fcn','-options') specifies options for the instrumentation results section of the Instrumentation Report Viewer.
showInstrumentationResults mex_fcn and showInstrumentationResults mex_fcn options are alternative syntaxes for opening the Instrumentation Report Viewer.

## Examples

## Create Instrumented MEX Function

This example shows how to create an instrumented MEX function, run a test bench, then view logged results.

Define prototype input arguments.
n = 128;
$x=$ complex(zeros(n,1));
$\mathrm{w}=\mathrm{fi}$ _radix2twiddles(n);
Generate an instrumented MEX function. Use the - o option to specify the MEX function name. Use the -histogram option to compute histograms.

If you have a MATLAB® ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$ license, you can also add the - coder option. In this case, buildInstrumentedMex testfft -o testfft_instrumented -args \{x,coder. Constant(w) \} -histogram

If you have a MATLAB® ${ }^{8}$ Coder ${ }^{\mathrm{TM}}$ license, you can also add the - coder option. For example, buildInstrumentedMex testfft -coder -o testfft_instrumented -args \{x, W\}

Like the fiaccel function, the buildInstrumentedMex function generates a MEX function. To generate C code, use the MATLAB® Coder $^{\mathrm{TM}}$ codegen function.

Run a test file to record instrumentation results. Use the showInstrumentedMex function to open the report. To view the simulation minimum and maximum values and whole number status, pause over a variable in the report. You can also see proposed data types for double precision numbers in the table.

```
for i=1:20
 y = testfft_instrumented(randn(size(x)),w);
end
showInstrumentationResults testfft_instrumented
```



Close the histogram display, then use the clearInstrumentationResults function to clear the results log.

```
clearInstrumentationResults testfft_instrumented
```

Run a different test bench, then view the new instrumentation results.

```
for i=1:20
 y = testfft_instrumented(cast(rand(size(x))-0.5,'like',x),w);
end
showInstrumentationResults testfft_instrumented
```



To view the histogram for a variable, click the histogram icon in the Variables tab.


Close the histogram display, then use the clearInstrumentationResults function to clear the results log.
clearInstrumentationResults testfft_instrumented
Clear the MEX function.
clear testfft_instrumented

## Input Arguments

## mex_fcn - Instrumented MEX function

MEX function
Instrumented MEX function created using buildInstrumentedMex.

## options - Instrumentation results options

-defaultDT T|-nocode|-optimizeWholeNumbers|-percentSafetyMargin N|-printable|-proposeFL | -proposeWL

Instrumentation results options, specified as:

```
-defaultDT T
-nocode
-optimizeWholeNumbers
-percentSafetyMargin N
-printable
-proposeFL
-proposeWL
```

Default data type to propose for double or single data type inputs, where $T$ is either a numerictype object or one of the following: 'remainFloat' (default), 'double', 'single', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', or 'uint64'.

If you specify an int or uint, the signedness and word length are that int or uint value and a fraction length is proposed.

The default is remainFloat, which does not propose any data types.
Do not display MATLAB code in the printable report. Display only the tables of logged variables. This option only has effect in combination with the - printable option.
Optimize the word length of variables whose simulation min/max logs indicate that they are always whole numbers.
Safety margin for simulation min/max, where $N$ is a percent value.
Create and open a printable HTML report. The report opens in the system browser.
Propose fraction lengths for specified word lengths.
Propose word lengths for specified fraction lengths.

## Version History <br> Introduced in R2011b

## R2018a: Redesigned code generation reports

Behavior changed in R2018a
The code generation report showInstrumentationResults has a new user interface.
Some benefits of the new interface are:

- Improved navigation. For example, if you double-click a variable in the MATLAB code, you see the variable in the Variables tab.
- Easier to use pop-up displays data type information in the showInstrumentationResults report. For example, you can pin the pop-up display to the report.

In R2018a, the reports are located in the same folders as in previous releases, but have a different file format. In previous releases, a report was saved with an HTML format and consisted of many files. In R2018a, a report is saved as one file with an .mldatx file extension. You can open a file with an .mldatx extension in MATLAB.

If you generate a report in R2018a, you cannot open it in a previous release. In R2018a, you can open reports that you generated in a previous release, but they look and behave as they did in that release.

## See Also

fiaccel|clearInstrumentationResults | buildInstrumentedMex|codegen|mex

## Simulink.sdi.compareRuns

Package: Simulink.sdi
Compare data in two simulation runs

## Syntax

diffResult = Simulink.sdi.compareRuns(runID1,runID2)
diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name=Value)

## Description

diffResult = Simulink.sdi.compareRuns(runID1,runID2) compares the data in the runs that correspond to runID1 and runID2 and returns the result in the Simulink.sdi.DiffRunResult object diffResult. For more information about the comparison algorithm, see "How the Simulation Data Inspector Compares Data".
diffResult = Simulink.sdi.compareRuns(runID1, runID2,Name=Value) compares the simulation runs that correspond to runID1 and runID2 using the options specified by one or more name-value arguments. For more information about comparison options, see "How the Simulation Data Inspector Compares Data".

## Examples

## Compare Runs with Global Tolerance

You can specify global tolerance values to use when comparing two simulation runs. Global tolerance values are applied to all signals within the run. This example shows how to specify global tolerance values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four simulations of an aircraft longitudinal controller. This example compares data from two runs that use different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');
To access the run data to compare, use the Simulink.sdi.getAllRunIDs function to get the run IDs that correspond to the last two simulation runs.

```
runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);
```

Use the Simulink.sdi. compareRuns function to compare the runs. Specify a global relative tolerance value of 0.2 and a global time tolerance value of 0.5 .

```
runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);
```

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether signals were within the tolerance values or out of tolerance.

```
runResult.Summary
ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0
```

All three signal comparison results fell within the specified global tolerance.
You can save the comparison results to an MLDATX file using the saveResult function.

```
saveResult(runResult,'InputFilterComparison');
```


## Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the Simulation Data Inspector. In this example, you compare data collected by simulating a model of an aircraft longitudinal flight control system. Each simulation uses a different value for the input filter time constant and logs the input and output signals. You analyze the effect of the time constant change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.
Simulink.sdi.load('AircraftExample.mldatx');
The session file contains four runs. In this example, you compare data from the first two runs in the file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

```
runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);
```

Now, compare the two runs without specifying any tolerances.

```
noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
```

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

```
qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);
```

Check the Status of each signal result to see whether the comparison result fell within our out of tolerance.

```
qResult.Status
```

ans =
ComparisonSignalStatus enumeration

OutOfTolerance

```
alphaResult.Status
ans =
 ComparisonSignalStatus enumeration
 OutOfTolerance
```

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals. Specify the tolerances by setting the properties for the Simulink.sdi. Signal objects that correspond to the signals being compared. Comparisons use tolerances specified for the baseline signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

```
runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');
```

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the $q$ signal using the AbsTol and TimeTol properties.

```
qSig.AbsTol = 0.1;
```

qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

```
alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;
```

Compare the results again. Access the results from the comparison and check the Status property for each signal.

```
tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);
qResult2.Status
ans =
 ComparisonSignalStatus enumeration
 WithinTolerance
alphaResult2.Status
ans =
 ComparisonSignalStatus enumeration
 WithinTolerance
```


## Configure Comparisons to Check Metadata

You can use the Simulink.sdi. compareRuns function to compare signal data and metadata, including data type and start and stop times. A single comparison may check for mismatches in one or more pieces of metadata. When you check for mismatches in signal metadata, the Summary property of the Simulink. sdi. DiffRunResult object may differ from a basic comparison because the Status property for a Simulink. sdi. DiffSignalResult object can indicate the metadata mismatch. You can configure comparisons using the Simulink. sdi. compareRuns function for imported data and for data logged from a simulation.

This example configures a comparison of runs created from workspace data three ways to show how the Summary of the DiffSignalResult object can provide specific information about signal mismatches.

## Create Workspace Data

The Simulink. sdi. compareRuns function compares time series data. Create data for a sine wave to use as the baseline signal, using the timeseries format. Give the timeseries the name Wave Data.

```
time = 0:0.1:20;
siglvals = sin(2*pi/5*time);
sigl_ts = timeseries(siglvals,time);
sigl_ts.Name = 'Wave Data';
```

Create a second sine wave to compare against the baseline signal. Use a slightly different time vector and attenuate the signal so the two signals are not identical. Cast the signal data to the single data type. Also name this timeseries object Wave Data. The Simulation Data Inspector comparison algorithm will align these signals for comparison using the name.

```
time2 = 0:0.1:22;
sig2vals = single(0.98*sin(2*pi/5*time2));
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';
```


## Create and Compare Runs in the Simulation Data Inspector

The Simulink.sdi. compareRuns function compares data contained in Simulink. sdi. Run objects. Use the Simulink. sdi. createRun function to create runs in the Simulation Data Inspector for the data. The Simulink. sdi. createRun function returns the run ID for each created run.

```
runID1 = Simulink.sdi.createRun('Baseline Run','vars',sig1_ts);
runID2 = Simulink.sdi.createRun('Compare to Run','vars',si\overline{g}2_ts);
```

You can use the Simulink.sdi. compareRuns function to compare the runs. The comparison algorithm converts the signal data to the double data type and synchronizes the signal data before computing the difference signal.

```
basic_DRR = Simulink.sdi.compareRuns(runID1,runID2);
```

Check the Summary property of the returned Simulink. sdi. DiffRunResult object to see the result of the comparison.

```
basic_DRR.Summary
ans = struct with fields:
 OutOfTolerance: 1
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0
```

The difference between the signals is out of tolerance.

## Compare Runs and Check for Data Type Match

Depending on your system requirements, you may want the data types for signals you compare to match. You can use the Simulink. sdi. compareRuns function to configure the comparison algorithm to check for and report data type mismatches.

```
dataType_DRR = Simulink.sdi.compareRuns(runID1,runID2,'DataType','MustMatch');
dataType_DRR.Summary
ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 1
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0
```

The result of the signal comparison is now DataTypeMismatch because the data for the baseline signal is double data type, while the data for the signal compared to the baseline is single data type.

## Compare Runs and Check for Start and Stop Time Match

You can use the Simulink. sdi. compareRuns function to configure the comparison algorithm to check whether the aligned signals have the same start and stop times.

```
startStop_DRR = Simulink.sdi.compareRuns(runID1,runID2,'StartStop','MustMatch');
startStop_DRR.Summary
ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
```

> Empty: 0
> Canceled: 0
> EmptySynced: 0
> DataTypeMismatch: 0
> TimeMismatch: 0
> StartStopMismatch: 1
> Unsupported: 0

The signal comparison result is now StartStopMismatch because the signals created in the workspace have different stop times.

## Compare Runs with Alignment Criteria

When you compare runs using the Simulation Data Inspector, you can specify alignment criteria that determine how signals are paired with each other for comparison. This example compares data from simulations of a model of an aircraft longitudinal control system. The simulations used a square wave input. The first simulation used an input filter time constant of 0.1 s and the second simulation used an input filter time constant of 0.5 s .

First, load the simulation data from the session file that contains the data for this example.
Simulink.sdi.load('AircraftExample.mldatx');
The session file contains data for four simulations. This example compares data from the first two runs. Access the run IDs for the first two runs loaded from the session file.

```
runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);
```

Before running the comparison, define how you want the Simulation Data Inspector to align the signals between the runs. This example aligns signals by their name, then by their block path, and then by their Simulink identifier.

```
alignMethods = [Simulink.sdi.AlignType.SignalName
 Simulink.sdi.AlignType.BlockPath
 Simulink.sdi.AlignType.SID];
```

Compare the simulation data in your two runs, using the alignment criteria you specified. The comparison uses a small time tolerance to account for the effect of differences in the step size used by the solver on the transition of the square wave input.

```
diffResults = Simulink.sdi.compareRuns(runIDTs1,runIDTs2,'align',alignMethods,...
 'timetol',0.005);
```

You can use the getResultByIndex function to access the comparison results for the aligned signals in the runs you compared. You can use the Count property of the Simulink.sdi.DiffRunResult object to set up a for loop to check the Status property for each Simulink.sdi.DiffSignalResult object.

```
numComparisons = diffResults.count;
for k = 1:numComparisons
 resultAtIdx = getResultByIndex(diffResults,k);
```

```
 sigID1 = resultAtIdx.signalID1;
 sigID2 = resultAtIdx.signalID2;
 sig1 = Simulink.sdi.getSignal(sigID1);
 sig2 = Simulink.sdi.getSignal(sigID2);
 displayStr = 'Signals %s and %s: %s \n';
 fprintf(displayStr,sig1.Name,sig2.Name,resultAtIdx.Status);
end
Signals q, rad/sec and q, rad/sec: OutOfTolerance
Signals alpha, rad and alpha, rad: OutOfTolerance
Signals Stick and Stick: WithinTolerance
```


## Input Arguments

## runID1 - Baseline run identifier

integer
Numeric identifier for the baseline run in the comparison, specified as a run ID that corresponds to a run in the Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are created. You can get the run ID for a run by using the ID property of the Simulink.sdi. Run object, the Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

## runID2 - Identifier for run to compare

integer
Numeric identifier for the run to compare, specified as a run ID that corresponds to a run in the Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are created. You can get the run ID for a run by using the ID property of the Simulink. sdi. Run object, the Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: AbsTol=x,Align=align0pts

## Align - Signal alignment options

Simulink.sdi.AlignType scalar | Simulink.sdi.AlignType vector
Signal alignment options, specified as a Simulink.sdi. AlignType scalar or vector. The Simulink.sdi.AlignType enumeration includes a value for each option available for pairing each signal in the baseline run with a signal in the comparison run. You can specify one or more alignment options for the comparison. To use more than one alignment option, specify an array. When you specify multiple alignment options, the Simulation Data Inspector aligns signals first by the option in the first element of the array, then by the option in the second element array, and so on. For more information, see "Signal Alignment".

Value	Aligns By
Simulink.sdi.AlignType.BlockPath	Path to the source block for the signal
Simulink.sdi.AlignType.SID	Automatically assigned Simulink identifier
Simulink.sdi.AlignType.SignalName	Signal name
Simulink.sdi.AlignType.DataSource	Path of the variable in the MATLAB workspace

Example: [Simulink.sdi.AlignType.SignalName, Simulink.sdi.AlignType.BlockPath] specifies signal alignment by signal name and then by block path.

## AbsTol - Global absolute tolerance for comparison

0 (default) | positive-valued scalar
Global absolute tolerance for comparison, specified as a positive-valued scalar.
Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a signal in the comparison, specify the tolerance you want to use on the Simulink.sdi. Signal object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about how tolerances are used in comparisons, see "Tolerance Specification".
Example: 0.5
Data Types: double

## RelTol - Global relative tolerance for comparison

0 (default) | positive-valued scalar
Global relative tolerance for comparison, specified as a positive-valued scalar. The relative tolerance is expressed as a fractional multiplier. For example, 0.1 specifies a 10 percent tolerance.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a signal in the comparison, specify the tolerance you want to use on the Simulink.sdi. Signal object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about how tolerances are used in comparisons, see "Tolerance Specification".
Example: 0.1
Data Types: double

## TimeTol - Global time tolerance for comparison

0 (default) | positive-valued scalar
Global time tolerance for comparison, specified as a positive-valued scalar, using units of seconds.
Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a signal in the comparison, specify the tolerance you want to use on the Simulink. sdi. Signal object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about tolerances in the Simulation Data Inspector, see "Tolerance Specification".
Example: 0.2
Data Types: double

## DataType - Comparison sensitivity to signal data types

"MustMatch"
Comparison sensitivity to signal data types, specified as "MustMatch". Specify DataType="MustMatch" when you want the comparison to be sensitive to numeric data type mismatches in compared signals.

When signal data types do not match, the Status property of the Simulink.sdi.DiffSignalResult object for the result is set to DataTypeMismatch.

The Simulink.sdi. compareRuns function compares the data types for aligned signals before synchronizing and comparing the signal data. When you do not specify this name-value argument, the comparison checks data types only to detect a comparison between string and numeric data. For a comparison between string and numeric data, results are not computed, and the status for the result is DataTypeMismatch. For aligned signals that have different numeric data types, the comparison computes results.

When you configure the comparison to stop on the first mismatch, a data type mismatch stops the comparison. A stopped comparison may not compute results for all signals.

## Time - Comparison sensitivity to signal time vectors

"MustMatch"
Comparison sensitivity to signal time vectors, specified as "MustMatch". Specify
Time="MustMatch" when you want the comparison to be sensitive to mismatches in the time vectors of compared signals. When you specify this name-value argument, the algorithm compares the time vectors of aligned signals before synchronizing and comparing the signal data.

When the time vectors for signals do not match, the Status property of the Simulink.sdi.DiffSignalResult object for the result is set to TimeMismatch.

Comparisons are not sensitive to differences in signal time vectors unless you specify this name-value argument. For comparisons that are not sensitive to differences in the time vectors, the comparison algorithm synchronizes the signals prior to the comparison. For more information about how synchronization works, see "How the Simulation Data Inspector Compares Data".

When you specify that time vectors must match and configure the comparison to stop on the first mismatch, a time vector mismatch stops the comparison. A stopped comparison may not compute results for all signals.

## StartStop - Comparison sensitivity to signal start and stop times <br> "MustMatch"

Comparison sensitivity to signal start and stop times, specified as "MustMatch". Specify StartStop="MustMatch" when you want the comparison to be sensitive to mismatches in signal start and stop times. When you specify this name-value argument, the algorithm compares the start and stop times for aligned signals before synchronizing and comparing the signal data.

When the start times and stop times do not match, the Status property of the Simulink.sdi.DiffSignalResult object for the result is set to StartStopMismatch.

When you specify that start and stop times must match and configure the comparison to stop on the first mismatch, a start or stop time mismatch stops the comparison. A stopped comparison may not compute results for all signals.

## StopOnFirstMismatch - Whether comparison stops on first detected mismatch <br> "Metadata" | "Any"

Whether comparison stops on first detected mismatch without comparing remaining signals, specified as "Metadata" or "Any". A stopped comparison may not compute results for all signals, and can return a mismatched result more quickly.

- "Metadata" - A mismatch in metadata for aligned signals stops the comparison. Metadata comparisons happen before comparing signal data.

The Simulation Data Inspector always aligns signals and compares signal units. When you configure the comparison to stop on the first mismatch, an unaligned signal or mismatched units always stop the comparison. You can specify additional name-value arguments to configure the comparison to check and stop on the first mismatch for additional metadata, such as signal data type, start and stop times, and time vectors.

- "Any" - A mismatch in metadata or signal data for aligned signals stops the comparison.


## ExpandChannels - Whether to compute comparison results for each channel in multidimensional signals <br> true or 1 (default) | false or 0

Whether to compute comparison results for each channel in multidimensional signals, specified as logical true (1) or false (0).

- true or 1 - Comparison expands multidimensional signals represented as a single signal with nonscalar sample values to a set of signals with scalar sample values and computes a comparison result for each signal.

The representation of the multidimensional signal in the Simulation Data Inspector as a single signal with nonscalar sample values does not change.

- false or 0 - Comparison does not compute results for multidimensional signals represented as a single signal with nonscalar sample values.


## Output Arguments

## diffResult - Comparison results

Simulink.sdi.DiffRunResult object
Comparison results, returned as a Simulink.sdi.DiffRunResult object.

## Limitations

The Simulation Data Inspector does not support comparing:

- Signals of data types int64 or uint64.
- Variable-size signals.


## Version History

## Introduced in R2011b

## See Also

## Functions

Simulink.sdi.compareSignals|Simulink.sdi.getRunIDByIndex |
Simulink.sdi.getRunCount|getResultByIndex

## Objects

Simulink.sdi.DiffRunResult|Simulink.sdi.DiffSignalResult

## Topics

"Inspect and Compare Data Programmatically"
"Compare Simulation Data"
"How the Simulation Data Inspector Compares Data"

## sin

Sine of fixed-point values

## Syntax

$y=\sin ($ theta)

## Description

$y=\sin ($ theta) returns the sine of fi input theta using a lookup table algorithm.

## Examples

## Calculate the Sine of Fixed-Point Input Values

```
theta = fi([-pi/2,-pi/3,-pi/4,0,pi/4,pi/3,pi/2]);
y = sin(theta)
```

```
y=
```

y=
DataTypeMode: Fixed-point: binary point scaling
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
Signedness: Signed
WordLength: 16
WordLength: 16
FractionLength: 15

```
 FractionLength: 15
```


## Input Arguments

## theta - Input angle in radians

real-valued fi object
Input angle in radians, specified as a real-valued fi object. theta can be a signed or unsigned scalar, vector, matrix, or multidimensional array containing the fixed-point angle values in radians. Valid data types of theta are:

- fi single
- fi double
- fi fixed-point with binary point scaling
- fi scaled double with binary point scaling

Data Types: fi

## Output Arguments

## $y$ - Sine of input angle

scalar | vector | matrix | multidimensional array

Sine of input angle, returned as a scalar, vector, matrix, or multidimensional array. y is a signed, fixed-point number in the range [-1,1].

If the DataTypeMode property of theta is Fixed-point: binary point scaling, then y is returned as a signed fixed-point data type with binary point scaling, a 16 -bit word length, and a 15 -bit fraction length (numerictype $(1,16,15)$ ). If theta is a fi single, fi double, or fi scaled double with binary point scaling, then $y$ is returned with the same data type as theta.

## More About

## Sine

The sine of angle $\Theta$ is defined as

$$
\sin (\theta)=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

## Algorithms

The sin function computes the sine of fixed-point input using an 8-bit lookup table as follows:
1 Perform a modulo $2 \pi$, so the input is in the range $[0,2 \pi)$ radians.
2 Cast the input to a 16 -bit stored integer value, using the 16 most-significant bits.
3 Compute the table index, based on the 16-bit stored integer value, normalized to the full uint16 range.
4 Use the 8 most-significant bits to obtain the first value from the table.
5 Use the next-greater table value as the second value.
6 Use the 8 least-significant bits to interpolate between the first and second values, using nearestneighbor linear interpolation.

## fimath Propagation Rules

The sin function ignores and discards any fimath attached to the input, theta. The output, y , is always associated with the default fimath.

## Version History <br> Introduced in R2012a

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder $^{\mathrm{Tm}}$.

## See Also

sin |angle |cos |atan2|cordicsin |cordiccos

## sign

Perform sign function (signum function) on array

## Syntax

c $=\operatorname{sign}(a)$

## Description

$c=\operatorname{sign}(a)$ returns an array $c$ the same size as $a$, where each element of $c$ is:

- 1 if the corresponding element of a is greater than 0 .
- 0 if the corresponding element of $a$ is 0 .
- -1 if the corresponding element of $a$ is less than 0 .

The elements of c are of data type int8.

## Examples

## Find Sign Function

Find the sign function of a fi object.

```
sign(fi(2))
ans =
 int8
 1
```

Find the sign function of a signed fi vector.

```
v = fi([-11 0 1.5],1);
sign(v)
ans =
 1\times3 int8 row vector
 -1 0
```

Find the sign function of an unsigned fi vector.

```
u = fi([-11 0 1.5],0);
sign(u)
ans =
 1\times3 int8 row vector
```

```
 0 0 1
```


## Input Arguments

a - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a fi scalar, vector, matrix, or multidimensional array.
sign does not support complex fi inputs.
Data Types: fi

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## See Also

abs | complex | conj

## single

Single-precision floating-point real-world value of fi object

## Syntax

single(a)

## Description

Fixed-point numbers can be represented as
real-worldvalue $=2^{- \text {fractionlength }} \times$ storedinteger
or, equivalently as
real-worldvalue $=($ slope $\times$ storedinteger $)+$ bias
single(a) returns the real-world value of a fi object in single-precision floating point.

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
Usage notes and limitations:

- For the automated workflow, do not use explicit double or single casts in your MATLAB algorithm to insulate functions that do not support fixed-point data types. The automated conversion tool does not support these casts. Instead of using casts, supply a replacement function. For more information, see "Function Replacements".


## See Also

double

## sort

Sort elements of real-valued fi object in ascending or descending order

## Syntax

$B=\operatorname{sort}(A)$
$B=\operatorname{sort}(A, d i m)$
$B=\operatorname{sort}(\ldots$, direction)
[B,I] = sort( $\qquad$

## Description

$B=\operatorname{sort}(A)$ sorts the elements of the real-valued fi object $A$ in ascending order.

- If $A$ is a vector, then $\operatorname{sort}(A)$ sorts the vector elements.
- If $A$ is a matrix, then sort (A) treats the columns of $A$ as vectors and sorts each column.
- If $A$ is a multidimensional array, then sort (A) operates along the first array dimension whose size does not equal 1 , treating the elements as vectors.
$B=\operatorname{sort}(A, d i m)$ returns the sorted elements of $A$ along dimension dim.
$B=\operatorname{sort}(\ldots \quad$, direction) returns sorted elements of $A$ in the order specified by direction.
$[B, I]=\operatorname{sort}(\ldots \quad)$ also returns a collection of index vectors for any of the previous syntaxes.


## Examples

## Sort fi Vector in Ascending Order

Create a fi row vector and sort its elements in ascending order.

```
A = fi([9 0 -7 5 3 8 - 10 4 2]);
B = sort(A)
B =
 -10
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
```


## Sort fi Matrix Columns in Descending Order

Create a matrix of fi values and sort its columns in descending order.

```
A = fi([10 -12 4 8; 6 -9 8 0; 2 3 11 -2; 1 1 9 3]);
B = sort(A,'descend')
B =
\begin{tabular}{rrrr}
10 & 3 & 11 & 8 \\
6 & 1 & 9 & 3 \\
2 & -9 & 8 & 0 \\
1 & -12 & 4 & -2
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
```


## Sort and Index a fi Matrix

Create a matrix of $f i$ values and sort each of its rows in ascending order.

```
A = fi([3 6 5; 7 -2 4; 1 0 -9]);
[B,I] = sort(A,2)
B =
\begin{tabular}{rrr}
3 & 5 & 6 \\
-2 & 4 & 7 \\
-9 & 0 & 1
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
I =
 3\times3 int32 matrix
 1 3 2
 2 3 1
 3 1
```

B contains the sorted values and I is a collection of 1-by-3 row index vectors describing the rearrangement of each row of A.

## Input Arguments

## A - Input array

real-valued fi object
Input array, specified as a real-valued fi object.

- If $A$ is a scalar, then $\operatorname{sort}(A)$ returns $A$.
- If $A$ is a vector, then $\operatorname{sort}(A)$ sorts the vector elements.
- If A is a matrix, then sort (A) treats the columns of A as vectors and sorts each column.
- If A is a multidimensional array, then sort (A) operates along the first array dimension whose size does not equal 1 , treating the elements as vectors.
sort does not support complex fixed-point inputs, or pairs of Name, Value arguments. Refer to the MATLAB sort reference page for more information.
Data Types: fi


## dim - Dimension to operate along

positive integer scalar
Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the default is the first array dimension whose size does not equal 1.

The dimensions argument must be a built-in data type; it cannot be a fi object.
Example: Consider a matrix $A$. sort ( $A, 1$ ) sorts the elements in the columns of $A$.
Example: sort ( $\mathrm{A}, 2$ ) sorts the elements in the rows of $A$.
Data Types: single | double | int8| int16 | int32 | int64 | uint8|uint16|uint32|uint64

## direction - Sorting direction

'ascend' (default)|'descend'
Sorting direction, specified as 'ascend ' or 'descend'.
Data Types: char

## Output Arguments

## B - Sorted array

scalar | vector | matrix | multidimensional array
Sorted array, returned as a scalar, vector, matrix, or multidimensional array. B is the same size and type as A . The order of the elements in B preserves the order of any equal elements in A .

## I - Sort index

scalar | vector | matrix | multidimensional array
Sort index, returned as a scalar, vector, matrix, or multidimensional array. I is the same size as A. The index vectors are oriented along the same dimension that sort operates on.
Example: If $A$ is a vector, then $B=A(I)$.
Example: If $A$ is a 2 -by- 3 matrix, then $[B, I]=\operatorname{sort}(A, 2)$ sorts the elements in each row of $A$. The output $I$ is a collection of 1-by- 3 row index vectors describing the rearrangement of each row of $A$.

## Version History

Introduced in R2008b

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.

Usage notes and limitations:

- The dimensions argument must be a built-in type; it cannot be a fi object.


## See Also

sort

## Topics

"Reshaping and Rearranging Arrays"

## sqrt

Square root of fi object

## Syntax

$\mathrm{c}=\operatorname{sqrt}(\mathrm{a})$
c $=\operatorname{sqrt}(\mathrm{a}, \mathrm{T})$
c = sqrt(a,F)
c $=\operatorname{sqrt}(a, T, F)$

## Description

This function computes the square root of a fi object using a bisection algorithm.
$c=\operatorname{sqrt}(a)$ returns the square root of fi object a. Intermediate quantities are calculated using the fimath associated with a. The numerictype object of c is determined automatically using an "Internal Rule" on page 4-1014.
$c=\operatorname{sqrt}(a, T)$ returns the square root of $f i$ object a with numerictype object T. Intermediate quantities are calculated using the fimath associated with a. See "Data Type Propagation Rules" on page 4-1014.
$c=\operatorname{sqrt}(a, F)$ returns the square root of $f i$ object $a$. Intermediate quantities are calculated using the fimath object F . The numerictype object of c is determined automatically using an "Internal Rule" on page 4-1014.

When a is a built-in double or single data type, this syntax is equivalent to $c=\operatorname{sqrt}(a)$ and the fimath object $F$ is ignored.
$c=\operatorname{sqrt}(a, T, F)$ returns the square root fi object a with numerictype object $T$. Intermediate quantities are also calculated using the fimath object F. See "Data Type Propagation Rules" on page 4-1014.

## Input Arguments

## a - Input fi array

scalar | vector | matrix | multidimensional array
Input fi array, specified as a scalar, vector, matrix, or multidimensional array.
sqrt does not support complex, negative-valued, or [Slope Bias] inputs.
Example: a = fi(pi,1,8,3)
Data Types: fi

## T - numerictype of output

numerictype object
numerictype of the output c , specified as a numerictype object.
Example: T = numerictype(1,32,30)

## F - fimath used for calculations of intermediate quantities

fimath object
fimath used for calculations of intermediate quantities, specified as a fimath object.
Example: F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

## Algorithms

## Internal Rule

For syntaxes where the numerictype object of the output is not specified as an input to the sqrt function, it is automatically calculated according to the following internal rule:

$$
\begin{aligned}
& \operatorname{sign}_{c}=\operatorname{sign}_{a} \\
& W L_{c}=\operatorname{ceil}\left(\frac{W L_{a}}{2}\right) \\
& F L_{C}=W L_{c}-\operatorname{ceil}\left(\frac{W L_{a}-F L_{a}}{2}\right)
\end{aligned}
$$

## Data Type Propagation Rules

For syntaxes for which you specify a numerictype object T, the sqrt function follows the data type propagation rules listed in the following table. In general, these rules can be summarized as "floatingpoint data types are propagated." This allows you to write code that can be used with both fixed-point and floating-point inputs.

Data Type of Input fi Object a	Data Type of numerictype   object T	Data Type of Output c
Built-in double	Any	Built-in double
Built-in single	Any	Built-in single
fi Fixed	fi Fixed	Data type of numerictype   object T
fi ScaledDouble	fi Fixed	ScaledDouble with properties   of numerictype object T
fi double	fi Fixed	fi double
fi single	fi Fixed	fi single
Any fi data type	fi double	fi double
Any fi data type	fi single	fi single

## Version History

Introduced in R2006b

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Usage notes and limitations:

- Complex and [Slope Bias] inputs error out.
- Negative inputs yield a 0 result for generated C code.
- Negative inputs error out for MATLAB Executable (MEX) code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

## See Also

fi|fimath|numerictype

## step

Process data and visualize dynamic range

## Syntax

step(H, data)

## Description

step( H , data) processes your data and allows you to visualize the dynamic range in the scope window. The NumericTypeScope retains previously collected information about the variable between each call to step. In order to process new data, call reset before calling step again.

## Examples

## View the Dynamic Range of a fi Object

Use the NumericTypeScope to view the dynamic range of a fi object.
Create a fi object and set the DataTypeOverride to ScaledDoubles.

```
a = fi(magic(10),1,8,2);
b = fi([a; 2.^(-5:4)],1,8,3);
fp = fipref;
initialDTOSetting = fp.DataTypeOverride;
fp.DataTypeOverride = 'ScaledDoubles';
```

Create a NumericTypeScope object. You can use the reset method to ensure that all stored information is cleared from the NumericTypeScope object h .
h = NumericTypeScope;
reset (h)
Use the step method to process your data and visualize the dynamic range of the fi object b .
step (h,b);

## Simulation Data Overview using numerictype(1,8,3)



Values	Potential Overflows	In-Range	Potential Underflows
Positive	$\square 95$	$\square 13$	$\square$
Negative	V0	$\mathscr{V} 0$	$\dddot{0}$
Zero	0	0	0



Closing the NumericTypeScope window does not delete the object from your workspace. Close the NumericTypeScope window and reopen it using the show function.
show(h);
The NumericTypeScope displays a log2 histogram which shows that the values appear both outside of the range and below the precision of the data type of the variable. Pause on one bar of the histogram to view the percentage of the total values that are represented by that bar.

Simulation Data Overview using numerictype $(1,8,3)$


Data Browser 0
Proposed Data Type:
numerictype $(1,8,3)$

In this case, the data type of $b$ is numerictype $(1,8,3)$. The numerictype $(1,8,3)$ data type provides 5 integer bits, including the signed bit, and 3 fractional bits. Thus, this data type can represent only values between $-2^{\wedge} 4$ and $2 \wedge 4-2^{\wedge}-3$ (from -16 to 15.8750 ). Given the range and precision of this data type, values greater than $2^{\wedge} 4$ fall outside the range and values less than $2 \wedge-3$ fall below the precision of the data type.

The NumericTypeScope shows that values requiring bits 5, 6, and 7 are outside the range and values requiring fractional bits 4 and 5 are below precision. Given this information, you can prevent values that are outside range and below precision by changing the data type of the variable $b$ to numerictype (0,13,5).

Given this information, you can prevent values that are outside range and below precision by changing the data type of the variable b to numerictype $(0,13,5)$. In the NumericTypeScope, enter numerictype (0, 13,5 ) in the Proposed Data Type box.

Simulation Data Overview using numerictype $(0,13,5)$


Values	Potential Overflows	In-Range	Potential Underflows
Positive	$\square 0$	- 110	$\square$
Negative	\% 0	\% 0	$\geqslant 0$
Zero	0	0	0

## Data Browser

Proposed Data Type:
numerictype( $0,13,5$ )

Return to the original data type override setting.
fp. DataTypeOverride = initialDTOSetting;

## Input Arguments

H - NumericTypeScope object
NumericTypeScope object
NumericTypeScope object, specified as a NumericTypeScope object.
Example: step (H, a)
data - Data to process
fi object
Data to process, specified as a fi object.
Example: step (H, a)
Data Types: fi

## Version History

Introduced in R2010a

## See Also

NumericTypeScope | show| reset

## storedInteger

Package: embedded
Stored integer value of fi object

## Syntax

x = storedInteger(a)

## Description

$x=$ storedInteger(a) returns the stored integer value of fi object a.
Fixed-point numbers can be represented as

$$
\text { real-worldvalue }=2^{- \text {fractionlength }} \times \text { storedinteger }
$$

or, equivalently as
real-worldvalue $=($ slope $\times$ storedinteger $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.

## Examples

## Stored Integer Value of fi Objects

This example shows how to find the stored integer values for two fi objects. Use the class function to display the stored integer data types.

```
x = fi([0.2 0.3 0.5 0.3 0.2]);
in_x = storedInteger(x);
c1 = class(in_x)
c1 =
 'int16'
numtp = numerictype('WordLength',17);
x_n = fi([0.2 0.3 0.5 0.3 0.2],'numerictype',numtp);
in_xn = storedInteger(x_n);
c2 = class(in_xn)
c2 =
'int32'
```


## Input Arguments

## a - Fixed-point numeric object

fi object

Fixed-point numeric object from which you want to get the stored integer value, specified as a fi object.

Data Types: fi
Complex Number Support: Yes

## Output Arguments

## $x$ - Stored integer value of fi object

integer
Stored integer value of fi object, returned as an integer.
The returned stored integer value is the smallest built-in integer data type in which the stored integer value f fits. Signed fi values return stored integers of type int8, int16, int32, or int64. Unsigned fi values return stored integers of type uint8, uint16, uint32, or uint64. The return type is determined based on the stored integer word length (WL):

- WL $\leq 8$ bits, the return type is int8 or uint8.
- 8 bits $<\mathrm{WL} \leq 16$ bits, the return type is int16 or uint16.
- 16 bits $<\mathrm{WL} \leq 32$ bits, the return type is int32 or uint32.
- 32 bits $<\mathrm{WL} \leq 64$ bits, the return type is int64 or uint64.


## Tips

When the word length is greater than 64 bits, the storedInteger function errors. For bit-true integer representation of very large word lengths, use bin, oct, dec, hex, or sdec.

## Version History

Introduced in R2012a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.

## See Also

int8 | int16|int32|int64|uint8|uint16|uint32|uint64| storedIntegerToDouble

## storedIntegerToDouble

Package: embedded
Convert stored integer value of fi object to built-in double value

## Syntax

d = storedIntegerToDouble(a)

## Description

$\mathrm{d}=$ storedIntegerToDouble(a) converts the stored integer value of fi object, a , to a doubleprecision floating-point value, d .

If the input word length is greater than 52 bits, a quantization error may occur. Inf is returned if the stored integer value of the input fi object is outside the representable range of built-in double values.

## Examples

## Convert Stored Integer Value of fi Object to Double-Precision Value

Convert the stored integer of a fi value to a double-precision value. Use the class function to verify that the stored integer is a double-precision value.

```
a = fi(pi,1,16,12)
a =
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12
d = storedIntegerToDouble(a)
d = 12868
dtype = class(d)
dtype =
'double'
```


## Input Arguments

## a - Value to convert

fi object
Value to convert, specified as a fi object.

Data Types: fi
Complex Number Support: Yes

## Version History

Introduced in R2012a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.

## See Also

storedInteger|fi|class

## stripscaling

Stored integer of fi object

## Syntax

I = stripscaling(a)

## Description

I = stripscaling(a) returns the stored integer of a as a fi object with binary-point scaling, zero fraction length and the same word length and sign as a.

## Examples

stripscaling is useful for converting the value of a fi object to its stored integer value.

```
fipref('NumericTypeDisplay','short', ...
```

'FimathDisplay', 'none');
format long g
$a=$ fi(0.1,true,48,47)
a =
0.100000000000001
numerictype (1,48,47)
b = stripscaling(a)
b $=$
14073748835533
numerictype(1,48,0)
bin(a)
ans =
'000011001100110011001100110011001100110011001101'
bin(b)
ans =
'000011001100110011001100110011001100110011001101'
Notice that the stored integer values of a and b are identical, while their real-world values are different.

## Version History

Introduced before R2006a

## svd

Package: embedded
Fixed-point Golub-Kahan-Reinsch singular value decomposition

## Syntax

```
S = svd(A)
[U,S,V] = svd(A)
[___] = svd(A,"econ")
[___] = svd(A,0)
[___] = svd(___,sigmaForm)
```


## Description

$S=\operatorname{svd}(A)$ returns the singular values of matrix $A$ in descending order.
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{A})$ performs a singular value decomposition of matrix A , such that $\mathrm{A}=\mathrm{U} * \mathrm{~S}^{*} \mathrm{~V}^{\prime} . \mathrm{S}$ is a diagonal matrix of the same dimension as A with nonnegative diagonal elements in decreasing order. U and V are unitary matrices.
[___ ] = svd(A, "econ") produces an economy-size decomposition of A. If A is an $m$-by- $n$ matrix, then:

- $m>n$ - Only the first $n$ columns of $U$ are computed and $S$ is $n$-by- $n$.
- $m=n-\operatorname{svd}(A$, "econ") is equivalent to $\operatorname{svd}(A)$.
- $m<n$ - Only the first $m$ columns of $V$ are computed, and $S$ is $m$-by- $m$.
[ _ ] = $\operatorname{svd}(A, 0)$ produces a different economy-size decomposition of $A$. If $A$ is an $m$-by- $n$ matrix, then:
- $m>n-\operatorname{svd}(A, 0)$ is equivalent to $\operatorname{svd}(A$, "econ").
- $m<=n-\operatorname{svd}(A, 0)$ is equivalent to $\operatorname{svd}(A)$.

Syntax is not recommended. Use the "econ" option instead.
[___] = svd(__, sigmaForm) optionally specifies the output format for the singular values. You can use this option with any of the previous input or output combinations. Specify "vector" to return the singular values as a column vector. Specify "matrix" to return the singular values in a diagonal matrix.

## Examples

## Singular Values of Fixed-Point Matrix

Compute the singular values of a full rank fixed-point matrix.
A = fi([1 0 1; -1 -2 0; 0 1-1])

```
A =
 1
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14
```

Compute the singular values.

```
s = svd(A)
S =
 2.4605
 1.6996
 0.2391
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16
```

The singular values are returned in a column vector in decreasing order.

## Fixed-Point Singular Value Decomposition

Find the singular value decomposition of the rectangular fixed-point matrix $A$.
Define the rectangular matrix $A$.
$\mathrm{m}=4$;
n = 2;
rng('default');
$A=f i\left(10^{*} \operatorname{randn}(m, n)\right)$

```
A =
 5.3770 3.1875
 18.3389 -13.0771
 -22.5889 -4.3359
 8.6221 3.4258
```

            DataTypeMode: Fixed-point: binary point scaling
                Signedness: Signed
                WordLength: 16
            FractionLength: 10
    Find the singular value decomposition of the fixed-point matrix $A$.

```
[U,S,V] = svd(A)
U =
\begin{tabular}{rrrr}
0.1590 & 0.2717 & -0.9387 & -0.1403 \\
0.6397 & -0.7548 & -0.1219 & 0.0790 \\
-0.7049 & -0.5057 & -0.3224 & 0.3786
\end{tabular}
```

0.2619
0.3174
0
0.9114

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 32
FractionLength: 30
S =

31.0148	0
0	14.1292
0	0
0	0

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 32
FractionLength: 16
$\mathrm{V}=$

0.9920	0.1259
-0.1259	0.9920

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 32
FractionLength: 30
Confirm the relation $\mathrm{A}=\mathrm{U}^{*} \mathrm{~S}^{*} \mathrm{~V}^{\prime}$.
U*S*V'
ans $=$
$5.3770 \quad 3.1875$
$18.3390-13.0774$
-22.5890 -4.3361
8.62213 .4258

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 99
FractionLength: 76

## Economy-Size Decomposition

Calculate the complete and economy-size decomposition of a rectangular fixed-point matrix.
Define the fixed-point matrix $A$.

```
m = 5;
n = 3;
rng('default');
A = fi(10* randn(m,n))
A =
 5.3770 -13.0762 -13.4980
 18.3379 -4.3359 30.3496
```

```
-22.5879
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
FractionLength: 9
```

Compute the complete decomposition.

```
[U,S,V] = svd(A)
U =
 0.3081 -0.0950 0.4507 0.7929 0.2534
 -0.1437 0.9533 -0.0877 0.2415 -0.0675
 -0.0224 -0.2106 -0.8423 0.4887 -0.0831
 -0.7299
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: }3
 FractionLength: 30
S =
\begin{tabular}{rrr}
48.4486 & 0 & 0 \\
0 & 36.6721 & 0 \\
0 & 0 & 26.9112 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16
V =
 -0.1786 0.5443 0.8196
 -0.9497 -0.3131 0.0010
 -0.2571 0.7783 -0.5729
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30
```

Compute the economy-size decomposition.

```
[U,S,V] = svd(A,"econ")
U =
 0.3082 -0.0950 0.4507
 -0.1437 0.9533 -0.0878
 -0.0224 -0.2106 -0.8423
 -0.7299 -0.1909 0.2773
 -0.5926 -0.0375 -0.0541
 DataTypeMode: Fixed-point: binary point scaling
```

```
 Signedness: Signed
 WordLength: 32
 FractionLength: 30
S =
\begin{tabular}{rrr}
48.4487 & 0 & 0 \\
0 & 36.6720 & 0 \\
0 & 0 & 26.9111
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16
V =
\begin{tabular}{rrr}
-0.1786 & 0.5444 & 0.8196 \\
-0.9497 & -0.3131 & 0.0010 \\
-0.2571 & 0.7782 & -0.5729
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30
```

Use the expected result $A=U^{*} S^{*} V^{\prime}$ to determine the relative error of the calculation.

```
relativeError = norm(double(U*S*V'-A))/norm(double(A))
relativeError = 1.3361e-05
```


## Control Singular Value Output Format

Create a 3-by-3 magic square matrix and calculate the singular value decomposition. By default, the svd function returns the singular values in a diagonal matrix when you specify multiple outputs.

Define the matrix A.

```
m = 3;
n = m;
A = fi(magic(m))
A =
\begin{tabular}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
```

Compute the singular value decomposition.

```
[U,S,V] = svd(A)
U =
 0.5774 -0.7071 -0.4082
```

```
0.5773 0.0000 0.8165
0.5773 0.7071 -0.4083
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30
S =
\begin{tabular}{rrr}
15.0000 & 0 & 0 \\
0 & 6.9282 & 0 \\
0 & 0 & 3.4640
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16
V =
\begin{tabular}{rrr}
0.5774 & -0.4083 & -0.7071 \\
0.5773 & 0.8165 & -0.0000 \\
0.5773 & -0.4082 & 0.7071
\end{tabular}
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30
```

Specify the "vector" option to return the singular values in a column vector.

```
[U,S,V] = svd(A,"vector")
U =
 0.5774 -0.7071 -0.4082
 0.5773 0.0000 0.8165
 0.5773 0.7071 -0.4083
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30
S =
 15.0000
 6.9282
 3.4640
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: }3
 FractionLength: 16
V =
 0.5774 -0.4083 -0.7071
 0.5773 0.8165 -0.0000
 0.5773 -0.4082 0.7071
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
```

WordLength: 32
FractionLength: 30
If you specify one output argument, such as $S=\operatorname{svd}(A)$, then svd switches behavior to return the singular values in a column vector by default. In that case, you can specify the "matrix" option to return the singular values as a diagonal matrix.

## Input Arguments

A - Input matrix
matrix
Input matrix, specified as a matrix. A can be a fixed-point or scaled double fi data type.
Data Types: fi
Complex Number Support: Yes

## sigmaForm - Output format of singular values <br> "vector"|"matrix"

Output format of singular values, specified as one of these values:

- "vector" -S is a column vector. This behavior is the default when you specify one output, $\mathrm{S}=$ svd(A).
- "matrix" - S is a diagonal matrix. This behavior is the default when you specify multiple outputs, $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{A})$.

Example: $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{X}$, "vector") returns S as a column vector instead of a diagonal matrix.
Example: $\mathrm{S}=\operatorname{svd}(\mathrm{X}$, "matrix") returns S as a diagonal matrix instead of a column vector.
Data Types: char|string

## Output Arguments

## U - Left singular vectors

matrix
Left singular vectors, returned as the columns of a matrix.
The fixed-point data type is adjusted to avoid overflow and increase precision. For more information, see "Algorithms" on page 4-1032.

## S - Singular values

diagonal matrix | column vector
Singular values, returned as a diagonal matrix or column vector. The singular values are nonnegative and returned in decreasing order.

The fixed-point data type is adjusted to avoid overflow and increase precision. For more information, see "Algorithms" on page 4-1032.

## V - Right singular vectors

matrix

Right singular vectors, returned as the columns of a matrix.
The fixed-point data type is adjusted to avoid overflow and increase precision. For more information, see "Algorithms" on page 4-1032.

## Tips

To have full control over the fixed-point types, use the fixed. svd function.

## Algorithms

## Data Type Propagation

The svd function adjusts the data type of a fixed-point input to avoid overflow and increase precision. The fraction length of the singular vectors $S$ is adjusted to a minimum of 16 , and the word length is increased to avoid overflow with a minimum of 32 . The word length of the left and right singular vectors $U$ and $V$ are the same as the word length of $S$. The fraction length of $U$ and $V$ is two less than the word length.

## Golub-Kahan-Reinsch

The Golub-Kahan-Reinsch algorithm is a sequential method that performs well on serial computers. For parallel computing, as in FPGA and ASIC applications, use the fixed. jacobiSVD function.

## Version History

Introduced in R2022b

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
svd generates efficient, purely integer C code.

## See Also

fixed.svd|svd
Topics
"Singular Values"

## sub

Subtract two fi objects using fimath object

## Syntax

$c=\operatorname{sub}(F, a, b)$

## Description

$c=\operatorname{sub}(F, a, b)$ subtracts fi objects $a$ and $b$ using fimath object $F$. This is helpful in cases when you want to override the fimath objects of $a$ and $b$, or if the fimath properties associated with $a$ and $b$ are different. The output of fi object $c$ has no local fimath.

## Examples

## Subtract Two fi Objects Overriding Their fimath

```
a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision',...
 'SumWordLength',32,'SumFractionLength',16);
c = sub(F,a,b)
C =
 0.4233
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16
```

$c$ is the 32 -bit difference of $a$ and $b$, with fraction length 16 .

## Input Arguments

## F - fimath

fimath object
fimath object to use for subtraction, specified as a fimath object.

## a,b-Operands

scalars | vectors | matrices | multidimensional arrays
Operands, specified as scalars, vectors, matrices, or multidimensional arrays.
$a$ and $b$ must both be fi objects and must have the same dimensions unless one is a scalar. If either $a$ or $b$ is scalar, then c has the dimensions of the nonscalar object.
Data Types: fi

## Algorithms

$C=\operatorname{sub}(F, A, B)$
or
$C=F \cdot \operatorname{sub}(A, B)$
is equivalent to
A.fimath = F;
B.fimath $=F$;
$C=A-B ;$
except that the fimath properties of $A$ and $B$ are not modified when you use the functional form.

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Code generation does not support the syntax $\operatorname{F} . \operatorname{sub}(a, b)$. You must use the syntax sub(F, a, b).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.

## See Also

add|divide|fi|fimath|mpy|mrdivide|numerictype|rdivide

## subsasgn

Package: embedded
Subscripted assignment

## Syntax

$A=\operatorname{subsasgn}(A, S, B)$

## Description

$A=\operatorname{subsasgn}(A, S, B)$ is called for the syntax $A(i)=B, A\{i\}=B$, or $A \cdot i=B$ when $A$ is an object.

MATLAB uses the built-in subsasgn function to interpret indexed assignment statements:

- $A(i)=B$ assigns the values of $B$ into the elements of $A$ specified by the subscript vector i. $B$ must have the same number of elements as $i$ or be a scalar value.
- $A(i, j)=B$ assigns the values of $B$ into the elements of the rectangular submatrix of $A$ specified by the subscript vectors $i$ and $j$. B must have length(i) rows and length ( $j$ ) columns.
- A colon used as a subscript, as in $\mathrm{A}(\mathrm{i},:$ ) = B or $\mathrm{A}(:, i)=\mathrm{B}$, indicates the entire column or row.
- For multidimensional arrays, $A(i, j, k, \ldots)=B$ assigns $B$ to the specified elements of $A$. $B$ must be length(i)-by-length ( j )-by-length (k) -... or be shiftable to that size by adding or removing singleton dimensions.

Tip You can use fixed-point assignment, for example, $\mathrm{A}(:)=\mathrm{B}$, to cast a value with one numeric type into another numeric type. This subscripted assignment statement assigns the value of B into A while keeping the numeric type of A. Subscripted assignment works the same way for integer data types.

Note You must call subsasgn with an output argument. subsasgn does not modify the object used in the indexing operation (the first argument). You must assign the output to obtain a modified object.

## Examples

## Cast 16-bit Number into 8-bit Number

For fi objects a and b , there is a difference between
$\mathrm{a}=\mathrm{b}$
and
$a(:)=b$.

In the first case, $a=b$ replaces $a$ with $b$ while $a$ assumes the value, numeric type, and fimath object associated with $b$. In the second case, $a(:)=b$ assigns the value of $b$ into a while keeping the numeric type of $a$. You can use this to cast a value with one numerictype object into another numerictype object.

For example, cast a 16 -bit number into an 8 -bit number.

```
a = fi(0, 1, 8, 7)
a =
 0
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7
b = fi(pi/4, 1, 16, 15)
b =
 0.7854
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15
a(:) = b
a =
 0.7891
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7
```


## Emulate 40-bit Accumulator of a DSP

Define the variable acc to emulate a 40 -bit accumulator of a DSP. The products and sums in this example are assigned into the accumulator using the syntax acc (1)=.... Assigning values into the accumulator is like storing a value in a register. To begin, turn on the logging mode and define the variables. In this example, $n$ is the number of points in the input data $x$ and output data $y$, and $t$ represents time. The remaining variables are all defined as fi objects. The input data $x$ is a highfrequency sinusoid added to a low-frequency sinusoid.

```
fipref('LoggingMode', 'on');
n = 100;
t = (0:n-1)/n;
x = fi(sin(2*pi*t) + 0.2*cos(2*pi*50*t));
b = fi([.5 .5]);
y = zeros(size(x),'like',x);
acc = fi(0.0, true, 40, 30);
```

The following loop takes a running average of the input x using the coefficients in b . Notice that acc is assigned into $\operatorname{acc}(1)=\ldots$ versus using acc=..., which would overwrite and change the data type of acc.

```
for k = 2:n
 acc(1) = b(1)*x(k);
 acc(1) = acc + b(2)*x(k-1);
 y(k) = acc;
end
```

By averaging every other sample, the loop shown above passes the low-frequency sinusoid through and attenuates the high-frequency sinusoid.
plot(t, x,'x-',t,y,'o-')
legend('input data $x$ ','output data $\mathrm{y}^{\prime}$ )


The log report shows the minimum and maximum logged values and ranges of the variables used. Because acc is assigned into rather than overwritten, these logs reflect the accumulated minimum and maximum values.
logreport (x, y, b, acc)

	minlog	maxlog	lowerbound	upperbound	noverflows
x	-1.200012	1.197998	-2	1.999939	0
$y$	-0.9990234	0.9990234	-2	1.999939	0
$b$	0.5	0.5	-1	0.9999695	0
acc	-0.9990234	0.9989929	-512	512	0

Display acc to verify that its data type did not change.

```
acc
acc =
 -0.0941
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 30
```

Reset the fipref object to restore its default values.

```
reset(fipref)
```


## Input Arguments

## A - Object used in indexing operation

scalar | vector | multidimensional array
Object used in indexing operation, specified as a scalar, vector, or multidimensional array.
Data Types: single | double | int8 | int16| int32 | int64 | uint8|uint16|uint32|uint64| logical|fi
Complex Number Support: Yes

## S - Type of indexing and subscripts

structure array
Type of indexing and subscripts, specified as a structure array. S is a structure array with two fields:

- type is a character vector or string containing (), \{\}, or ., specifying the subscript type.
- subs is a cell array, character array, or string array containing the actual subscripts.

Example: The syntax $A(1: 2,:)=B$ calls a $=\operatorname{subsasgn}(A, S, B)$ where $S$ is a 1 -by- 1 structure with S.type $=$ '()' and S.subs = \{1:2, ':'\}.A colon used as a script is passed as ':'.
Data Types: struct
B - Value being assigned
scalar | vector | multidimensional array
Value being assigned, specified as a scalar, vector, or multidimensional array.
Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| logical|fi
Complex Number Support: Yes

## Output Arguments

## A - Result of assignment statement

scalar | vector | multidimensional array
Result of assignment statement, which is the modified object passed in as the first argument, returned as a scalar, vector, or multidimensional array.

## Version History

Introduced before R2006a

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\text {TM }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.
Supported data types for HDL code generation are listed in "Supported MATLAB Data Types, Operators, and Control Flow Statements" (HDL Coder).

## See Also

subsref|cast

## Topics

"Cast fi Objects"
"Manual Fixed-Point Conversion Best Practices"

## subsref

Subscripted reference

## Description

This function accepts fi objects as inputs.
Refer to the MATLAB subs ref reference page for more information.

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\text {TM }}$.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\text {TM }}$.
Supported data types for HDL code generation are listed in "Supported MATLAB Data Types, Operators, and Control Flow Statements" (HDL Coder).

## sum

Sum of fi array elements

## Syntax

S = sum( $A$ )
S = sum(A,dim)
S = sum(__, type)

## Description

$S=\operatorname{sum}(A)$ returns the sum along different dimensions of the fi array $A$.

- If $A$ is a vector, $\operatorname{sum}(A)$ returns the sum of the elements.
- If $A$ is a matrix, $\operatorname{sum}(A)$ treats the columns of $A$ as vectors, returning a row vector of the sums of each column.
- If A is a multidimensional array, sum (A) treats the values along the first non-singleton dimension as vectors, returning an array of row vectors.
$S=\operatorname{sum}(A, d i m)$ sums along the dimension dim of $A$.
S = sum ( $\qquad$ , type) returns an array in the class specified by type.


## Examples

## Sum of Vector Elements

Create a fi vector and specify fimath properties in the constructor.

```
A = fi([ll 2 5 8 5], 'SumMode', 'KeepLSB', 'SumWordLength', 32)
A =
 1 2 % 5 % 8
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: KeepLSB
 SumWordLength: 32
 CastBeforeSum: true
```

Compute the sum of the elements of A .
$S=\operatorname{sum}(A)$

```
S =
 2 1
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
FractionLength: 11
RoundingMethod: Nearest
OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: KeepLSB
 SumWordLength: 32
 CastBeforeSum: true
```

The output $S$ is a scalar with the specified SumWordLength of 32. The FractionLength of $S$ is 11 because SumMode was set to KeepLSB.

## Sum of Elements in Each Column

Create a fi array, and compute the sum of the elements in each column.

```
A=fi([1 2 8;3 7 0;1 2 2])
A =
 1
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
S=sum(A)
S =
 5 11 10
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 11
```

MATLAB® returns a row vector with the sums of each column of $A$. The WordLength of $S$ has increased by two bits because ceil $(\log 2(\operatorname{size}(A, 1)))=2$. The FractionLength remains the same because the default setting of SumMode is FullPrecision.

## Sum of Elements in Each Row

Compute the sum along the second dimension (dim=2) of 3-by-3 matrix A.
A=fi([1 2 8; $370 ; 122])$

```
A =
 l
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
S=sum(A, 2)
S =
 1 1
 10
 5
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 11
```

MATLAB® returns a column vector of the sums of the elements in each row. The WordLength of $S$ is 18 because ceil(log2(size(A,2)))=2.

## Sum of Elements Preserving Data Type

Compute the sums of the columns of A so that the output array, S , has the same data type.

```
A = fi([1 2 8;3 7 0;1 2 2])
A =
 l
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
class(A)
ans =
'embedded.fi'
S = sum(A, 'native')
S =
 5 11 10
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 11
```

class(S)

```
ans =
'embedded.fi'
```

MATLAB® preserves the data type of $A$ and returns a row vector $S$ of type embedded.fi.

## Input Arguments

A - Input fi array
fi object | numeric variable
fi input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16|int32|int64|uint8|uint16|uint32|uint64| fi
Complex Number Support: Yes

## dim - Dimension to operate along

positive integer scalar
Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If no value is specified, the default is the first array dimension whose size does not equal 1.
Data Types: single | double | int8 | int16|int32 | int64|uint8|uint16|uint32|uint64| fi

## type - Output class

'double'|'native'
Output class, specified as 'double' or 'native'. The output class defines the data type that the operation is performed in and returned in.

- If type is 'double', then sum returns a double-precision array, regardless of the input data type.
- If type is 'native', then sum returns an array with the same class as input array A.

Data Types: char

## Output Arguments

## S - Sum array

scalar | vector | matrix | multidimensional array
Sum array, returned as a scalar, vector, matrix, or multidimensional array.

Note The fimath object is used in the calculation of the sum. If SumMode is set to FullPrecision, KeepLSB, or KeepMSB, then the number of integer bits of growth for sum ( $A$ ) is ceil(log2(size(A,dim))).

## Limitations

- sum does not support fi objects of data type Boolean.


## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Variable-sized inputs are only supported when the SumMode property of the governing fimath object is set to SpecifyPrecision or KeepLSB.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{\mathrm{TM}}$.

## See Also

sum|add|divide|fi|fimath|mpy|mrdivide|numerictype|rdivide|sub

## times, .*

Package: embedded
Element-by-element multiplication of fi objects

## Syntax

C $=A . * B$
$C=\operatorname{times}(A, B)$

## Description

$C=A . * B$ performs element-by-element multiplication of $A$ and $B$, and returns the result in $C$.
times does not support fi objects of data type boolean.
$C=\operatorname{times}(A, B)$ is an alternate way to execute $A . * B$.

## Examples

## Multiply a fi Object by a Scalar

Use the times function to perform element-by-element multiplication of a fi object and a scalar.

```
a=4;
b=fi([2 4 7; 9 0 2])
b =
 2
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
```

$a$ is a scalar double, and $b$ is a matrix of fi objects. When doing arithmetic between a fi and $a$ double, the double is cast to a fi with the same word length and signedness of the fi, and bestprecision fraction length. The result of the operation is a fi.

```
\(\mathrm{c}=\mathrm{a} . * \mathrm{~b}\)
c \(=\)
 \(8 \quad 16 \quad 28\)
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 23
```

During the operation, a was cast to a fi object with wordlength 16 . The output, c , is a fi object with word length 32 , the sum of the word lengths of the two multiplicands, $a$ and $b$. This is because the default setting of ProductMode in fimath is FullPrecision.

## Multiply Two fi Objects

Use the times function to perform element-by-element multiplication of two fi objects.

```
a=fi([5 9 9; 1 2 -3], 1, 16, 3)
a =
 5 9 9
 1 2 -3
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3
b=fi([2 4 7; 9 0 2], 1, 16, 3)
b =
 2 4 7
 9 0 2
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3
c=a.*b
c =
 10 36 63
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 6
```

The word length and fraction length of c are equal to the sums of the word lengths and fraction lengths of $a$ and $b$. This is because the default setting of ProductMode in fimath is FullPrecision.

## Input Arguments

A - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in data types. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".
times does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16| int32 | int64 | uint8 | uint16 |uint32 |uint64 | fi
Complex Number Support: Yes

## B - Input array

scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in data types. Inputs A and B must either be the same size or have sizes that are compatible. For more information, see "Compatible Array Sizes for Basic Operations".
times does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16|int32 | int64 | uint8 |uint16 |uint32|uint64 | fi
Complex Number Support: Yes

## Version History

## Introduced before R2006a

R2021b: Implicit expansion change affects arguments for operators
Behavior changed in R2021b
Starting in R2021b with the addition of implicit expansion for fi times, plus, and minus, some combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try/catch block, then your code might no longer catch those errors.

For more information on the required input sizes for basic array operations, see "Compatible Array Sizes for Basic Operations".

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Any non-fi input must be constant; that is, its value must be known at compile time so that it can be cast to a fi object.
- When you provide complex inputs to the times function inside of a MATLAB Function block, you must declare the input as complex before running the simulation. To do so, go to the Model Explorer and set the Complexity parameter for all known complex inputs to On.


## HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder ${ }^{T \mathrm{TM}}$.

## See Also

plus |minus | mtimes | uminus

## toeplitz

Create Toeplitz matrix

## Syntax

t = toeplitz(a, b)
$\mathrm{t}=$ toeplitz(b)

## Description

$t=$ toeplitz $(a, b)$ returns a nonsymmetric Toeplitz matrix with $a$ as its first column and $b$ as its first row. $b$ is cast to the numerictype of $a$. If one of the arguments of toeplitz is a built-in data type, it is cast to the data type of the fi object. If the first elements of a and b differ, toeplitz issues a warning and uses the column element for the diagonal.
$t=$ toeplitz(b) returns the symmetric or Hermitian Toeplitz matrix formed from vector b, where $b$ is the first row of the matrix.

## Examples

## Create Symmetric Toeplitz Matrix

```
r= fi([lllll);
toeplitz(r)
 1 2 3
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision
 Tag:
ans =
\begin{tabular}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
3 & 2 & 1 \\
\multicolumn{4}{r}{ numerictype \((1,16,13)\)}
\end{tabular}
```


## Create Nonsymmetric Toeplitz Matrix

Create a nonsymmetric Toeplitz matrix with a specified column and row vector.
toeplitz ( $\mathrm{a}, \mathrm{b}$ ) casts b into the data type of $a$. In this example, overflow occurs:

```
fipref('NumericTypeDisplay','short');
```

format short g
$a=f i\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right.$, true, 8,5$)$
b = fi([1 4 8],true, 16,10)
toeplitz(a,b)
$a=$
133
numerictype (1, 8, 5)
$\mathrm{b}=$
148
numerictype(1, 16, 10)
ans =

1	3.9688	3.9688
2	1	3.9688
3	2	1

toeplitz ( $\mathrm{b}, \mathrm{a}$ ) casts a into the data type of b . In this example, overflow does not occur:
toeplitz(b, a)
ans =

1	2	3
4	1	2
8	4	1

    numerictype(1, 16, 10)
    If one of the arguments of toeplitz is a built-in data type, it is cast to the data type of the fi object.

```
x = double([1 exp(1) pi]);
toeplitz(a,x)
ans =
\begin{tabular}{crr}
1 & 2.7188 & 3.1563 \\
2 & 1 & 2.7188 \\
3 & 2 & 1 \\
numerictype \((1,8,5)\) & &
\end{tabular}
```


## Input Arguments

Column of Toeplitz matrix, specified as a scalar or vector. If the first elements of $a \operatorname{and} b$ differ, toeplitz uses the column element for the diagonal.

Data Types: fi
Complex Number Support: Yes
b - Row of Toeplitz matrix
scalar | vector
Row of Toeplitz matrix, specified as a scalar or vector. If the first elements of $a$ and $b$ differ, toeplitz uses the column element for the diagonal.
Data Types: single | double | int8|int16|int32 | int64 | uint8|uint16|uint32|uint64 | fi
Complex Number Support: Yes

## Output Arguments

## t - Toeplitz matrix

fi object
Toeplitz matrix, returned as a fi object.
The output fi object, t , has the same numerictype properties as the leftmost fi object input. If the leftmost fi object input has a local fimath, the output fi object is assigned the same local fimath. Otherwise, the output fi object, t , has no local fimath.

## Version History

Introduced before R2006a

## See Also

## Blocks

Toeplitz
Functions
toeplitz

## tostring

Package: embedded
Convert fi, fimath, numerictype, or quantizer object to string

## Syntax

```
s = tostring(a)
s = tostring(F)
s = tostring(T)
s = tostring(q)
```


## Description

$s=$ tostring(a) converts fi object a to a character vector s such that eval(s) would create a fi object with the same properties as a.
$\mathrm{s}=$ tostring( F ) converts fimath object F to a character vector s such that eval( s ) would create a fimath object with the same properties as $F$.
$s=$ tostring $(T)$ converts numerictype object $T$ to a character vector $s$ such that eval( $s$ ) would create a numerictype object with the same properties as T .
$\mathrm{s}=$ tostring(q) converts quantizer object $q$ to a character vector s such that eval(s) would create a quantizer object with the same properties as $q$.

## Examples

## Convert a fi Object to a String

```
a = fi(pi,1,16,10);
s = tostring(a)
al = eval(s)
isequal(a,al)
s =
 'fi('numerictype',numerictype(1,16,10),'Value','3.1416015625')'
al =
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10
ans =
```

```
logical
```

1

## Convert a fimath Object to a String

```
F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent');
s = tostring(F)
F1 = eval(s)
isequal(F,F1)
S =
 'fimath('RoundingMethod', 'Convergent',...
 'OverflowAction', 'Saturate',...
 'ProductMode','FullPrecision',...
 'SumMode','FullPrecision')'
F1 =
 RoundingMethod: Convergent
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision
ans =
 logical
 1
```


## Convert a numerictype Object to a String

```
T = numerictype(1,16,15);
```

$\mathrm{s}=$ tostring( T$)$
T1 = eval(s)
isequal(T,T1)
s =
'numerictype(1,16,15)'
T1 =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
ans =

```
logical
1
```


## Convert quantizer Object to a String

```
q = quantizer('fixed','Ceiling','Saturate',[5 4]);
s = tostring(q)
q1 = eval(s)
isequal(q,q1)
S =
 'quantizer('fixed', 'ceil', 'saturate', [5 4])'
q1 =
 DataMode = fixed
 RoundMode = ceil
 OverflowMode = saturate
 Format = [5 4 4]
ans =
 logical
```

    1
    
## Input Arguments

## a - Input fi object

fi object
Input fi object.
Data Types: fi
Complex Number Support: Yes

## F - Input fimath object

fimath object
Input fimath object.
T - Input numerictype object
numerictype object
Input numerictype object.

## q - Input quantizer object

quantizer object
Input quantizer object.

# Version History <br> Introduced before R2006a 

## See Also <br> eval|fi|numerictype|fimath|quantizer

## ufi

(Not recommended) Construct unsigned fixed-point numeric object

Note ufi is not recommended. Use fi instead.

## Syntax

$a=u f i$
$\mathrm{a}=\mathrm{ufi}(\mathrm{v})$
$a=u f i(v, w)$
$a=u f i(v, w, f)$
$\mathrm{a}=\mathrm{ufi}(\mathrm{v}, \mathrm{w}, \mathrm{slope}, \mathrm{bias})$
a = ufi(v,w,slopeadjustmentfactor,fixedexponent,bias)

## Description

You can use the ufi constructor function in the following ways:

- a = ufi is the default constructor and returns an unsigned fi object with no value, 16 -bit word length, and 15 -bit fraction length.
- a = ufi(v) returns an unsigned fixed-point object with value $\mathrm{v}, 16$-bit word length, and bestprecision fraction length.
- $a=u f i(v, w)$ returns an unsigned fixed-point object with value $v$, word length $w$, and bestprecision fraction length.
- $a=u f i(v, w, f)$ returns an unsigned fixed-point object with value $v$, word length $w$, and fraction length f .
- $a=u f i(v, w, s l o p e, b i a s)$ returns an unsigned fixed-point object with value $v$, word length $w$, slope, and bias.
- a = ufi(v,w,slopeadjustmentfactor,fixedexponent,bias) returns an unsigned fixedpoint object with value $v$, word length $w$, slopeadjustment factor, fixedexponent, and bias.
fi objects created by the ufi constructor function have the following general types of properties:
- fi Object Data Properties
- fimath Object Properties
- numerictype Object Properties

Note fi objects created by the ufi constructor function have no local fimath.

## Examples

## Example 1

For example, the following creates an unsigned fi object with a value of pi, a word length of 8 bits, and a fraction length of 3 bits:
$a=u f i(p i, 8,3)$
a $=$
3.1250

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 3
```

Default fimath properties are associated with a. When a fi object does not have a local fimath object, no fimath object properties are displayed in its output. To determine whether a fi object has a local fimath object, use the isfimathlocal function.

```
isfimathlocal(a)
ans =
 0
```

A returned value of 0 means the fi object does not have a local fimath object. When the isfimathlocal function returns a 1 , the fi object has a local fimath object.

## Example 2

The value v can also be an array:

```
a = ufi((magic(3)/10),16,12)
a =
 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 12
```


## Example 3

If you omit the argument $f$, it is set automatically to the best precision possible:

```
a = ufi(pi,8)
```

a $=$

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 6

## Example 4

If you omit $w$ and $f$, they are set automatically to 16 bits and the best precision possible, respectively:

```
a = ufi(pi)
```

a =
3.1416

```
DataTypeMode: Fixed-point: binary point scaling
``` Signedness: Unsigned WordLength: 16
FractionLength: 14

\section*{Version History}

\section*{Introduced in R2009b}

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- All properties related to data type must be constant for code generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
fi|fimath|fipref|isfimathlocal|numerictype|quantizer|sfi
Topics
"View Fixed-Point Data"
"Cast fi Objects"

\section*{uint8}

Package: embedded
Convert fi object to unsigned 8-bit integer

\section*{Syntax}
c = uint8(a)

\section*{Description}
c = uint8(a) returns the built-in uint8 value of fi object \(a\), based on its real world value. If the data does not fit into an uint8, then the data is rounded to nearest and saturated with no warning.

\section*{Examples}

Find uint8 Values of fi Object
```

a = fi([-pi 0.5 pi],0,8)
a =
0.5000 3.1406
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 6
c = uint8(a)
c = 1x3 uint8 row vector
0 1 3

```

\section*{Input Arguments}

\section*{a - Input fi object}
scalar | vector | matrix | multidimensional array
Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
Complex Number Support: Yes

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
storedInteger|int8|int16|int32|int64|uint16|uint32|uint64

\section*{uint16}

Convert fi object to unsigned 16-bit integer

\section*{Syntax}
c = uint16(a)

\section*{Description}
c = uint16(a) returns the built-in uint16 value of fi object a, based on its real world value. If necessary, the data is rounded-to-nearest and saturated to fit into an uint16.

\section*{Examples}

This example shows the uint16 values of a fi object.
```

a = fi([-pi 0.5 pi],0,16);
c = uint16(a)
c =
0 1 3

```

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
```

See Also
storedInteger|int8|int16|int32|int64|uint8|uint32|uint64

```

\section*{uint32}

Stored integer value of fi object as built-in uint32

\section*{Syntax}
\(\mathrm{c}=\) uint32(a)

\section*{Description}
\(\mathrm{c}=\) uint32(a) returns the built-in uint32 value of fi object a , based on its real world value. If necessary, the data is rounded-to-nearest and saturated to fit into an uint32.

\section*{Examples}

This example shows the uint 32 values of a fi object.
```

a = fi([-pi 0.5 pi],0,32);
c = uint32(a)
c =
0 1 3

```

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).
```

See Also
storedInteger|int8|int16|int32| int64|uint8|uint16|uint64

```

\section*{uint64}

Convert fi object to unsigned 64-bit integer

\section*{Syntax}
c = uint64(a)

\section*{Description}
c = uint64(a) returns the built-in uint64 value of fi object a, based on its real world value. If necessary, the data is rounded-to-nearest and saturated to fit into an uint64.

\section*{Examples}

This example shows the uint64 values of a fi object.
```

a = fi([-pi 0.5 pi],0,64);
c = uint64(a)
c =
0 1 3

```

\section*{Version History}

Introduced in R2008b

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{Tm}}\).
```

See Also
storedInteger |int8|int16|int32|int64|uint8|uint16|uint32

```

\section*{uminus}

Negate elements of fi object array

\section*{Syntax}
uminus(a)

\section*{Description}
uminus ( \(a\) ) is called for the syntax - \(a\) when \(a\) is an object. - a negates the elements of \(a\). uminus does not support fi objects of data type Boolean.

\section*{Examples}

When wrap occurs, \(-(-1)=-1\) :
```

fipref('NumericTypeDisplay','short', ...
'fimathDisplay','none');
format short g
a = fi(-1,true,8,7,'OverflowMode','wrap')
a =
-1
numerictype(1,8,7)
-a
ans =
-1
numerictype(1, 8,7)
b = fi([-1-i -1-i],true,8,7,'OverflowMode','wrap')
b =
-1 -
numerictype(1,8,7)
-b
ans =
-1 - 1i
numerictype(1,8,7)
b'
ans =

```
    -1 - 1i
```

 -1
 1i
 numerictype(1,8,7)

```

When saturation occurs, \(-(-1)=0.99 \ldots\) :
```

c = fi(-1,true,8,7,'OverflowMode','saturate')
c =
-1
numerictype(1,8,7)
-c
ans =
0.99219
numerictype(1,8,7)
d = fi([-1-i -1-i],true,8,7,'OverflowMode','saturate')
d =
-1 - 1i 1i
numerictype(1,8,7)
-d
ans =
0.99219 + 0.99219i 0.99219 + 0.99219i
numerictype(1,8,7)
d'
ans =

```
    \(-1+0.99219 i\)
    \(-1+0.99219\) i
    numerictype(1,8,7)

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

\section*{See Also}
plus|minus|mtimes|times

\section*{unitquantize}

Package: embedded
Quantize numeric data using quantizer object except numbers within eps of +1

\section*{Syntax}
\(y=\) unitquantize( \(q, x\) )
\([y 1, y 2, \ldots]=\) unitquantize \((q, x 1, x 2, \ldots)\)

\section*{Description}
\(y=\) unitquantize( \(q, x\) ) uses the quantizer object \(q\) to quantize numeric data in \(x\). unitquantize works in the same way as quantize except that numbers within eps ( \(q\) ) of +1 are made exactly equal to +1 .
\([y 1, y 2, \ldots]=\) unitquantize( \(q, x 1, x 2, \ldots)\) is equivalent to \(y 1=\) unitquantize( \(q, x 1), y 2=\) unitquantize( \(q, \times 2\) ), ... and so forth.

\section*{Examples}

\section*{Quantize to Fixed-Point Type}

Use unitquantize with a quantizer object to quantize data.
```

x = (0.8:.1:1.2)';
q = quantizer('fixed','floor','saturate',[4 3]);
y = unitquantize(q,x);
z = [x y]
e=eps(q)
z =
0.8000 0.7500
0.9000 1.0000
1.0000 1.0000
1.1000 1.0000
1.2000 1.0000
e =
0.1250

```
unitquantize quantizes the elements of \(x\) except for numbers within eps of +1 .

\section*{Compare Behavior of quantize and unitquantize}
\(\mathrm{q}=\) quantizer([8,7])
```

y1 = quantize(q,x)
y2 = unitquantize(q,x)
q =
DataMode = fixed
RoundMode = floor
OverflowMode = saturate
Format = [8 7]
Warning: 1 overflow(s) occurred in the fi quantize operation.
y1 =
0.9922 0.7812
y2 =
1.0000 0.7812

```

\section*{Input Arguments}

\section*{\(q\) - Data type properties}
```

quantizer object

```

Data type properties to use for quantization, specified as a quantizer object.
Example: \(q\) = quantizer('fixed','ceil','saturate',[5 4]);

\section*{\(x\) - Data to quantize}
scalar | vector \(\mid\) matrix \(\mid\) multidimensional array | cell array | structure
Data to quantize, specified as a scalar, vector, matrix, multidimensional array, cell array, or structure.
- When \(x\) is a numeric array, each element of \(x\) is quantized.
- When \(x\) is a cell array, each numeric element of the cell array is quantized.
- When \(x\) is a structure, each numeric field of \(x\) is quantized.
unitquantize does not change nonnumeric elements or fields of \(x\), nor does it issue warnings for nonnumeric values. Numbers within eps (q) of +1 are made exactly equal to +1 .

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|struct|cell
Complex Number Support: Yes

\section*{x1, \(x 2, \ldots\) - Data to quantize (as separate elements)}
scalar \(\mid\) vector \(\mid\) matrix \(\mid\) multidimensional array \(\mid\) cell array \(\mid\) structure
Data to quantize (as separate elements), specified as a scalar, vector, matrix, multidimensional array, cell array, or structure.

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical|struct|cell
Complex Number Support: Yes

\section*{Version History}

Introduced in R2008a

\section*{See Also}
eps |quantize | quantizer

\section*{unitquantizer}

\author{
Create unitquantizer object
}

\section*{Description}

The unitquantizer object describes data type properties to use for quantization. After you create a unitquantizer object, use quantize to quantize double-precision data. A unitquantizer object is the same as a quantizer object except that its quantize method quantizes numbers within eps (q) of +1 to exactly +1 . You can use the unitquantizer object to simulate custom floating-point data types with arbitrary word length and exponent length.

\section*{Creation}

\section*{Syntax}
```

q = unitquantizer
q = unitquantizer(Name,Value)
q = unitquantizer(Value1,Value2)
q = unitquantizer(s)
q = unitquantizer(pn,pv)

```

\section*{Description}
\(\mathrm{q}=\) unitquantizer creates a unitquantizer object with properties set to their default values.
To use this object to quantize values, use quantize.
\(\mathrm{q}=\) unitquantizer(Name, Value) sets named properties using name-value arguments. You can specify multiple name-value arguments. Enclose each property name in single quotes.
\(\mathrm{q}=\) unitquantizer(Value1,Value2) sets properties using property values. Property values are unique, so you can set property names by specifying just the property values in the command. When two values conflict, unitquantizer sets the last property value in the list.
\(\mathrm{q}=\) unitquantizer( s ) sets properties named in each field name with the values contained in the structure s .
\(\mathrm{q}=\) unitquantizer( \(\mathrm{pn}, \mathrm{pv}\) ) sets the named properties specified in the cell array of character vectors \(p n\) to the corresponding values in the cell array \(p v\).

You can use a combination of name-value string arguments, structures, and name-value cell array arguments to set property values when creating a unitquantizer object.

\section*{Properties}

\section*{DataMode - Data type mode}
'fixed' (default)|'ufixed'|'float'|'single' | 'double'
Type of arithmetic used in quantization, specified as one of these values:
- 'fixed' - Signed fixed-point mode.
- 'ufixed' - Unsigned fixed-point mode.
- 'float' - Custom-precision floating-point mode.
- 'single' - Single-precision mode. This mode overrides all other property settings.
- 'double' - Double-precision mode. This mode overrides all other property settings.

Data Types: char|struct | cell

\section*{RoundMode - Rounding method}
'floor' (default) | 'ceil'|'convergent'|'fix'|'nearest'|'round'
Rounding method to use, specified as one of these values:
- 'ceil' - Round up to the next allowable quantized value.
- 'convergent ' - Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit after rounding would be set to 0 .
- 'fix' - Round negative numbers up and positive numbers down to the next allowable quantized value.
- 'floor' - Round down to the next allowable quantized value.
- 'nearest' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.
- ' round ' - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up in absolute value.

Data Types: char \| struct | cell

\section*{OverflowMode - Action to take on overflow}
'saturate' (default)|'wrap'
Action to take on overflow, specified as one of these values:
- 'saturate' - Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers as specified by the data format properties, these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.
- 'wrap ' - Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers as specified by the data format properties, these values are wrapped back into that range using modular arithmetic relative to the smallest representable number.

This property only applies to fixed-point data type modes. This property becomes a read-only property when you set the DataMode property to float, double, or single.

Note Floating-point numbers that extend beyond the dynamic range overflow to \(\pm\) Inf.

Data Types: char | struct | cell

\section*{Format - Data format of unitquantizer object}
[16 15] (default)| [wordlength fractionlength] | [wordlength exponenetlength] |[64 11]|[32 8]

Data format of unitquantizer object. The interpretation of this property value depends on the value of the DataMode property.
\begin{tabular}{|l|l|}
\hline DataMode Property Value & Interpreting the Format Property Values \\
\hline fixed or ufixed & [wordlength fractionlength] \\
Specify the Format property value as a two- \\
element row vector where the first element is the \\
number of bits for the quantizer object word \\
length and the second element is the number of \\
bits for the quantizer object fraction length. \\
The word length can range from 2 to the limits of \\
memory on your PC. The fraction length can \\
range from 0 to one less than the word length.
\end{tabular}\(|\)\begin{tabular}{ll} 
[wordlength exponenetlength] \\
float & \begin{tabular}{l} 
Specify the Format property value as a two- \\
element row vector where the first element is the \\
number of bits for the unitquantizer object \\
word length and the second element is the \\
number of bits for the unitquantizer object \\
exponent length.
\end{tabular} \\
\hline double & \begin{tabular}{l} 
The word length can range from 2 to the limits of \\
memory on your PC. The fraction length can \\
range from 0 to 11.
\end{tabular} \\
\hline [64 11] \\
single & \begin{tabular}{l} 
The read-only Format property value \\
automatically specifies the word length and \\
exponent length.
\end{tabular} \\
\hline\([32\) 8] \\
The read-only Format property value \\
automatically specifies the word length and \\
exponent length.
\end{tabular}

Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64

\section*{Read-Only unitquantizer Object States}

Read-only unitquantizer object states are updated when quantize is called. To reset these states, use reset.
max - Maximum value before quantization
scalar

Maximum value before quantization during a call to quantize ( \(q, \ldots\) ) for unitquantizer object \(q\), specified as a scalar. This value is the maximum value recorded over successive calls to quantize.

Example: max (q)
Example: q.max

\section*{min - Minimum value before quantization}
scalar
Minimum value before quantization during a call to quantize ( \(q, \ldots\) ) for unitquantizer object \(q\), specified as a scalar. This value is the minimum value recorded over successive calls to quantize.
Example: min (q)
Example: q.min

\section*{noverflows - Number of overflows}
scalar
Number of overflows during a call to quantize ( \(q, \ldots\) ) for unitquantizer object \(q\), specified as a scalar. This value accumulates over successive calls to quantize. An overflow is defined as a value that when quantized is outside the range of \(q\).
Example: noverflows (q)
Example: q. noverflows
nunderflows - Number of underflows
scalar
Number of underflows during a call to quantize ( \(q, \ldots\) ) for unitquantizer object \(q\). This value accumulates over successive calls to quantize. An underflow is defined as a number that is nonzero before it is quantized and zero after it is quantized.

Example: nunderflows (q)
Example: q.nunderflows

\section*{noperations - Number of data points quantized scalar}

Number of quantization operations during a call to quantize ( \(q, \ldots\) ) for unitquantizer object \(q\). This value accumulates over successive calls to quantize.

Example: noperations(q)
Example: q.noperations

\section*{Object Functions}

\section*{Examples}

\section*{Quantize Data with unitquantizer Object}

Quantize a vector \(x\) using the unitquantizer object \(q\).
```

x = (0.8:.1:1.2)';
q = unitquantizer([4 3]);
y = quantize(q,x);
z = [x y]
e = eps(q)
z =
$0.8000 \quad 0.7500$
0.9000 1.0000
1.0000 1.0000
1.1000 1.0000
1.2000 1.0000
e =
0.1250

```
quantize quantizes the elements of \(x\) except for numbers within eps of +1 .

\section*{Version History}

Introduced in R2008a

\section*{See Also}
quantize | quantizer|unitquantize|assignmentquantizer|reset

\section*{unshiftdata}

Inverse of shiftdata

\section*{Syntax}
\(y=\) unshiftdata(x, perm, nshifts)

\section*{Description}
\(y=\) unshiftdata( \(x\), perm, nshifts) restores the orientation of the data that was shifted with shiftdata. The permutation vector is given by perm, and nshifts is the number of shifts that was returned from shiftdata.
unshiftdata is meant to be used in tandem with shiftdata. These functions are useful for creating functions that work along a certain dimension, like filter, goertzel, sgolayfilt, and sosfilt.

\section*{Examples}

\section*{Example 1}

1 Create a 3-by-3 magic square:
```

x = fi(magic(3))
x =

8	1	6
3	5	7
4	9	2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
    ```

2 Shift the matrix \(x\) to work along the second dimension:
```

[x,perm,nshifts] = shiftdata(x,2)
x =

| 8 | 3 | 4 |
| :--- | :--- | :--- |
| 1 | 5 | 9 |
| 6 | 7 | 2 |

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11
 perm =

```
```

 2 1
 nshifts =
[]

```

This command returns the permutation vector, perm, and the number of shifts, nshifts, are returned along with the shifted matrix, \(x\).
3 Shift the matrix back to its original shape:
```

y = unshiftdata(x,perm,nshifts)
y =
8
4 9 2
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 11

```

\section*{Example 2}

1 Define \(x\) as a row vector:
\(x=1: 5\)
\(x=\)
\(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\)
2 Define dim as empty to shift the first non-singleton dimension of \(x\) to the first column:
```

[x,perm,nshifts] = shiftdata(x,[])
X =
1
2
3
4
5
perm =
[]
nshifts =
1

```

This command returns \(x\) as a column vector, along with perm, the permutation vector, and nshifts, the number of shifts.
3 Using unshiftdata, restore \(x\) to its original shape:
\(y=\) unshiftdata( \(x\), perm, nshifts)
\(y=\)
\(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\)

\section*{Version History}

Introduced in R2008a

\section*{See Also}
shiftdata

\section*{upperbound}

Upper bound of range of fi object

\section*{Syntax}
\(u=\) upperbound \((a)\)

\section*{Description}
\(u=\) upperbound \((\mathrm{a})\) returns the upper bound of the range of fi object a .
If \(l=\) lowerbound \((a)\) and \(u=\) upperbound \((a)\), then \([l, u]=\operatorname{range}(a)\).

\section*{Examples}

\section*{Upper Bound of fi Object}
\(a=f i(p i, 1,16,3,2)\)
a =
2

DataTypeMode: Fixed-point: slope and bias scaling Signedness: Signed WordLength: 16

Slope: 3
Bias: 2
\(\mathrm{u}=\) upperbound(a)
u =
98303
DataTypeMode: Fixed-point: slope and bias scaling Signedness: Signed WordLength: 16

Slope: 3
Bias: 2

\section*{Input Arguments}
a - Input fi object
fi object
Input fi object.
Data Types: fi

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

\section*{See Also}
eps |fi|intmax|intmin|lowerbound|lsb|range|realmax|realmin

\section*{vertcat}

Package: embedded
Concatenate fi object arrays vertically

\section*{Syntax}
\(\mathrm{C}=\) vertcat \((\mathrm{A}, \mathrm{B})\)
\(C=\operatorname{vertcat}(A 1, A 2, \ldots A n)\)

\section*{Description}
\(C=\) vertcat \((A, B)\) concatenates \(B\) vertically to the end of \(A\) when any of \(A\) and \(B\) is a fi object.
\(A\) and \(B\) must have the same number of columns. Multidimensional arrays are vertically concatenated along the first dimension. The remaining dimensions must match.
\(C=\operatorname{vertcat}(A 1, A 2, \ldots A n)\) concatenates \(A 1, A 2, \ldots A n\) vertically when any of \(A 1, A 2, \ldots A n\) is a \(f i\) object.

A and B must have the same number of columns. Multidimensional arrays are vertically concatenated along the first dimension. The remaining dimensions must match.
vertcat is equivalent to using square brackets for vertically concatenating arrays. For example, [A;
\(B\) ] is equal to vertcat ( \(A, B\) ) when \(A\) and \(B\) are compatible arrays.
Horizontal and vertical concatenation can be combined, as in [a b;c d].
[ab; c] is allowed if the number of rows of a equals the number of rows of \(b\), and if the number of columns of a plus the number of columns of \(b\) equals the number of columns of \(c\).

The matrices in a concatenation expression can themselves be formed via a concatenation, as in [a b; [c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi objects C are taken from the leftmost fi object in the list A1, A2 , ...An.

\section*{Examples}

\section*{Concatenate Two Matrices}

Create two matrices and concatenate them vertically, first by using square bracket notation, and then by using vertcat.
```

A = fi([1 2 3; 4 5 6])
A =
1 2 3

```
```

 4 5 6
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12
 B = fi([7 8 8 9],0,8)
B =
7 8 9
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 4
C = [A; B]
C =

| 1.0000 | 2.0000 | 3.0000 |
| :--- | :--- | :--- |
| 4.0000 | 5.0000 | 6.0000 |
| 7.0000 | 7.9998 | 7.9998 |

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12
 D = vertcat(A,B)
D =

| 1.0000 | 2.0000 | 3.0000 |
| :--- | :--- | :--- |
| 4.0000 | 5.0000 | 6.0000 |
| 7.0000 | 7.9998 | 7.9998 |

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12
    ```

Note that the numerictype of concatenated matrix \(D\) is taken from the leftmost fi object in the input list.

\section*{Input Arguments}

\section*{A - First input}
scalar | vector \(\mid\) matrix \(\mid\) multidimensional array
First input, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single| double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi
Complex Number Support: Yes

\section*{\(B\) - Second input}
scalar | vector | matrix | multidimensional array
Second input, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16| int32 | int64 |uint8|uint16|uint32|uint64 | fi
Complex Number Support: Yes
A1, A2 , ...An - List of inputs
comma-separated list
List of inputs, specified as a comma-separated list of elements to concatenate in the order they are specified.
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32 |uint64 | fi
Complex Number Support: Yes

\section*{Version History}

Introduced before R2006a

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder \(^{\text {TM }}\).
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder \({ }^{\mathrm{TM}}\).

\section*{HDL Code Generation}

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder \({ }^{\text {TM }}\).

\author{
See Also \\ horzcat|fi|fimath|numerictype
}

\section*{wordlength}

Package: embedded
Word length of quantizer object

\section*{Syntax}
wl = wordlength(q)

\section*{Description}
\(w l=\) wordlength \((q)\) returns the word length in bits of quantizer object \(q\).

\section*{Examples}

Word Length of quantizer Object
```

q = quantizer([16 15]);
wordlength(q)
ans = 16

```

The word length is the first element of format (q).
```

format(q)

```
ans \(=1 \times 2\)
\(16 \quad 15\)

\section*{Input Arguments}
q - quantizer object
quantizer object
quantizer object to find word length of.

\section*{Version History}

Introduced before R2006a

\section*{See Also}
fi|fractionlength | exponentlength | numerictype | quantizer

\section*{zeros}

Create array of all zeros with fixed-point properties

\section*{Syntax}
```

X = zeros('like',p)
X = zeros(n,'like',p)
X = zeros(sz1,...,szN,'like',p)
X = zeros(sz,'like',p)

```

\section*{Description}
\(\mathrm{X}=\) zeros('like', p ) returns a scalar 0 with the same numerictype, complexity (real or complex), and fimath as \(p\).
\(X=\) zeros ( \(n\), 'like',\(p\) ) returns an \(n\)-by-n array of zeros like \(p\).
\(X=z e r o s(s z 1, \ldots, s z N, ' l i k e ', p)\) returns an sz1-by-...-by-szN array of zeros like \(p\).
\(X=\) zeros(sz,'like', \(p\) ) returns an array of zeros like \(p\). The size vector, \(s z\), defines size \((X)\).

\section*{Examples}

\section*{2-D Array of Zeros With Fixed-Point Attributes}

Create a 2-by-3 array of zeros with specified numerictype and fimath properties.
Create a signed fi object with word length of 24 and fraction length of 12.
\(p=f i([], 1,24,12) ;\)
Create a 2-by-3 array of zeros that has the same numerictype properties as \(p\).
```

X = zeros(2,3,'like',p)
X =
0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12

```

\section*{Size Defined by Existing Array}

Define a 3-by-2 array A.
```

A = [1 4 ; 2 5 ; 3 6];
sz = size(A)
sz = 1\times2
3 2

```

Create a signed fi object with word length of 24 and fraction length of 12.
```

p = fi([],1,24,12);

```

Create an array of zeros that is the same size as A and has the same numerictype properties as \(p\).
```

X = zeros(sz,'like',p)
X =
0}
0}
0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12

```

\section*{Square Array of Zeros With Fixed-Point Attributes}

Create a 4-by-4 array of zeros with specified numerictype and fimath properties.
Create a signed fi object with word length of 24 and fraction length of 12.
\(p=f i([], 1,24,12) ;\)
Create a 4-by-4 array of zeros that has the same numerictype properties as p .
```

X = zeros(4, 'like', p)
X =
0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12

```

\section*{Complex Fixed-Point Zero}

Create a scalar fixed-point 0 that is not real valued, but instead is complex like an existing array.

Define a complex fi object.
```

p = fi([1+2i 3i],1,24,12);

```

Create a scalar 1 that is complex like \(p\).
```

X = zeros('like',p)
X =
0.0000 + 0.0000i
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12

```

\section*{Write MATLAB Code That Is Independent of Data Types}

Write a MATLAB algorithm that you can run with different data types without changing the algorithm itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types. You can then test the algorithm with different fixed-point data types and compare the fixed-point behavior to the baseline without making any modifications to the original MATLAB code.

Write a MATLAB function, my filter, that takes an input parameter, T , which is a structure that defines the data types of the coefficients and the input and output data.
```

function [y,z] = my_filter(b,a,x,z,T)
% Cast the coef\overline{ficients to the coefficient type}
b = cast(b,'like',T.coeffs);
a = cast(a,'like',T.coeffs);
% Create the output using zeros with the data type
y = zeros(size(x),'like',T.data);
for i = 1:length(x)
y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);
end
end

```

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a floating-point step input and a fixed-point step input, and then compares the results.
```

function zeros_ones_cast_example
% Define coefficients for a filter with specification
% [b,a] = butter(2,0.25)
b = [l0.097631072937818 0.195262145875635 0.097631072937818];
a = [1.000000000000000 -0.942809041582063 0.333333333333333];
% Define floating-point types
T_float.coeffs = double([]);
T_float.data = double([]);

```
```

 % Create a step input using ones with the
 % floating-point data type
 t = 0:20;
 x_float = ones(size(t),'like',T_float.data);
 % Initialize the states using zeros with the
 % floating-point data type
 z_float = zeros(1,2,'like',T_float.data);
 % Run the floating-point algorithm
 y_float = my_filter(b,a,x_float,z_float,T_float);
 % Define fixed-point types
 T fixed.coeffs = fi([],true,8,6);
 T_fixed.data = fi([],true,8,6);
 % Create a step input using ones with the
 % fixed-point data type
 x_fixed = ones(size(t),'like',T_fixed.data);
 % Initialize the states using zeros with the
 % fixed-point data type
 z_fixed = zeros(1,2,'like',T_fixed.data);
 % Run the fixed-point algorithm
 y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);
 % Compare the results
 coder.extrinsic('clf','subplot','plot','legend')
 clf
 subplot(211)
 plot(t,y_float,'co-',t,y_fixed,'kx-')
 legend('\overline{Floating-point output','Fixed-point output')}
 title('Step response')
 subplot(212)
 plot(t,y float - double(y_fixed),'rs-')
 legend('Error')
 figure(gcf)
    ```
end

\section*{Input Arguments}

\section*{n - Size of square matrix}
integer value
Size of square matrix, specified as an integer value, defines the output as a square, \(n\)-by-n matrix of ones.
- If n is zero, X is an empty matrix.
- If n is negative, it is treated as zero.

Data Types: double | single | int8|int16|int32|int64|uint8|uint16|uint32|uint64

\section*{sz1, ...,szN - Size of each dimension}
two or more integer values
Size of each dimension, specified as two or more integer values, defines X as a sz1-by...-by-szN array.
- If the size of any dimension is zero, \(X\) is an empty array.
- If the size of any dimension is negative, it is treated as zero.
- If any trailing dimensions greater than two have a size of one, the output, \(X\), does not include those dimensions.

Data Types: double | single | int8| int16|int32|int64|uint8|uint16|uint32|uint64
sz - Output size
row vector of integer values
Output size, specified as a row vector of integer values. Each element of this vector indicates the size of the corresponding dimension.
- If the size of any dimension is zero, \(X\) is an empty array.
- If the size of any dimension is negative, it is treated as zero.
- If any trailing dimensions greater than two have a size of one, the output, \(X\), does not include those dimensions.

Example: sz \(=[2,3,4]\) defines \(X\) as a 2-by-3-by-4 array.
Data Types: double | single|int8|int16|int32|int64|uint8|uint16|uint32|uint64

\section*{p - Prototype}
fi object | numeric variable
Prototype, specified as a fi object or numeric variable. To use the prototype to specify a complex object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

Complex Number Support: Yes

\section*{Tips}

Using the \(b=\) cast ( \(a,{ }^{\prime}\) like', \(p\) ) syntax to specify data types separately from algorithm code allows you to:
- Reuse your algorithm code with different data types.
- Keep your algorithm uncluttered with data type specifications and switch statements for different data types.
- Improve readability of your algorithm code.
- Switch between fixed-point and floating-point data types to compare baselines.
- Switch between variations of fixed-point settings without changing the algorithm code.

\section*{Version History}

\section*{Introduced in R2013a}

\section*{See Also}
cast|ones|zeros

\section*{Topics}
"Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types Using cast and zeros"
"Manual Fixed-Point Conversion Workflow"
"Manual Fixed-Point Conversion Best Practices"

Classes

\section*{coder.CellType class}

\author{
Package: coder \\ Superclasses: coder.ArrayType \\ Represent set of MATLAB cell arrays
}

\section*{Description}

Specifies the set of cell arrays that the generated code accepts. Use only with the fiaccel -args option. Do not pass as an input to a generated MEX function.

\section*{Construction}

Note You can also create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor".
\(\mathrm{t}=\) coder.typeof(cells) creates a coder.CellType object for a cell array that has the same cells and cell types as cells. The cells in cells are type objects or example values.
\(\mathrm{t}=\) coder.typeof(cells,sz,variable_dims) creates a coder. CellType object that has upper bounds specified by \(s z\) and variable dimensions specified by variable_dims. If sz specifies inf for a dimension, then the size of the dimension is unbounded and the dimension is variable size. When \(s z\) is [], the upper bounds do not change. If you do not specify the variable_dims input parameter, except for the unbounded dimensions, the dimensions of the type are fixed. A scalar variable dims applies to the bounded dimensions that are not 1 or 0 .

When cells specifies a cell array whose elements have different classes, you cannot use coder.typeof to create a coder. CellType object for a variable-size cell array.
t = coder.newtype('cell', cells) creates a coder.CellType object for a cell array that has the cells and cell types specified by cells. The cells in cells must be type objects.
t = coder.newtype('cell', cells,sz,variable_dims) creates a coder.CellType that has upper bounds specified by \(s z\) and variable dimensions specified by variable_dims. If sz specifies inf for a dimension, then the size of the dimension is unbounded and the dimension is variable size. When \(s z\) is [], the upper bounds do not change. If you do not specify the variable_dims input parameter, except for the unbounded dimensions, the dimensions of the type are fixed. A scalar variable_dims applies to the bounded dimensions that are not 1 or 0 .

When cells specifies a cell array whose elements have different classes, you cannot use coder. newtype to create a coder. CellType object for a variable-size cell array.

\section*{Input Arguments}
cells - Specification of cell types
cell array

Cell array that specifies the cells and cell types for the output coder. CellType object. For coder.typeof, cells can contain type objects or example values. For coder. newtype, cells must contain type objects.

\section*{sz - Size of cell array}
row vector of integer values
Specifies the upper bound for each dimension of the cell array type object. For coder. newtype, sz cannot change the number of cells for a heterogeneous cell array.

For coder. newtype, the default is [11].
variable_dims - Dimensions that are variable size
row vector of logical values
Specifies whether each dimension is variable size (true) or fixed size (false).
For coder. newtype, the default is true for dimensions for which sz specifies an upper bound of inf and false for all other dimensions.

When cells specifies a cell array whose elements have different classes, you cannot create a coder. CellType object for a variable-size cell array.

\section*{Properties}

Cells - Types of cells
cell array
A cell array that specifies the coder. Type of each cell.

\section*{ClassName - Name of class}
character vector or string scalar
Class of values in this set.

\section*{SizeVector - Size of cell array}
row vector of integer values
The upper bounds of dimensions of the cell array.

\section*{VariableDims - Dimensions that are variable size}
row vector of logical values
A vector that specifies whether each dimension of the array is fixed or variable size. If a vector element is true, the corresponding dimension is variable size.

\section*{Methods}
isHeterogeneous
isHomogeneous makeHeterogeneous makeHomogeneous

Determine whether cell array type represents a heterogeneous cell array Determine whether cell array type represents a homogeneous cell array Make a heterogeneous copy of a cell array type
Create a homogeneous copy of a cell array type

\section*{Copy Semantics}

Value. To learn how value classes affect copy operations, see Copying Objects.

\section*{Examples}

\section*{Create a Type for a Cell Array Whose Elements Have the Same Class}

Create a type for a cell array whose first element has class char and whose second element has class double.
```

t = coder.typeof({$$
\begin{array}{lll}{1}&{2}&{3}\end{array}
$$})
t =
coder.CellType
1x3 homogeneous cell
base: 1\times1 double

```

The type is homogeneous.

\section*{Create a Heterogeneous Type for a Cell Array Whose Elements Have the Same Class}

To create a heterogeneous type when the elements of the example cell array type have the same class, use the makeHeterogeneous method.
```

t = makeHeterogeneous(coder.typeof({$$
\begin{array}{lll}{1}&{2}&{3}\end{array}
$$}))
t =
coder.CellType
1\times3 locked heterogeneous cell
f1: 1\times1 double
f2: 1\times1 double
f3: 1\times1 double

```

The cell array type is heterogeneous. It is represented as a structure in the generated code.

\section*{Create a Cell Array Type for a Cell Array Whose Elements Have Different Classes}

Define variables that are example cell values.
```

a = 'a';
b = 1;

```

Pass the example cell values to coder. typeof.
```

t = coder.typeof({a, b})

```
\(t=\)
coder.CellType
```

1x2 heterogeneous cell
f0: 1x1 char
f1: 1x1 double

```

\section*{Create a Type for a Variable-Size Homogeneous Cell Array from an Example Cell Array Whose Elements Have Different Classes}

Create a type for a cell array that contains two character vectors that have different sizes.
```

t = coder.typeof({'aa', 'bbb'})
t =
coder.CellType
1x2 heterogeneous cell
f0: 1x2 char
f1: 1x3 char

```

The cell array type is heterogeneous.
Create a type using the same cell array input. This time, specify that the cell array type has variablesize dimensions.
```

t = coder.typeof({'aa','bbb'},[1,10],[0,1])
t =
coder.CellType
1x:10 locked homogeneous cell
base: 1x:3 char

```

The cell array type is homogeneous. coder.typeof determined that the base type \(1 x: 3\) char can represent 'aa', and 'bbb'.

\section*{Create a New Cell Array Type from a Cell Array of Types}

Create a type for a scalar int8.
```

ta = coder.newtype('int8',[1 1]);

```

Create a type for a \(: 1 \mathrm{x}: 2\) double row vector.
```

tb = coder.newtype('double',[1 2],[1 1]);

```

Create a cell array type whose cells have the types specified by ta and ta.
```

t = coder.newtype('cell',{ta,tb})
t =
coder.CellType
1x2 heterogeneous cell

```
```

f0: 1x1 int8
f1: :1x:2 double

```

\section*{Tips}
- In the display of a coder. CellType object, the terms locked heterogeneous or locked homogeneous indicate that the classification as homogeneous or heterogeneous is permanent. You cannot later change the classification by using the makeHomogeneous or makeHeterogeneous methods.
- coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the cell array elements have the same class and size, coder. typeof returns a homogeneous cell array type. If the elements have different classes, coder. typeof returns a heterogeneous cell array type. For some cell arrays, the classification as homogeneous or heterogeneous is ambiguous. For example, the type for \(\{1[23]\}\) can be a \(1 \times 2\) heterogeneous type. The first element is double and the second element is 1 x 2 double. The type can also be a 1 x 3 homogeneous type in which the elements have class double and size \(1 \mathrm{x}: 2\). For these ambiguous cases, coder. typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want a different classification, use the makeHomogeneous or makeHeterogeneous methods. The makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification as homogeneous and heterogeneous, respectively. You cannot later use one of these methods to create a copy that has a different classification.

\section*{Version History}

\section*{Introduced in R2015b}

\section*{See Also}
coder.ClassType | coder.ArrayType | coder. Constant | coder. EnumType |coder.FiType | coder. PrimitiveType |coder.StructType|coder.Type|coder.newtype|coder.resize| coder.typeof|fiaccel

Topics
"Code Generation for Cell Arrays"
"Create and Edit Input Types by Using the Coder Type Editor"

\section*{coder.ClassType class}

Package: coder
Superclasses: coder.ArrayType
Represent set of MATLAB classes acceptable for input specification

\section*{Description}

Objects of the coder.ClassType specify value class objects that the generated code accepts. Use objects of this class only with the -args option of the fiaccel function. Do not pass as an input to a generated MEX function.

\section*{Creation}
\(\mathrm{t}=\) coder.typeof(classObject) creates a coder.ClassType object for classObject.
\(\mathrm{t}=\) coder. newtype(className) creates a coder.ClassType object for an object of the className class.

Note You can create and edit coder. Type objects interactively by using the Coder Type Editor. See "Create and Edit Input Types by Using the Coder Type Editor".

\section*{Input Arguments}

\section*{classObject - Value class object}

MATLAB class
Value class object for which to create the coder. ClassType object. This input is an expression that evaluates to an object of a value class.

\section*{className - Name of value class definition}
string scalar | character vector
Name of a value class definition file on the MATLAB path specified as a character vector or string scalar.

\section*{Properties}

When you create a coder. ClassType object \(t\) by passing a value class object \(v\) to coder.typeof, t has same as the properties as v with the Constant attribute set to false.

Similarly, when you create a coder.ClassType object \(t\) by passing the name of the value class object, v to coder. newtype, t has same as the properties as v with the Constant attribute set to false.

\section*{Examples}

\section*{Create Type-Based Example Object}

This example shows how to create a type object based on an example object in the workspace.
Create a value class myRectangle.
type myRectangle.m
classdef myRectangle
properties
length;
width;
end
methods
function obj = myRectangle(l,w) if nargin > 0
obj.length = l;
obj.width = w;
end
end
function area = calcarea(obj) area \(=\) obj.length \(*\) obj.width;
end
end
end
Create a function that takes an object of myRectangle as the input.
type getarea.m
function z = getarea(r)
\%\#codegen
z = calcarea(r);
end
Create an object of myRectangle.
```

v = myRectangle(1,2)
v =
myRectangle with properties:
length: 1
width: 2

```

Create a coder.ClassType object based on v.
```

t = coder.typeof(v)
t =
coder.ClassType
1\times1 myRectangle
Properties :
length : 1\times1 double
width : 1\times1 double

```
    Edit Type Object
coder.typeof creates a coder. ClassType object that has the same properties names and types as v.

Generate code for getarea. Specify the input type by passing the coder. ClassType object, \(t\), to the - args option.
```

codegen getarea -args {t} -report

```

Code generation successful: To view the report, open('codegen\mex\getarea \({ }^{\text {html }}\) (report.mldatx')

\section*{Create Type by Using coder. newtype}

This example shows how to create a coder. ClassType object for an object of the value class mySquare by using coder. newtype.

Create a value class mySquare that has one property, side.
```

type mySquare.m
classdef mySquare
properties
side;
end
methods
function obj = mySquare(val)
if nargin > 0
obj.side = val;
end
end
function a = calcarea(obj)
a = obj.side * obj.side;
end
end
end

```

Create a coder. ClassType type for mySquare without assiging any property values.
```

t = coder.newtype('mySquare')
t =
coder.ClassType
1\times1 mySquare -- class with no properties
Edit Type Object

```

To ensure that \(t\) has the properties of mySquare, specify the type of side by using \(t\). Properties.
```

t.Properties.side = coder.typeof(2)
t =
coder.ClassType
1\times1 mySquare
Properties :
side : 1×1 double
Edit Type Object

```

\section*{Tips}
- After you create a coder.ClassType, you can modify the types of the properties. For example, modify the type of the prop1 and prop2 properties of an object \(t\) :
```

t = coder.typeof(myClass)
t.Properties.prop1 = coder.typeof(int16(2));
t.Properties.prop2 = coder.typeof([[1 2 3]);

```
- After you create a coder. ClassType object, you can add properties. For example, add the newprop1 and newprop2 properties of an object \(t\) :
t = coder.typeof(myClass)
t.Properties.newprop1 = coder.typeof(int8(2));

- When you generate code, the properties of the coder. ClassType object that you pass to the codegen function must be consistent with the properties in the class definition file. However, if the class definition file has properties that your code does not use, the coder. ClassType object does not have to include those properties. The code generator ignores properties that your code does not use.

\section*{Version History}

Introduced in R2017a

\section*{See Also}
coder.CellType | coder. Type | coder. PrimitiveType | coder.EnumType |coder.CellType | coder. FiType | coder. Constant | coder.ArrayType | coder.newtype | coder.typeof | coder.resize|fiaccel

\section*{Topics}
"Create and Edit Input Types by Using the Coder Type Editor"

\section*{coder.mexconfig}

Code acceleration configuration object for use with fiaccel

\section*{Description}

A coder. MexConfig object contains all the configuration parameters that the fiaccel function uses when accelerating fixed-point code via a generated MEX function. To use this object, first create it using the coder.mexconfig function, then pass it to the fiaccel function using the - config option.

\section*{Creation}

\section*{Syntax}
cfg = coder.mexconfig

\section*{Description}
cfg = coder.mexconfig creates a coder. MexConfig code generation object for use with fiaccel, which generates a MEX function.

\section*{Properties}

\section*{CompileTimeRecursionLimit - Number of copies of a function allowed in generated code for compile-time recursion \\ 50 (default) | integer}

Number of copies of a function allowed in generated code for compile-time recursion, specified as an integer. To disallow recursion in the MATLAB code, set CompileTimeRecursionLimit to 0. The default compile-time recursion limit is high enough for most recursive functions that require compiletime recursion. If code generation fails because of the compile-time recursion limit, and you want compile-time recursion, try to increase the limit. Alternatively, change your MATLAB code so that the code generator uses run-time recursion.

\section*{ConstantFoldingTimeout - Maximum number of constant folder instructions 10000 (default) | positive integer}

Maximum number of instructions to be executed by the constant folder, specified as a positive integer.

\section*{ConstantInputs - Constant input checking mode}
'CheckValues' (default)|'IgnoreValues'|'Remove'
Constant input checking mode, specified as one of the values in this table.
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline 'CheckValues ' & \begin{tabular}{l} 
This value is the default value. \\
When you call the MEX function, it checks that \\
the value you provide for a constant input \\
argument is the value specified at code \\
generation time. \\
You can call the MEX function and the original \\
MATLAB function with the same arguments. \\
Therefore, you can use the same test file for both \\
functions. \\
Checking the values can slow down execution of \\
the MEX function.
\end{tabular} \\
\hline 'IgnoreValues ' & \begin{tabular}{l} 
When you call the MEX function, it ignores the \\
value that you provide for a constant input \\
argument. It uses the value specified at code \\
generation time.
\end{tabular} \\
\begin{tabular}{ll} 
You can use the same test file without the \\
overhead of checking the constant argument \\
values.
\end{tabular} \\
\hline 'Remove' & \begin{tabular}{l} 
The code generator removes constant input \\
arguments from the MEX function signature. \\
When you call the MEX function, you do not \\
provide a value for a constant input argument.
\end{tabular} \\
\hline
\end{tabular}

See "Constant Input Checking in MEX Functions" (MATLAB Coder).

\section*{DynamicMemoryAllocation - Dynamic memory allocation for variable-size data}
'Threshold' (default)|'AllVariableSizeArrays'|'0ff'
Dynamic memory allocation for variable-size data, specified as one of these values:
- 'Threshold ' - Dynamic memory allocation is enabled for all variable-size arrays whose size is greater than DynamicMemoryAllocationThreshold and fiaccel allocates memory for this variable-size data dynamically on the heap.
- 'AllVariableSizeArrays' - Allocate memory for all variable-size arrays dynamically on the heap. You must use dynamic memory allocation for all unbounded variable-size data.
- 'Off' - Allocate memory statically on the stack.

You must use dynamic memory allocation for all unbounded variable-size data.

\section*{Dependencies:}
- EnableVariableSizing enables this parameter.
- Setting this DynamicMemoryAllocation to 'Threshold ' enables the DynamicMemoryAllocationThreshold parameter.

Note DynamicMemoryAllocation configuration option will be removed in a future release. To dynamically allocation memory for variable-sized arrays, use the EnableDynamicMemoryAllocation option. To set the threshold, use the DynamicMemoryAllocationThreshold option.

\section*{DynamicMemoryAllocationForFixedSizeArrays - Dynamic memory allocation for fixedsize arrays}
false (default) | true
Dynamic memory allocation for fixed-size arrays, specified as one of the values in this table.
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline true & \begin{tabular}{l} 
The code generator allocates memory \\
dynamically on the heap for fixed-size arrays \\
whose size (in bytes) is greater than or equal to \\
DynamicMemoryAllocationThreshold.
\end{tabular} \\
\hline false & \begin{tabular}{l} 
This value is the default value. \\
The code generator statically allocates memory \\
for fixed-size arrays on the stack.
\end{tabular} \\
\hline
\end{tabular}

Dependency:
- Setting EnableDynamicMemoryAllocation to true enables this option.

See, "Control Dynamic Memory Allocation for Fixed-Size Arrays" (MATLAB Coder).

\section*{DynamicMemoryAllocationThreshold - Memory allocation threshold \\ 65536 (default) | integer}

Size of the threshold for variable-size arrays above which fiaccel allocates memory on the heap, specified as an integer.

Dependency:
- Setting EnableDynamicMemoryAllocation to true enables this parameter.

\section*{EnableAutoExtrinsicCalls - Treat common visualization functions as extrinsic functions true (default) | false}

Whether fiaccel treats common visualization functions as extrinsic functions, specified as true or false. When this option is enabled, fiaccel detects calls to many common visualization functions, such as plot, disp, and figure. It calls out to MATLAB for these functions. This capability reduces the amount of time that you spend making your code suitable for code generation. It also removes the requirement to declare these functions extrinsic using the coder. extrinsic function.

\section*{EchoExpressions - Show results of code not terminated with semicolons}
true (default) | false
Whether to show results of code not terminated with semicolons, specified as true or false.
Set this property to true to have the results of code instructions that do not terminate with a semicolon appear in the MATLAB Command Window. If you set this property to false, code results do not appear in the MATLAB Command Window.

\section*{EnableRuntimeRecursion - Allow recursive functions in the generated code true (default) | false}

Whether to allow recursive functions in the generated code, specified as true or false. If your MATLAB code requires run-time recursion and this parameter is false, code generation fails.

\section*{EnableDebugging - Compile generated code in debug mode}
false (default) |true
Whether to compile generated code in debug mode, specified as true or false.
Set this property to true to compile the generated code in debug mode. Set this property to false to compile the code in normal mode.

\section*{EnableDynamicMemoryAllocation - Enable dynamic memory allocation for variable-size arrays}
true (default) | false
Dynamic memory allocation for variable-size arrays, specified as one of the values in this table.
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline true & \begin{tabular}{l} 
This value is the default value. \\
The code generator allocates memory \\
dynamically on the heap for variable-size arrays \\
whose size (in bytes) is greater than or equal to \\
DynamicMemoryAllocationThreshold.
\end{tabular} \\
\hline false & \begin{tabular}{l} 
The code generator statically allocates memory \\
for variable-size arrays on the stack.
\end{tabular} \\
\hline
\end{tabular}

\section*{EnableImplicitExpansion - Enable implicit expansion capabilities in generated code true (default) | false}

Whether to enable implicit expansion capabilities in generated code, specified as true or false.
Set this property to true to enable implicit expansion in the generated code. The code generator includes modifications in the generated code to apply implicit expansion. See "Compatible Array Sizes for Basic Operations". Set this property to false so the generated code does not follow the rules of implicit expansion.

\section*{EnableVariableSizing - Enable support for variable-sized arrays true (default) | false}

Whether to enable support for variable-sized arrays, specified as true or false.
Set this property to true to enable support for variable-sized arrays and to enable the DynamicMemoryAllocation property. If you set this property to false, variable-sized arrays are not supported.

ExtrinsicCalls - Extrinsic function calls
true (default) | false
An extrinsic function is a function on the MATLAB path that the generated code dispatches to MATLAB software for execution. fiaccel does not compile or generate code for extrinsic functions.

Set this property to true to have fiaccel generate code for the call to a MATLAB function, but not generate the function's internal code. Set this property to false to have fiaccel ignore the extrinsic function and not generate code for the call to the MATLAB function. If the extrinsic function affects the output of fiaccel, a compiler error occurs.

ExtrinsicCalls affects how MEX functions built by fiaccel generate random numbers when using the MATLAB rand, randi, and randn functions. If extrinsic calls are enabled, the generated mex function uses the MATLAB global random number stream to generate random numbers. If extrinsic calls are not enabled, the MEX function built with fiaccel uses a self-contained random number generator.

If you disable extrinsic calls, the generated MEX function cannot display run-time messages from error or assert statements in your MATLAB code. The MEX function reports that it cannot display the error message. To see the error message, enable extrinsic function calls and generate the MEX function again.

\section*{GenerateReport - Create an HTML code generation report false (default) | true}

Whether to create an HTML code generation report, specified as true or false.

\section*{GlobalDataSyncMethod - MEX function global data synchronization with MATLAB global workspace \\ SyncAlways (default) | SyncAtEntryAndExits | NoSync}

MEX function global data synchronization with MATLAB global workspace, specified as one of these values:
- SyncAlways - Synchronize global data at MEX function entry and exit and for all extrinsic calls to ensure maximum consistency between MATLAB and the generated MEX function. If the extrinsic calls do not affect global data, use this option in conjunction with the coder.extrinsic -sync:off option to turn off synchronization for these calls to maximize performance.
- SyncAtEntryAndExits - Global data is synchronized only at MEX function entry and exit. If your code contains extrinsic calls, but only a few affect global data, use this option in conjunction with the coder.extrinsic-sync:on option to turn on synchronization for these calls to maximize performance.
- NoSync - No synchronization occurs. Ensure that your MEX function does not interact with MATLAB globals before disabling synchronization otherwise inconsistencies between MATLAB and the MEX function might occur.

\section*{Data Types: char}

InlineStackLimit - Stack size limit for inlined functions
4000 (default) | positive integer
Stack size limit for inlined functions, specified as a positive integer.

\section*{InlineThreshold - Maximum size of functions to be inlined}

10 (default) | positive integer
Maximum size of functions to be inlined, specified as a positive integer.

\section*{InlineThresholdMax - Maximum size of functions after inlining \\ 200 (default) | positive integer}

Maximum size of functions after inlining, specified as a positive integer.

\section*{IntegrityChecks - Memory integrity}
true (default) | false
Set this property to true to detect any violations of memory integrity in code generated for MATLAB. When a violation is detected, execution stops and a diagnostic message displays. Set this property to false to disable both memory integrity checks and the runtime stack.

\section*{LaunchReport - Open the HTML code generation report automatically true (default) | false}

Whether to open the HTML code generation report automatically when code generation completes, specified as true or false. This property applies only if you set the GenerateReport property to true.

\section*{ReportPotentialDifferences - Report potential behavior differences between generated code and MATLAB code \\ true (default) | false}

Whether to report potential behavior differences between generated code and MATLAB code, specified as true or false. If the ReportPotentialDifferences property is set to true, the code generation report has a tab that lists the potential differences. A potential difference is a difference that occurs at run time only under certain conditions.

\section*{ResponsivenessChecks - Enable responsiveness checks}
true (default) | false
Whether to enable responsiveness checks, specified as true or false.

\section*{SaturateOnIntegerOverflow - Saturate on integer overflow \\ true (default) | false}

Whether to saturate on integer overflow, specified as true or false. Overflows saturate to either the minimum or maximum value that the data type can represent. Set this property to true to have overflows saturate. Set this property to false to have overflows wrap to the appropriate value representable by the data type.

\section*{StackUsageMax - Maximum stack usage per application in bytes \\ 200000 (default) | positive integer}

Maximum stack usage per application in bytes, specified as a positive integer. Set a limit that is lower than the available stack size. Otherwise, a runtime stack overflow might occur. Overflows are detected and reported by the C compiler, not by fiaccel.

\section*{Examples}

\section*{Create a Code Acceleration Configuration Object}

This example shows how to use the coder.mexconfig function to create a coder. MexConfig configuration object. The object is set to disable run-time checks.
```

cfg = coder.mexconfig;

```

Turn off integrity checks, extrinsic calls, and responsiveness checks.
```

cfg.IntegrityChecks = false;
cfg.ExtrinsicCalls = false;
cfg.ResponsivenessChecks = false;

```

Use the fiaccel function to generate a MEX function for the file foo.m.
fiaccel -config cfg foo

\section*{Version History}

Introduced in R2011a
R2023a: ConstantInputs property added to coder.MexConfig object

The coder.mexconfig object now includes the ConstantInputs property.

\section*{R2023a: DynamicMemoryAllocation Property To Be Removed}

Behavior change in future release
In a future release, the DynamicMemoryAllocation property will be removed.
To dynamically allocate memory for variable-size arrays, use the EnableDynamicMemoryAllocation property. To configure the dynamic memory allocation threshold, use DynamicMemoryAllocationThreshold property.
```

See Also
coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType|coder.Type|coder.newtype|coder.resize|
coder.typeof|fiaccel

```

\section*{coder.SingleConfig class}

Package: coder
Double-precision to single-precision conversion configuration object

\section*{Description}

A coder. SingleConfig object contains the configuration parameters that the convertToSingle function requires to convert double-precision MATLAB code to single-precision MATLAB code. To pass this object to the convertToSingle function, use the -config option.

\section*{Construction}
scfg = coder.config('single') creates a coder. SingleConfig object for double-precision to single-precision conversion.

\section*{Properties}

\section*{OutputFileNameSuffix - Suffix for single-precision file name \\ '_single' (default)|character vector}

Suffix that the single-conversion process uses for generated single-precision files.

\section*{LogIOForComparisonPlotting - Enable simulation data logging for comparison plotting of input and output variables \\ false (default) | true \\ Enable simulation data logging to plot the data differences introduced by single-precision conversion. \\ PlotFunction - Name of function for comparison plots \\ ' ' (default) | character vector}

Name of function to use for comparison plots.
To enable comparison plotting, set LogIOForComparisonPlotting to true. This option takes precedence over PlotWithSimulationDataInspector.

The plot function must accept three inputs:
- A structure that holds the name of the variable and the function that uses it.
- A cell array to hold the logged floating-point values for the variable.
- A cell array to hold the logged values for the variable after fixed-point conversion.

\section*{PlotWithSimulationDataInspector - Specify use of Simulation Data Inspector for comparison plots \\ false (default) | true}

Use Simulation Data Inspector for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. The PlotFunction option takes precedence over PlotWithSimulationDataInspector.

\section*{TestBenchName - Name of test file}
' ' (default) | character vector | cell array of character vectors
Test file name or names, specified as a character vector or cell array of character vectors. Specify at least one test file.

If you do not explicitly specify input parameter data types, the conversion uses the first file to infer these data types.

\section*{TestNumerics - Enable numerics testing}
false (default) |true
Enable numerics testing to verify the generated single-precision code. The test file runs the singleprecision code.

\section*{Methods}
addFunctionReplacement Replace double-precision function with single-precision function during single-precision conversion

\section*{Examples}

\section*{Generate Single-Precision MATLAB Code}

Create a coder.SingleConfig object.
```

scfg= coder.config('single');

```

Set the properties of the doubles-to-singles configuration object. Specify the test file. In this example, the name of the test file is myfunction_test. The conversion process uses the test file to infer input data types and collect simulation range data. Enable numerics testing and generation of comparison plots.
```

scfg.TestBenchName = 'myfunction_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

```

Run convertToSingle. Use the - config option to specify the coder. SingleConfig object that you want to use. In this example, the MATLAB function name is myfunction.
```

convertToSingle -config scfg myfunction

```

\section*{Version History}

\section*{Introduced in R2015b}

\section*{See Also}
coder.config|convertToSingle

\section*{Topics}
"Generate Single-Precision MATLAB Code"

\section*{DataTypeWorkflow.Converter}

Create fixed-point converter object

\section*{Description}

The DataTypeWorkflow. Converter object contains the object functions and parameters needed to collect simulation and derived data, propose and apply data types to the model, and analyze results. Use the DataTypeWorkflow. Converter object to perform the same fixed-point conversion tasks as the Fixed-Point Tool.

\section*{Creation}

\section*{Syntax}
```

converter = DataTypeWorkflow.Converter(systemToScale)
converter = DataTypeWorkflow.Converter(referencedModelSystem,'TopModel',
topModel)
Description
converter = DataTypeWorkflow.Converter(systemToScale) creates a converter object for
the systemToScale.
converter = DataTypeWorkflow.Converter(referencedModelSystem,'TopModel',
topModel) creates a converter object with the specified referenced model,
referencedModelSystem, as the system to scale.

```

\section*{Input Arguments}
systemToScale - Name of model or system to scale character vector

Name of the model or subsystem to scale, specified as a character vector.
Example: converter = DataTypeWorkflow.Converter('ex_fixed_point_workflow');
referencedModelSystem - Name of referenced model or system inside a referenced model character vector

Name of the referenced model or the subsystem within a referenced model to convert to fixed point, specified as a character vector.

\section*{topModel - Name of top-level model}
character vector
Name of the top-level model that references referencedModelSystem, specified as a character vector. topModel is used during the range collection phase of conversion.

\section*{Properties}

\section*{CurrentRunName - Current run in the converter object \\ character vector}

Current run stored in the converter object, specified as a character vector.
Example: converter.CurrentRunName = 'FixedPointRun'
Data Types: char
RunNames - Names of all runs
cell array of character vectors
Names of all runs stored in the converter object, specified as a cell array of character vectors.
Example: converter.RunNames
Data Types: cell

\section*{SelectedSystemToScale - Name of model or subsystem}
character vector
Name of the model or subsystem to scale, returned as a character vector.
Example: converter.SelectedSystemToScale
Data Types: char

\section*{ShortcutsForSelectedSystem - Available system shortcuts}
cell array of character vectors
Available system settings shortcuts for the selected subsystem, specified as a cell array of character vectors.

Example: converter.ShortcutsForSelectedSystem
Data Types: cell

\section*{TopModel - Name of top-level model}
character vector
Name of the top-level model that references referencedModelSystem, specified as a character vector. topModel is used during the range collection phase of conversion.
Example: converter.TopModel
Data Types: char

\section*{Object Functions}
applyDataTypes applySettingsFromRun applySettingsFromShortcut deriveMinMax proposalIssues proposeDataTypes results

Apply proposed data types to model
Apply system settings used in previous run to model
Apply settings from shortcut to model
Derive range information for model
Get results which have comments associated with them
Propose data types for system
Find results for selected system in converter object
saturationOverflows
simulateSystem verify wrapOverflows

Get results where saturation occurred Simulate system specified by converter object
Compare behavior of baseline and autoscaled systems Get results where wrapping occurred

\section*{Examples}

\section*{Create a DataTypeWorkflow. Converter Object}

This example shows how to create a DataTypeWorkflow. Converter object.
Open the fxpdemo_feedback model.
```

open_system('fxpdemo_feedback');

```

\section*{Scaling a Fixed-Point Control Design}


The Controller subsystem uses fixed-point data types. Create a DataTypeWorkflow. Converter object.
```

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

```

You can view and edit properties of the converter object from the command line. For example, to change the name of the current run:
```

converter.CurrentRunName = 'FixedPointRun'
converter =
Converter with properties:
CurrentRunName: 'FixedPointRun'
RunNames: {0x1 cell}
ShortcutsForSelectedSystem: {6x1 cell}
TopModel: 'fxpdemo_feedback'

```

\section*{Version History}

Introduced in R2014b

\section*{See Also}

DataTypeWorkflow.ProposalSettings | Fixed-Point Tool

\section*{Topics}
"Convert a Model to Fixed Point Using the Command Line"
"The Command-Line Interface for the Fixed-Point Tool"

\section*{DataTypeWorkflow.ProposalSettings}

Proposal settings object for data type proposals

\section*{Description}

The DataTypeWorkflow. ProposalSettings object manages the properties related to how data types are proposed for a model, including the default floating point data type, and safety margins for the proposed data types.

\section*{Creation}

\section*{Syntax}
propSettings = DataTypeWorkflow.ProposalSettings

\section*{Description}
propSettings = DataTypeWorkflow.ProposalSettings creates a proposal settings object.

\section*{Properties}

\section*{DefaultWordLength - Default word length for floating-point signals}

16 (default) | scalar
Default word length for floating-point signals, specified as a scalar. Use this setting when the ProposeFractionLength property is set to true.
Example: propSettings.DefaultWordLength = 16
Data Types: double

\section*{DefaultFractionLength - Default fraction length for floating-point signals \\ 4 (default) | scalar}

Default fraction length for floating-point signals, specified as a scalar. Use this setting when the ProposeWordLength property is set to true.
Example: propSettings. DefaultFractionLength \(=4\)
Data Types: double
ProposeFractionLength - Whether to propose fraction lengths for specified word length true (default) | false

Whether to propose fraction lengths for the default word length specified in the DefaultWordLength property, specified as a Boolean. Setting this property to true automatically sets the ProposeWordLength property to false.

Example: propSettings.ProposeFractionLength = logical(true)

Data Types: logical

\section*{ProposeForInherited - Whether to propose fixed-point data types for objects with an inherited output data type \\ true (default) | false}

Whether to propose fixed-point data types for objects in the system with inherited output data types, specified as a Boolean.

Example: propSettings.ProposeForInherited = logical(true)
Data Types: logical
ProposeForFloatingPoint - Whether to propose fixed-point data types for objects with a floating-point output data type
true (default) | false
Whether to propose fixed-point data types for objects in the system with floating-point output data types, specified as a Boolean.

Example: propSettings.ProposeForFloatingPoint = logical(true)
Data Types: logical
ProposeSignedness - Whether to propose signedness for objects in the system true (default) | false

Whether to propose signedness for objects in the system, specified as a Boolean.
The software bases the signedness proposal on collected range information and block constraints. Signals that are always strictly positive are assigned an unsigned data type proposal, and gain an additional bit of precision. If you set this property to false, the software proposes a signed data type for all results that currently specify a floating-point or an inherited output data type unless other constraints are present. If a result specifies a fixed-point output data type, the software will propose a data type with the same signedness as the currently specified data type unless other constraints are present.
Example: propSettings.ProposeForFloatingPoint = logical(true)
Data Types: logical

\section*{ProposeWordLength - Whether to propose word lengths for specified default fraction lengths}
false (default) |true
Whether to propose word lengths for the default fraction length in the DefaultFractionLength property, specified as a Boolean. Setting this property to true automatically sets the ProposeFractionLength property to false.
Example: propSettings. ProposeWordLength = logical(false)
Data Types: logical

\section*{SafetyMargin - Safety margin for simulation minimum and maximum values}

0 (default) | scalar
Safety margin for simulation minimum and maximum values, specified as a scalar.

The simulation minimum and maximum values are adjusted by the percentage designated by this parameter. This parameter allows you to specify a range different from that obtained from the simulation run.

For example, a value of 55 specifies that a range at least 55 percent larger is desired. A value of -15 specifies that a range of up to 15 percent smaller is acceptable.

Example: propSettings.SafetyMargin = 55
Data Types: double
UseDerivedMinMax - Whether to use derived ranges to propose data types true (default) | false

Whether to use derived ranges for data type proposals, specified as a Boolean.
Example: propSettings.UseDerivedMinMax = logical(true)
Data Types: logical

\section*{UseSimMinMax - Whether to use simulation ranges to propose data types \\ true (default) | false}

Whether to use simulation ranges for data type proposals, specified as a Boolean.
Example: propSettings.UseSimMinMax = logical(true)
Data Types: logical

\section*{Object Functions}
addTolerance Specify numeric tolerance for converted system clearTolerances Clear all tolerances specified by a DataTypeWorkflow.ProposalSettings object showTolerances Show tolerances specified for a system

\section*{Alternatives}

The properties of the DataTypeWorkflow. ProposalSettings object can also be controlled from the Settings menu in the Fixed-Point Tool. For more information, see Fixed-Point Tool.

\section*{Version History}

Introduced in R2014b

\section*{See Also}

DataTypeWorkflow. Converter

\section*{Topics}
"Convert a Model to Fixed Point Using the Command Line"

\section*{DataTypeWorkflow.Result}

Object containing run result information

\section*{Description}

The DataTypeWorkflow. Result object manages the results of simulation, derivation, and data type proposals.

\section*{Creation}

The results function returns a handle to a DataTypeWorkflow. Result object.

\section*{Properties}

\section*{Comments - Comments associated with the signal}
cell array of character vectors
Comments associated with the signal, specified as a cell array of character vectors.
Example: results.Comments
Data Types: cell

\section*{CompiledDataType - Data type used during simulation}
character vector
Data type used during simulation, specified as a character vector.
Example: results.CompiledDataType
Data Types: char

\section*{DerivedMax - Derived maximum value}
scalar
Derived maximum value for the signal or internal data based on specified design maximums, specified as a scalar.

Use the DataTypeWorkflow. ProposalSettings object and related object functions to specify and manage numeric tolerances for signals.
Example: results.DerivedMax
Data Types: double
DerivedMin - Derived minimum value
scalar
Derived minimum value for the signal or internal data based on specified design minimums, specified as a scalar.

Use the DataTypeWorkflow. ProposalSettings object and related object functions to specify and manage numeric tolerances for signals.

Example: results.DerivedMin
Data Types: double

\section*{DesignMax - Design maximum value}
scalar
Design maximum value for the signal or internal data, specified as a scalar.
Example: results.DesignMax
Data Types: double

\section*{DesignMin - Design minimum value}

\section*{scalar}

Design minimum value for the signal or internal data, specified as a scalar.
Example: results. DesignMin
Data Types: double

\section*{ProposedDataType - Proposed data type}
character vector
Proposed data type for the signal or internal data type associated with this result, specified as a character vector.

Example: results.ProposedDataType
Data Types: char

\section*{ResultName - Name of signal}
character vector
Name of the signal or internal data associated with this result, specified as a character vector.
Example: results.ResultName
Data Types: char

\section*{RunName - Name of run associated with result}
character vector
Name of the run associated with the result, specified as a character vector.
Example: results. RunName
Data Types: char

\section*{Saturations - Number of saturations that occurred scalar}

Number of saturations that occurred, specified as a scalar.
The number of occurrences where the signal or internal data associated with this result saturated at the maximum or minimum of its specified data type. The value of this property is the cumulative total of all of the run executions for this result.

Example: results.Saturations
Data Types: double

\section*{SimMax - Simulation maximum}
scalar
Simulation maximum, specified as a scalar. This property represents the values obtained for the signal or internal data during all of the saved executions of the run this result is associated with.
Example: results.SimMax
Data Types: double

\section*{SimMin - Simulation minimum}
scalar
Simulation minimum, specified as a scalar. This property represents the value obtained for the signal or internal data during all of the saved executions of the run this result is associated with.
Example: results.SimMin
Data Types: double
SpecifiedDataType - Specified data type of signal
character vector
Specified data type of the signal, specified as a character vector. This property takes effect the next time the system is run.
Example: results.SpecifiedDataType
Data Types: char

\section*{Wraps - Number of wraps that occurred} scalar

Number of wraps that occurred, specified as a scalar.
The number of occurrences where the signal or internal data associated with this result wrapped around the maximum or minimum of its specified data type. The value of this property is the cumulative total of all of the run executions for this result.
Example: results.Wraps
Data Types: double

\section*{Version History}

Introduced in R2014b

\section*{See Also}
results|DataTypeWorkflow.Converter|DataTypeWorkflow.ProposalSettings

\section*{Topics}
"Convert a Model to Fixed Point Using the Command Line"

\section*{DataTypeWorkflow.VerificationResult}

Verification results after converting a system to fixed point

\section*{Description}

A DataTypeWorkflow.VerificationResult object contains the results after converting a system to fixed point. The verification result object indicates whether a conversion was successful based on the tolerances specified on the DataTypeWorkflow. ProposalSettings object used during the conversion.

\section*{Creation}

\section*{Syntax}
verificationResult = verify(converter,BaselineRunName,RunName)

\section*{Description}
verificationResult = verify(converter,BaselineRunName, RunName) simulates the system specified by the DataTypeWorkflow. Converter object, converter, and stores the run information in a new run, RunName. It returns a DataTypeWorkflow. VerificationResult object that compares the baseline and verification runs.

The DataTypeWorkflow. Converter object contains instrumentation data from the run specified by BaselineRunName, as well as the tolerances specified on the associated DataTypeWorkflow. ProposalSettings object. The software determines if the behavior of the verification run is acceptable using the tolerances specified by the ProposalSettings object.

\section*{Properties}

\section*{RunName - Name of verification run to create}
character vector
Name of the verification run to create during the embedded simulation, specified as a character vector.

Example: verificationResult.RunName
Data Types: char

\section*{BaselineRunName - Baseline run to compare against}
character vector
Baseline run to compare against, specified as a character vector.
Example: verificationResult.BaselineRunName
Data Types: char

\section*{Status - Whether the verification run meets the specified tolerances \\ Pass | Warn | Fail}

Whether the verification run meets the specified tolerances, returned as either Pass, Warn, or Fail. For additional details, use explore to display logged data in the Simulation Data Inspector.
\begin{tabular}{|l|l|}
\hline Status & Description \\
\hline Pass & \begin{tabular}{l} 
All signals with a specified tolerance on the \\
associated ProposalSettings object are within \\
the specified tolerances in the verification run.
\end{tabular} \\
\hline Fail & \begin{tabular}{l} 
One or more signals with a specified tolerance on \\
the associated ProposalSettings object are \\
not within the specified tolerances in the \\
verification run.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example: verificationResult.Status}

Data Types: char

\section*{Object Functions}
explore Explore comparison of baseline and fixed-point implementations

\section*{Version History}

Introduced in R2019a

\section*{See Also}

DataTypeWorkflow.Converter|DataTypeWorkflow.ProposalSettings

\section*{Topics}
"Convert a Model to Fixed Point Using the Command Line"

\section*{fixed.DataGenerator}

Creates value set and generates data

\section*{Description}

Use the fixed.DataSpecification and fixed.DataGenerator objects to generate simulation inputs to test the full operating range of your designs.

\section*{Creation}

\section*{Syntax}
data \(=\) fixed.DataGenerator(Name, Value)
Description
data \(=\) fixed.DataGenerator(Name, Value) creates a DataGenerator object with additional properties specified as Name, Value pair arguments.

\section*{Properties}

\section*{DataSpecifications - Properties of generated data}

\section*{fixed.DataSpecification object | cell array of fixed. DataSpecification objects}

Properties of the data to generate, specified as a fixed.DataSpecification object.
Specifying a cell array of DataSpecification objects produces a single DataGenerator object for input to a system with the same number of inputs and in the same order as elements in the cell array.

\section*{NumDataPointsLimit - Maximum number of data points in generated data}

100000 (default) | integer-valued scalar
Maximum number of data points in generated data, specified as an integer-valued scalar. For more information, see getNumDataPointsInfo.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16| uint32 | uint64

\section*{Object Functions}

\section*{Examples}

\section*{Create a fixed. DataGenerator object}

Create a DataGenerator object by specifying a DataSpecification object in the constructor.
Create the DataSpecification object with an interval from \(-2 \pi\) to \(2 \Pi\) with a data type of single.
```

dataspec = fixed.DataSpecification('single',...
'Intervals',{-2*pi, 2*pi})
dataspec =
fixed.DataSpecification with properties:
DataTypeStr: 'single'
Intervals: [-6.2832,6.2832]
ExcludeDenormals: false
ExcludeNegativeZero: false
MandatoryValues: <empty>
Complexity: 'real'
Dimensions: 1

```

Use the DataSpecification object to create a DataGenerator object. Limit the number of data points in the generated data to 5000 points. You can specify these properties as name-value pairs in the constructor of the DataGenerator object.
```

datagen = fixed.DataGenerator('DataSpecifications',dataspec,...
'NumDataPointsLimit',5000)
datagen =
fixed.DataGenerator with properties:
DataSpecifications: {[1x1 fixed.DataSpecification]}
NumDataPointsLimit: 5000

```

Use the outputAllData function to see the generated data.
```

myData = outputAllData(datagen);

```

\section*{Algorithms}

\section*{Data Generation for One-Dimensional, Two-Dimensional, and Complex Data}

When you use a DataGenerator object to generate data for a DataSpecification object with the Dimensions property set to 1 , the output data always contains the minimum and maximum values of the specified intervals, and any values specified by the MandatoryValues property.

When you generate data for a DataSpecification object with the Dimensions property set to a value greater than 1 , the output is generated by taking a cartesian product of the one-dimensional output.

For example, consider the following two DataSpecification objects. The two objects are identical except that one is one-dimensional, and the other is two-dimensional.
```

dataspec_1d = fixed.DataSpecification('single',...
'Inte'̄vals', {-1,1}, 'Dimensions',1);

```
```

dataspec 2d = fixed.DataSpecification('single',...
'Intervals', {-1,1}, 'Dimensions',2);

```

Create two DataGenerator objects based on these specifications. Set the maximum number of data points in the generated data to inf.
```

datagen_1d = fixed.DataGenerator('DataSpecifications', ...
dataspec_1d, 'NumDataPointsLimit', inf);
datagen_2d = fixed.DataGenerator('DataSpecifications', ...
dataspec 2d, 'NumDataPointsLimit', inf);

```

Get the size of the generated data for each of the configurations.
```

size_1d data = size(outputAllData(datagen 1d))
size_2d_data = size(outputAllData(datagen_2d))
size 1d data =
1 244
size_2d_data =

```
    259536

The length of the two-dimensional data is exactly the squared length of the one-dimensional data.
The DataGenerator generates complex data in a similar way to the two-dimensional data. Create a DataSpecification object with Dimensions set to 1 and the Complexity set to complex. Create a DataGenerator object using this specification.
```

dataspec complex = fixed.DataSpecification('single', ...
'Interva\`', {-1,1}, 'Dimensions', 1, 'Complexity', 'complex');
datagen_complex = fixed.DataGenerator('DataSpecifications', ...
dataspec_complex, 'NumDataPointsLimit', inf);

```

Get the size of the generated data from this configuration.
```

size_complex_data = size(outputAllData(datagen_complex))
size_complex_data =

```

159536

The length of the output data for the one-dimensional complex data is the same as the length of the two-dimensional real data.

\section*{Version History}

Introduced in R2019b

\section*{See Also}

\section*{Objects}
fixed.DataSpecification|fixed.Interval

\section*{fixed.DataSpecification}

Specify properties of data to generate

\section*{Description}

Use the fixed.DataSpecification and fixed.DataGenerator objects to generate simulation inputs to test the full operating range of your designs.

\section*{Creation}

\section*{Syntax}
dataspec = fixed.DataSpecification(numerictype)
dataspec \(=\) fixed.DataSpecification(numerictype,Name,Value)

\section*{Description}
dataspec = fixed.DataSpecification(numerictype) creates a DataSpecification object with default property values and data type specified by numerictype.
dataspec = fixed.DataSpecification(numerictype,Name, Value)creates a DataSpecification object with data type specified by numerictype, and additional properties specified as Name, Value pair arguments.

\section*{Input Arguments}
numerictype - Data type of generated data
character vector | Simulink.NumericType object | embedded. numerictype object
Data type of the generated data, specified as a string or character vector that evaluates to a numeric data type, or as a Simulink. NumericType or numerictype object.
Example: dataspec = fixed.DataSpecification('double')
Example: dataspec = fixed.DataSpecification('fixdt(1,16,4)')
Example: dataspec = fixed.DataSpecification(Simulink.NumericType);

\section*{Properties}

\section*{DataTypeStr - Data type of generated data}
character vector | Simulink. NumericType object | embedded.numerictype object
Data type of the generated data, specified as a string or character vector that evaluates to a numeric data type, or as a Simulink. NumericType or numerictype object.

This property cannot be edited after construction.

\section*{Intervals - Intervals within which to generate numeric data}
fixed. Interval object | array of fixed. Interval objects | cell array containing inputs to fixed.Interval constructor

Numeric intervals in which to generate numeric data, specified as a fixed. Interval object, an array of fixed. Interval objects, or a cell array containing inputs to the fixed.Interval constructor.

If you do not specify an interval, the default interval uses end points equal to the minimum and maximum representable values of the specified numeric type.
Example: dataspec.Intervals \(=\{-1,1\}\);
Example: dataspec.Intervals = fixed.Interval(-1,1);

\section*{ExcludeDenormals - Whether to exclude denormal numbers from generated data false (default) | true}

Whether to exclude denormal numbers from generated data, specified as a logical.
This property is only applicable when the DataTypeStr property is a floating-point type.
Data Types: logical
ExcludeNegativeZero - Whether to exclude negative zero from generated data false (default) | true

Whether to exclude negative zero from generated data, specified as a logical.
This property is only applicable when the DataTypeStr property is a floating-point type.
Data Types: logical

\section*{MandatoryValues - Values to include in the generated data}
<empty> (default) | scalar | vector | matrix | multidimensional array
Values to include in the generated data, specified as a scalar, vector, matrix, or multidimensional array. If the values specified in MandatoryValues are outside the range of the data type specified in DataTypeStr, the values are saturated to the nearest representable value.
Example: dataspec.MandatoryValues = [-215, 216];
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64|
logical|fi

\section*{Complexity - Complexity of generated data}
'real' (default)|' complex'
Complexity of the generated data, specified as either 'real' or ' complex'.
Example: dataspec.Complexity = 'complex';
Data Types: char | string

\section*{Dimensions - Dimension of the generated data}

1 (default) | positive scalar integer | row vector of positive integers
Dimension of the generated data, specified as a positive scalar integer or row vector of positive integers.

Example: dataspec.Dimensions \(=3\);
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

\section*{Object Functions}
contains
applyOnRootInport (To be removed) Apply properties to Inport block

\section*{Examples}

\section*{Create a fixed.DataSpecification object}

Create a fixed. DataSpecification object with default property values and an int16 data type.
```

dataspec = fixed.DataSpecification('int16')
dataspec =
fixed.DataSpecification with properties:
DataTypeStr: 'int16'
Intervals: [-32768,32767]
MandatoryValues: <empty>
Complexity: 'real'
Dimensions: 1

```

The default interval of the DataSpecification object is equal to the range of the data type specified in the constructor.

\section*{Create a fixed.DataSpecification object from a fixed.Interval object}

Create a fixed.Interval object specifying a range of \(-\Pi\) to \(\Pi\).
```

interval = fixed.Interval(-pi,pi)

```
interval =
    [-3.1416,3.1416]
    1x1 fixed.Interval with properties:
            LeftEnd: -3.1416
            RightEnd: 3.1416
            IsLeftClosed: true
            IsRightClosed: true

Create a DataSpecification object using this interval and a data type of fixdt (1, 16, 10) .
```

dataspec = fixed.DataSpecification('fixdt(1,16,10)',...
'Intervals',interval)
dataspec =
fixed.DataSpecification with properties:

```
```

 DataTypeStr: 'sfix16_En10'
 Intervals: [-3.141\overline{6},3.1416]
 MandatoryValues: <empty>
Complexity: 'real'
Dimensions: 1

```

Alternatively, you can specify the interval as a cell array of inputs to the fixed. Interval constructor. The following code generates an equivalent DataSpecification object.
```

dataspec = fixed.DataSpecification('fixdt(1,16,10)',...
'Intervals',{-pi,pi})
dataspec =
fixed.DataSpecification with properties:
DataTypeStr: 'sfix16_En10'
Intervals: [-3.1416,3.1416]
MandatoryValues: <empty>
Complexity: 'real'
Dimensions: 1

```

\section*{Create a DataSpecification object that includes \(\mathbf{N a N}\) and Inf}

You can include NaN and Inf values in the generated data by specifying these values as intervals in an Interval object.

The following code creates a DataSpecification object that references an array of interval objects that include the values -Inf, Inf, NaN , and the range [-1, 1].
```

dataspec = fixed.DataSpecification('single', 'Intervals',...
{{-Inf}, {Inf}, {NaN}, {-1,1}})
dataspec =
fixed.DataSpecification with properties:
DataTypeStr: 'single'
Intervals: [-Inf] [-1,1] [Inf] [NaN]
ExcludeDenormals: false
ExcludeNegativeZero: false
MandatoryValues: <empty>
Complexity: 'real'
Dimensions: 1

```

\section*{See Also}

Objects
fixed.DataGenerator|fixed.Interval

\section*{fixed.Interval}

Define interval of values

\section*{Description}

A fixed. Interval object defines an interval of real-world values. Use the Interval object to specify a range of values in a fixed.DataSpecification object.

\section*{Creation}

\section*{Syntax}
```

interval = fixed.Interval
interval = fixed.Interval(a)
interval = fixed.Interval(a, b)
interval = fixed.Interval(a, b, endnotes)
interval = fixed.Interval(a, b, Name, Value)
interval = fixed.Interval(numerictype)
interval = fixed.Interval({__}, ...,{

```
\(\qquad\)
``` \})
```


## Description

interval = fixed. Interval creates a unit interval, [0,1].
interval = fixed.Interval(a) creates a degenerate interval, containing only the value a.
interval $=$ fixed.Interval (a, b) creates a closed interval from a to $b$.
interval = fixed.Interval(a, b, endnotes) creates an interval from a to b, with the endnotes argument specifying whether the interval is open or closed.
interval = fixed. Interval(a, b, Name, Value) creates an interval from a to b with the IsLeftClosed and IsRightClosed properties specified as Name, Value pair arguments.
interval = fixed.Interval(numerictype) creates an interval or array of intervals with end points equal to the minimum and maximum representable values of the specified numeric type.
interval = fixed.Interval ( $\{\ldots\}, \ldots,\left\{\__{\text {_ }}\right\}$ ) returns an array of Interval objects, where each cell array specifies the arguments for one or more of the objects.

## Input Arguments

## a - Left endpoint of interval

scalar | vector
Left endpoint of interval, specified as a scalar or vector.

## b - Right endpoint of interval

scalar | vector

Right endpoint of interval, specified as a scalar or vector.

## endnotes - Whether the interval is open or closed

 '[]' (default)|'[)'|'(]'|'()'Argument indicating whether the interval is closed, open, or half-open, specified as one of the following character vectors.

Endnotes	Description
' [ ] '	Generates a closed set, which includes both of its   endpoints.
' [ ) '	Generates a half-open interval, in which the first   endpoint is included, but the second is not   included in the set.
' ( ] '	Generates a half-open interval, in which the first   endpoint is not included, but the second is   included in the set.
' ( ) '	Generates an open set, in which neither endpoint   is included in the set.

Example: interval = fixed.Interval(1, 10, '()');
numerictype - Numeric data type
Simulink.Numerictype object | embedded. numerictype object | character vector
Numeric data type whose range of representable values defines the Interval object, specified as a Simulink. Numerictype object, an embedded. numerictype object, or a character vector representing a numeric data type, for example, 'single'.

When numerictype is 'double', 'single', or 'half', the output Interval object is an array of 4 Interval objects with intervals [-Inf], [Inf], [NaN], and [-realmax, realmax]. For more information on representable values of a data type, see realmax.
Example: interval = fixed.Interval('fixdt(1,16,8)');

## Properties

## LeftEnd - Left endpoint of interval

0 (default) | scalar
Left endpoint of interval, specified as a scalar.
This property cannot be edited after object creation.

```
Data Types: half | single | double | int8 | int16 | int32 |int64 |uint8|uint16|uint32| uint64|logical|fi
```


## RightEnd - Right endpoint of interval

1 (default) | scalar
Right endpoint of interval, specified as a scalar.
This property cannot be edited after object creation.

Data Types: half|single | double|int8|int16|int32|int64|uint8|uint16|uint32| uint64|logical|fi

## IsLeftClosed - Whether the left end of the interval is closed <br> true (default) | false

Whether the left end of the interval is closed, specified as a logical value.
This property cannot be edited after object creation.
Data Types: logical

## IsRightClosed - Whether the right end of the interval is closed true (default) | false

Whether the right end of the interval is closed, specified as a logical value.
This property cannot be edited after object creation.
Data Types: logical

## Object Functions

contains
Determine if one fixed.Interval object contains another
intersect
isDegenerate
isLeftBounded
isRightBounded
isnan
overlaps
quantize
setdiff
union
unique
Intersection of fixed.Interval objects
Determine whether the left and right ends of a fixed.Interval object are degenerate
Determine whether a fixed.Interval object is left-bounded
Determine whether the a fixed.Interval object is right-bounded
Determine whether a fixed.Interval object is NaN
Determine if two fixed.Interval objects overlap
Quantize interval to range of numeric data type
Set difference of fixed.Interval objects
Union of fixed.Interval objects
Get set of unique values in fixed.Interval object

## Examples

## Create a fixed.Interval object with default values

Create an Interval object with default property values. When you do not specify endpoint values, the Interval object uses endpoints 0 and 1.

```
interval = fixed.Interval()
interval =
 [0,1]
 1x1 fixed.Interval with properties:
 LeftEnd: 0
 RightEnd: 1
 IsLeftClosed: true
 IsRightClosed: true
```


## Create a degenerate interval

Create a degenerate interval, containing only a single point.
interval = fixed.Interval(pi)
interval =
[3.1416]
1x1 fixed.Interval with properties:

$$
\begin{aligned}
& \text { LeftEnd: } 3.1416 \\
& \text { RightEnd: } 3.1416 \\
& \text { IsLeftClosed: true } \\
& \text { IsRightClosed: }
\end{aligned}
$$

This is equivalent to creating an interval with two equivalent endpoints.

```
interval = fixed.Interval(pi, pi)
interval =
 [3.1416]
 1x1 fixed.Interval with properties:
 LeftEnd: 3.1416
 RightEnd: 3.1416
 IsLeftClosed: true
 IsRightClosed: true
```


## Create an open interval

Specify end notes for an interval to create an open interval.

```
interval = fixed.Interval(-1, 1,'()') %#ok<*NASGU>
interval =
 (-1,1)
 1x1 fixed.Interval with properties:
 LeftEnd: -1
 RightEnd: 1
 IsLeftClosed: false
 IsRightClosed: false
```

To create an interval that includes the first endpoint, but not the second, specify the end notes as '[)'

```
interval = fixed.Interval(-1, 1,'[)')
interval =
 [-1,1)
 1x1 fixed.Interval with properties:
```

```
 LeftEnd: -1
 RightEnd: 1
 IsLeftClosed: true
IsRightClosed: false
```


## Create an interval with the range of a numeric data type

When you specify a numeric data type in the constructor of the fixed. Interval object, the range of the interval is set to the range of the data type.

Create an interval with the range of an int8 data type.

```
interval_int8 = fixed.Interval('int8')
interval int8 =
 [-12\overline{8},127]
 1x1 fixed.Interval with properties:
 LeftEnd: -128
 RightEnd: 127
 IsLeftClosed: true
 IsRightClosed: true
```

You can also specify a Simulink. NumericType to create an interval with the same range as the range representable by the NumericType object.

```
myNumericType = Simulink.NumericType;
myNumericType.DataTypeMode = "Fixed-point: binary point scaling";
myNumericType.Signedness = 'Unsigned';
myNumericType.WordLength = 16;
myNumericType.FractionLength = 14
myNumericType =
 NumericType with properties:
 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 16
 FractionLength: 14
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''
interval_16_14 = fixed.Interval(myNumericType)
interval_16_14 =
 [0,3.9999]
 1x1 fixed.Interval with properties:
 LeftEnd: 0
 RightEnd: 3.9999
```

```
IsLeftClosed: true
IsRightClosed: true
```


## Create an array of fixed.Interval objects

To create an array of fixed. Interval objects, in the constructor of the Interval object, you can specify a series of cell arrays, each of which contain the arguments of an Interval object.

```
intervalarray = fixed.Interval({-1,1},{5,10,'[)'},...
 {1000,1500,'IsLeftClosed',1,'IsRightClosed',0},...
 {'int8'})
intervalarray =
 [-1,1] [5,10) [1000,1500) [-128,127]
 1x4 fixed.Interval with properties:
 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed
```


## Version History

Introduced in R2019b

## See Also

## Objects

fixed.DataGenerator|fixed.DataSpecification

## LUTCompressionResult

Optimized lookup table data for all Lookup Table blocks in a system

## Description

A LUTCompressionResult object contains the optimized lookup table data for all Lookup Table blocks in a system. To create a LUTCompressionResult object, use the
FunctionApproximation. compressLookupTables function. To replace the lookup tables in your system with the optimized version, use the replace function.

## Creation

Create a LUTCompressionResult object using FunctionApproximation. compressLookupTables.

## Properties

## MemoryUnits - Units for memory usage

'bytes' (default)|'bits'|'Kb' | 'Kibit'|'KB'|'KiB'|'Mb'|'Mibit'|'MB'|'MiB'|
'Gb'|'Gibit'|'GB'|'GiB'
Units for MaxMemoryUsage property, specified as 'bits', 'bytes', or one of the other enumerated options.
Data Types: char

## MemoryUsageTable - Table summarizing the effects of compression table

Table summarizing the effects of compression. The table contains one row for each lookup table compressed in the system and its corresponding memory savings.
Data Types: table

## NumLUTsFound - Number of lookup tables found in system

integer-valued scalar
Number of lookup tables found in the specified system, specified as an integer-valued scalar.
Data Types: double

## NumImprovements - Number of lookup tables compressed

integer-valued scalar
Number of lookup tables compressed in the system, specified as an integer-valued scalar.

## Data Types: double

TotalMemoryUsed - Total memory of all lookup tables in system before compression scalar

Total memory of all lookup tables in the system before compression, returned as a scalar. You can specify the units of this property by using the MemoryUnits property.

Data Types: double

## TotalMemoryUsedNew - Total memory of all lookup tables in system after compression scalar

Total memory of all lookup tables in the system after compression, returned as a scalar. You can specify the units of this property by using the MemoryUnits property.
Data Types: double
TotalMemorySavings - Difference between total memory before compression and after compression
scalar
Difference between the total memory of all lookup tables in the system before and after compression, returned as a scalar. You can specify the units of this property by using the MemoryUnits property.
Data Types: double
TotalMemorySavingsPercent - Percentage reduction in memory used by lookup tables in the system
scalar
Percentage reduction in the memory used by the lookup tables in the system after compression, returned as a scalar.
Data Types: double

## SUD - System containing compressed lookup tables

character vector
System containing compressed lookup tables, returned as a character vector. SUD is the same as the system input argument of the FunctionApproximation. compressLookupTables function.
Data Types: char
WordLengths - Word lengths used for breakpoints and table data in the compressed lookup tables
scalar | vector
Word lengths used for breakpoints and table data in the compressed lookup tables, returned as a scalar or vector of integers.

Data Types: double
FindOptions - Options for finding lookup tables in system
Simulink.FindOptions object
Simulink. FindOptions object specifying options for finding lookup tables in the system.

## Object Functions

replace Replace all Lookup Table blocks with compressed lookup tables
revert Revert compressed Lookup Table blocks to original versions

## Examples

## Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.
Open the model containing the lookup tables that you want to compress.

```
system = 'sldemo_fuelsys';
open_system(systèm)
```

Fault-Tolerant Fuel Control System


Open the Dashboard subsystem to simulate any combination of sensor failures.

Use the FunctionApproximation. compressLookupTables function to compress all of the lookup tables in the model. The output specifies all blocks that are modified and the memory savings for each.

```
compressionResult = FunctionApproximation.compressLookupTables(system)
- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throt
 - 3.55% for sldemo fuelsys/fuel rate- control/control`logic/Speed.speed estimāte/Speed Estim
 - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure E
 - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki
```

```
compressionResult =
LUTCompressionResult with properties:
 MemoryUnits: bytes
 MemoryUsageTable: [5x5 table]
 NumLUTsFound: 5
 NumImprovements: 5
 TotalMemoryUsed: 6024
 TotalMemoryUsedNew: 5796
 TotalMemorySavings: 228
 TotalMemorySavingsPercent: 3.7849
 SUD: 'sldemo_fuelsys'
 WordLengths: [8 16 3\overline{2}]
 FindOptions: [1x1 Simulink.internal.FindOptions]
 Display: 1
```

Use the replace function to replace each Lookup Table block with a block containing the original and compressed version of the lookup table.

```
replace(compressionResult);
```

You can revert the lookup tables back to their original state using the revert function.
revert(compressionResult);

## Version History <br> Introduced in R2020a

## See Also

## Functions <br> FunctionApproximation.compressLookupTables|replace|revert

## FunctionApproximation.ClassregProblem class

Package: FunctionApproximation

Specifies problem for the transform function

## Description

The FunctionApproximation. ClassregProblem class creates a FunctionApproximation. CompactModelProblem object that specifies a problem for the transform function FunctionApproximation. TransformFunction. The properties of the FunctionApproximation.ClassregProblem class are read-only.

The FunctionApproximation.ClassregProblem class is a handle class.

## Creation

Use the FunctionApproximation.TransformFunction class to create a TransformFunction object with the problem specified by FunctionApproximation.ClassregProblem.

## Properties

Note Properties of FunctionApproximation.ClassregProblem are read-only.

## FunctionToApproximate - Function to approximate

score transform function
Function to approximate with a lookup table approximation, specified as a score transform function. Use the FunctionApproximation.TransformFunction function to specify the trained classifier model object.

## NumberOfInputs - Number of inputs to function approximation

1 | 2 | 3
Number of inputs to function approximation, specified as 1,2 , or 3 . This property is inferred from the FunctionToApproximate property.
Data Types: double

## InputTypes - Desired data types of inputs to function approximation

numerictype object
Desired data types of inputs to function approximation, specified as a numerictype object. Use the generateLearnerDataTypeFcn function to generate a function that defines the fixed-point data types.

```
InputLowerBounds - Lower limit of range of inputs to function to approximate scalar | vector
```

Lower limit of range of inputs to function to approximate, specified as a scalar or vector. The lower bound of the input is determined by the input values.
Example: InputLowerBounds $=$ min(inputValues)

## InputUpperBounds - Upper limit of range of inputs to function to approximate scalar | vector

Upper limit of range of inputs to function to approximate, specified as a scalar or vector. The upper bound of the input is determined by the input values.
Example: InputUpperBounds = max(inputValues)
OutputType - Desired data type of the function approximation output
numerictype object
Desired data type of the function approximation output, specified as a numerictype object. Use the generateLearnerDataTypeFcn function to generate a function that defines the fixed-point data types.

## Options - Additional options and constraints to use in approximation

FunctionApproximation.Options object
Additional options and constraints to use in approximation, specified as a FunctionApproximation.Options object.

## Version History

Introduced in R2023a

## See Also

FunctionApproximation.TransformFunction

## Topics

"Use Lookup Table to Approximate Score Transformation" (Statistics and Machine Learning Toolbox)

# FunctionApproximation.LUTMemoryUsageCalculat or class 

Package: FunctionApproximation

Calculate memory used by lookup table blocks in a system

## Description

The FunctionApproximation.LUTMemoryUsageCalculator class helps to calculate the memory used by each lookup table block, including 1-D Lookup Table, 2-D Lookup Table, and n-D Lookup Table, used in a model.

## Construction

calculator $=$ FunctionApproximation.LUTMemoryUsageCalculator() creates a FunctionApproximation.LUTMemoryUsageCalculator object. Use the lutmemoryusage method to calculate the memory used by each lookup table block in a model.

## Properties

## Public Properties

FindOptions - Options for finding lookup table blocks in a system Simulink.FindOptions object

Options for finding lookup table blocks in a system, specified as a Simulink. FindOptions object.

## Methods

lutmemoryusage Calculate memory used by lookup table blocks in a system

## Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects.

## Examples

## Calculate the Total Memory Used by Lookup Tables in a Model

Use the FunctionApproximation. LUTMemoryUsageCalculator class to calculate the total memory used by lookup table blocks in a model.

Create a FunctionApproximation.LUTMemoryUsageCalculator object.
calculator $=$ FunctionApproximation.LUTMemoryUsageCalculator
Use the lutmemoryusage method to get the memory used by each lookup table block in the sldemo_fuelsys model.

```
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample',...
 'supportingfile','sldemo_fuelsys');
lutmemoryusage(calculator,'s\overline{ldemo_fuelsys')}
ans =
 5\times2 table
```

                                    BlockPath
    "sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant"
    "sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Est
    "sldemo- fuelsys/fuel- rate control/control-logic/Speed.speed estimāte/Speed Estimation"
    "sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimati
    "sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki"
    
## Version History

## Introduced in R2018a

## See Also

## Apps <br> Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution
Functions
solve | approximate | compare | totalmemoryusage | solutionfromID |
displayfeasiblesolutions|displayallsolutions|lutmemoryusage
Topics
"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"

## FunctionApproximation.LUTSolution class

Package: FunctionApproximation

Optimized lookup table data or lookup table data approximating a math function

## Description

A FunctionApproximation.LUTSolution object contains optimized lookup table data or lookup table data approximating a math function. To create a FunctionApproximation. LUTSolution object, use the solve method on a FunctionApproximation. Problem object. To generate a subsystem containing the lookup table approximate or the optimized lookup table, or to generate the lookup table as a MATLAB function, use the approximate method of the FunctionApproximation.LUTSolution object.

You can save a FunctionApproximation.LUTSolution object to a MAT-file and restore the solution later.

## Construction

solution = solve(problem) solves the problem defined by the FunctionApproximation. Problem object, problem, and returns the approximation or optimization, solution, as a FunctionApproximation. LUTSolution object.

## Input Arguments

problem - Function to approximate, or lookup table to optimize
FunctionApproximation. Problem object
Function to approximate, or lookup table to optimize, and the constraints to consider during the optimization, specified as a FunctionApproximation. Problem object.

## Properties

## ID - ID of the solution

scalar integer
ID of the solution, specified as a scalar integer.
This property is read-only.
Data Types: double

## Feasible - Whether the approximation meets the constraints true | false

Whether the approximation or optimization specified by the FunctionApproximation.LUTSolution object, solution, meets the constraints specified in the FunctionApproximation. Problem object, problem, and its associated FunctionApproximation.Options.

This property is read-only.

## Data Types: logical

## AllSolutions - All solutions, including infeasible solutions

vector of FunctionApproximation. LUTSolution objects
All solutions found during the approximation, including infeasible solutions, specified as a vector of FunctionApproximation.LUTSolution objects.

This property is read-only.

## FeasibleSolutions - All solutions that meet the constraints <br> vector of FunctionApproximation. LUTSolution objects

All solutions meeting the specified constraints, specified as a vector of FunctionApproximation.LUTSolution objects.

This property is read-only.

## PercentReduction - Reduction in memory of lookup table scalar

If the original FunctionApproximation. Problem object specified a lookup table block to optimize, the PercentReduction property indicates the reduction in memory from the original lookup table. If the original FunctionApproximation. Problem object specified a math function or function handle, the PercentReduction is -Inf.

This property is read-only.
Data Types: double

## SourceProblem - Problem object approximated by the solution

FunctionApproximation. Problem object
FunctionApproximation. Problem object that the FunctionApproximation.LUTSolution object approximates.

This property is read-only.

## TableData - Lookup table data <br> struct

Struct containing data related to lookup table approximation. The struct has the following fields.

- BreakpointValues - Breakpoints of the lookup table
- BreakpointDataTypes- Data type of the lookup table breakpoints
- TableValues - Values in the lookup table
- TableDataType - Data type of the table data
- IsEvenSpacing - Boolean value indicating if the breakpoints are evenly spaced.

This property is read-only.

## Methods

approximate	Generate a Lookup Table block or lookup table as a MATLAB function from   a FunctionApproximation. LUTSolution
compare	Compare numerical results of FunctionApproximation. LUTSolution   to original function or lookup table
displayallsolutions	Display all solutions found during function approximation
displayfeasiblesolutions	Display all feasible solutions found during function approximation   getErrorValue
Get the total error of the lookup table approximation	
replaceWithApproximate	
Replace block with the generated lookup table approximation	
revertToOriginal	Revert the block that was replaced by the approximation back to its   original state
solutionfromID	Access a solution found during the approximation process
totalmemoryusage	Calculate total memory used by a lookup table approximation

## Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects.

## Version History

Introduced in R2018a

## See Also

## Apps <br> Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator
Functions
solve | approximate | compare
Topics
"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"

# FunctionApproximation.Options class 

Package: FunctionApproximation
Specify additional options to use with FunctionApproximation. Problem object

## Description

The FunctionApproximation.Options object contains additional options for defining a FunctionApproximation. Problem object.

## Construction

options = FunctionApproximation.Options() creates a
FunctionApproximation.Options object to use as an input to a FunctionApproximation. Problem object. The output, options, uses default property values.
options = FunctionApproximation.Options(Name, Value) creates a FunctionApproximation.Options object with property values specified by one or more Name, Value pair arguments. Name must appear inside single quotes (' ' ). You can specify several name-value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

## Properties

## AbsTol - Absolute tolerance of difference between original and approximate non-negative scalar

Maximum tolerance of the absolute value of the difference between the original output value and the output value of the approximation, specified as a non-negative scalar.

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32|uint64 |
fi
```


## AllowUpdateDiagram - Whether to allow updating of the model diagram during the approximation process <br> true or 1 (default) | false or 0

Whether to allow updating of the model diagram during the approximation process, specified as a numeric or logical 1 (true) or 0 (false). This property is only relevant for FunctionApproximation. Problem objects that specify a Lookup Table block, or a Math Function block as the item to approximate.
Data Types: logical

## ApproximateSolutionType - How to output optimized lookup table <br> 'Simulink' (default)|'MATLAB'

How to output optimized lookup table, specified as 'Simulink' or 'MATLAB'. When this property is set to 'Simulink', the approximate method produces a Simulink subsystem containing the optimized lookup table. When this property is set to 'MATLAB' , the approximate method outputs the optimized lookup table as a MATLAB function.

Generating an optimized lookup table as a MATLAB function is not supported when:

- The AUTOSARCompliant property is set to true
- The UseParallel property is set to true
- The HDLOptimized property is set to true
- The InterpolationMethod property is set to 'None'

Note The Simulink block and MATLAB function lookup table approximations generated by the FunctionApproximation package may not be exactly numerically equivalent. However, both solution forms are guaranteed to meet all constraints specified in the optimization problem.

## Example: options.ApproximateSolutionType ='MATLAB';

Data Types: char

## AUTOSARCompliant - Whether the generated lookup table block is an AUTOSAR block false or 0 (default) | true or 1

Whether the generated lookup table is AUTOSAR compliant, specified as a numeric or logical 1 (true) or 0 (false). When this property is set to 1 (true), the generated lookup table is a Curve or Map block from the AUTOSAR Blockset. When this property is set to 1 (true), the data type of the table data must equal the output data type of the block.

Setting this property to 1 (true) checks out a AUTOSAR Blockset license when you use the approximate or replaceWithApproximate methods.

This property is not supported when the ApproximateSolutionType property is set to 'MATLAB'.
Data Types: logical

## BreakpointSpecification - Spacing of breakpoint data

ExplicitValues (default)|EvenSpacing | EvenPow2Spacing
Spacing of breakpoint data, specified as one of the following values.

Breakpoint Specification	Description
ExplicitValues	Lookup table breakpoints are specified explicitly.   Breakpoints can be closer together for some   input ranges and farther apart in others.
EvenSpacing	Lookup table breakpoints are evenly spaced   throughout.
EvenPow2Spacing	Lookup table breakpoints use power-of-two   spacing. This breakpoint specification boasts the   fastelt execution speed because a bit shift can   replace the position search.

For more information on how breakpoint specification can affect performance, see "Effects of Spacing on Speed, Error, and Memory Usage".
Data Types: char

## Display - Whether to display details of each iteration of the optimization <br> true or 1 (default) | false or 0

Whether to display details of each iteration of the optimization, specified as a numeric or logical 1 (true) or 0 (false). A value of 1 (true) results in information in the command window at each iteration of the approximation process. A value of 0 (false) does not display information until the approximation is complete.
Data Types: logical

## ExploreHalf - Whether to allow exploration of half precision

true or 1 (default) | false or 0
Whether to allow the optimizer to explore half-precision data types for table data and breakpoints, specified as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

## HDLOptimized - Whether to generate HDL-optimized approximate

false or 0 (default) | true or 1
Whether to generate an HDL-optimized approximate, specified as a numeric or logical 1 (true) or 0 (false). A value of 1 (true) results in the approximate being a subsystem consisting of a prelookup step followed by interpolation that functions as a lookup table with explicit pipelining to generate efficient HDL code.

To generate an HDL-optimized approximate, the function to approximate must be one-dimensional and BreakpointSpecification must be set to EvenSpacing or EvenPow2Spacing.

This property is not supported when the ApproximateSolutionType property is set to 'MATLAB'.
Data Types: logical
Interpolation - Method when an input falls between breakpoint values
Linear (default) | Flat | Nearest | None
When an input falls between breakpoint values, the lookup table interpolates the output value using neighboring breakpoints.

Interpolation Method	Description
Linear	Fits a line between the adjacent breakpoints, and   returns the point on that line corresponding to   the input.
Flat	Returns the output value corresponding to the   breakpoint value that is immediately less than the   input value. If no breakpoint value exists below   the input value, it returns the breakpoint value   nearest the input value.
Nearest	Returns the value corresponding to the   breakpoint that is closest to the input. If the input   is equidistant from two adjacent breakpoints, the   breakpoint with the higher index is chosen.


Interpolation Method
None


Description
$\begin{array}{l}\text { Generates a Direct Lookup Table (n-D) block, } \\ \text { which performs table lookups without any } \\ \text { interpolation or extrapolation. }\end{array}$

Note When generating a Direct Lookup Table block, the maximum number of inputs is two.

The interpolation method None is not supported when the ApproximateSolutionType property is set to 'MATLAB'.

Data Types: char
MaxMemoryUsage - Maximum amount of memory the generated lookup table can use 80000000 (default) | scalar integer

The maximum amount of memory the generated lookup table can use, in bits, specified as a scalar integer. You can change the units of the option using the MemoryUnits property.

## Data Types: double

## MaxTime - Maximum amount of time for the approximation to run (in seconds) <br> Inf (default) | scalar

Maximum amount of time for the approximation to run, specified in seconds as a scalar number. The approximation runs until it reaches the time specified, finds an ideal solution, or reaches another stopping criteria.
Data Types: double

## MemoryUnits - Units for maximum memory usage

${ }^{\prime}$ bits' (default) |'bytes'|'Kb'| 'Kibit' | 'KB'|'KiB' | 'Mb' | 'Mibit' | 'MB'| 'MiB'| 'Gb'|'Gibit'|'GB'| 'GiB'

Units for MaxMemoryUsage property, specified as 'bits', 'bytes ', or one of the other enumerated options.

## Data Types: char

OnCurveTableValues - Whether to constrain table values to the quantized output of the function being approximated
false or 0 (default) | true or 1
Whether to constrain table values to the quantized output of the function being approximated, specified as a numeric or logical 1 (true) or 0 (false). By setting this property to 0 (false) and allowing off-curve table values, you may be able to reduce the memory of the lookup table while maintaining the same error tolerances, or maintain the same memory while reducing the error tolerances.

Data Types: logical

## RelTol - Relative tolerance of difference between original and approximate <br> non-negative scalar

Maximum tolerance of the relative difference between the original output value and the output value of the approximation, specified as a non-negative scalar.

Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| fi

## SaturateToOutputType - Saturate output of function to approximate to range of output type <br> false or 0 (default) | true or 1

Whether to automatically saturate the range of the output of the function to approximate to the range of the output data type, specified as a numeric or logical 1 (true) or 0 (false).
Example: options.SaturateToOutputType = 1;
Data Types: logical

## UseParallel - Whether to run iterations in parallel

false or 0 (default) | true or 1
Whether to run iterations of the optimization in parallel, specified as a numeric or logical 1 (true) or 0 (false). Running the iterations in parallel requires a Parallel Computing Toolbox license. If you do not have a Parallel Computing Toolbox license, or if you specify 0 (false), the iterations run in serial.

This property is not supported when the ApproximateSolutionType property is set to 'MATLAB'.
Example: options.UseParallel = true;
Data Types: logical

## WordLengths - Word lengths permitted in the lookup table approximate

[8, 16, 32] (default) | integer scalar | integer vector
Specify the word lengths, in bits, that can be used in the lookup table approximate based on your intended hardware. For example, if you intend to target an embedded processor, you can restrict the data types in your lookup table to native types, 8,16 , and 32 . The word lengths must be between 1 and 128.

Example: options.WordLengths $=[8,16,32]$;
Data Types: single | double | int8|int16|int32 | int64 |uint8|uint16|uint32|uint64 | fi

## Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

## Limitations

- Lookup table objects and breakpoint objects are not supported in a model mask workspace.


## Algorithms

When you set BreakpointSpecification to 'ExplicitValues', during the approximation process, the algorithm also attempts to find a solution using 'EvenSpacing' and
'EvenPow2Spacing'. Likewise, when you set BreakpointSpecification to 'EvenSpacing', the algorithm also attempts to find a solution using 'EvenPow2Spacing'. If you set the property to 'EvenPow2Spacing' , the algorithm only attempts to find a solution using this spacing.

In cases where the BreakpointSpecification property is set to 'EvenSpacing', but the InputUpperBounds or InputLowerBounds property of the FunctionApproximation. Problem object is equal to the range of the InputTypes, the algorithm does not attempt to find a solution using 'EvenPow2Spacing'.

## Version History

## Introduced in R2018a

## R2021b: Generate an optimized lookup table approximation as a MATLAB function

You can now use the FunctionApproximation. Problem object to generate an optimized lookup table approximation as a MATLAB function. To generate MATLAB function, in a FunctionApproximation.Options object, set the ApproximateSolutionType property to MATLAB.

The generated MATLAB function is editable and supports $\mathrm{C} / \mathrm{C}++$ code generation using MATLAB Coder.

## R2021a: Generate optimized one-dimensional lookup tables for HDL applications

Use lookup table optimization to generate a subsystem consisting of a prelookup step followed by interpolation that functions as a lookup table with explicit pipelining to generate efficient HDL code. To generate an HDL-optimized lookup table, set the HDLOptimized property to true.

## See Also

## Apps

Lookup Table Optimizer

Classes<br>FunctionApproximation.Problem | FunctionApproximation.LUTSolution | FunctionApproximation.LUTMemoryUsageCalculator<br>\section*{Functions}<br>solve | approximate | compare | totalmemoryusage | solutionfromID |<br>displayfeasiblesolutions|displayallsolutions|lutmemoryusage<br>Topics<br>"Optimize Lookup Tables for Memory-Efficiency Programmatically"<br>"Optimize Lookup Tables for Memory-Efficiency"<br>"Generate an Optimized Lookup Table as a MATLAB Function Programmatically"<br>"Generate an Optimized Lookup Table as a MATLAB Function"

# FunctionApproximation.Problem class 

Package: FunctionApproximation
Object defining the function to approximate, or the lookup table to optimize

## Description

The FunctionApproximation. Problem object defines the function to approximate with a lookup table, or the lookup table block to optimize. After defining the problem, use the solve method to generate a FunctionApproximation. LUTSolution object that contains the approximation.

## Construction

approximationProblem = FunctionApproximation.Problem() creates a FunctionApproximation. Problem object with default property values. When no function input is provided, the FunctionToApproximate property is set to 'sin'.
approximationProblem = FunctionApproximation. Problem(function) creates a FunctionApproximation. Problem object to approximate the function, Math Function block, or lookup table specified by function.

## Input Arguments

## function - Function or block to approximate, or lookup table block to optimize

'sin' (default) | math function | function handle | cfit object | Math Function block | Lookup Table block | Subsystem block

Function or block to approximate, or the lookup table block to optimize, specified as a function handle, a math function, a cfit object, a Simulink block or subsystem, or one of the lookup table blocks (for example, 1-D Lookup Table, n-D Lookup Table).

If you specify one of the lookup table blocks, the solve method generates an optimized lookup table.
If you specify a math function, a function handle, cfit object, or a block, the solve method generates a lookup table approximation of the input function.

If you specify a cfit object, use the fittype function to specify a library model to approximate. For a list of library models, see "List of Library Models for Curve and Surface Fitting" (Curve Fitting Toolbox).

Function handles must be on the MATLAB search path, or approximation fails.
The MATLAB math functions supported for approximation are:

- $1 . / x$
- 10.^x
- 2.^x
- acos
- acosh
- asin
- asinh
- atan
- atan2
- atanh
- cos
- cosh
- exp
- log
- $\log 10$
- $\log 2$
- sin
- sinh
- sqrt
- tan
- tanh
- $\times .{ }^{\wedge} 2$

Tip The process of generating a lookup table approximation is faster for a function handle than for a subsystem. If a subsystem can be represented by a function handle, it is faster to approximate the function handle.

Data Types: char | function_handle

## Properties

FunctionToApproximate - Function to approximate, or lookup table block to optimize 'sin' (default) | math function | function handle | cfit object | Math Function block | Lookup Table block | Subsystem block

Function or block to approximate, or the lookup table block to optimize, specified as a function handle, a math function, a Simulink block or subsystem, or one of the lookup table blocks (for example, 1-D Lookup Table, n-D Lookup Table).

If you specify one of the lookup table blocks, the solve method generates an optimized lookup table.
If you specify a cfit object, use the fittype function to specify a library model to approximate. For a list of library models, see "List of Library Models for Curve and Surface Fitting" (Curve Fitting Toolbox).

If you specify a math function, a function handle, cfit object, or a block, the solve method generates a lookup table approximation of the input function.

Function handles must be on the MATLAB search path, or approximation fails.

The MATLAB math functions supported for approximation are:

- $1 . / x$
- 10.^x
- 2. ${ }^{\wedge} x$
- acos
- acosh
- asin
- asinh
- atan
- atan2
- atanh
- cos
- cosh
- exp
- log
- $\log 10$
- $\log 2$
- sin
- sinh
- sqrt
- tan
- tanh
- $\times .{ }^{\wedge} 2$

Tip The process of generating a lookup table approximation is faster for a function handle than for a subsystem. If a subsystem can be represented by a function handle, it is faster to approximate the function handle.

Data Types: char | function_handle
NumberOfInputs - Number of inputs to function approximation
1|2|3
Number of inputs to approximated function. This property is inferred from the FunctionToApproximate property, therefore it is not a writable property.

If you are generating a Direct Lookup Table, the function to approximate can have no more than two inputs.

Data Types: double
InputTypes - Desired data types of inputs to function approximation
numerictype object | vector of numerictype objects | Simulink. Numerictype object | vector of Simulink. Numerictype objects

Desired data types of the inputs to the approximated function, specified as a numerictype, Simulink. Numerictype, or a vector of numerictype or Simulink. Numerictype objects. The number of InputTypes specified must match the NumberOfInputs.
Example: problem.InputTypes = ["numerictype(1,16,13)", "numerictype(1,16,10)"];

## InputLowerBounds - Lower limit of range of inputs to function to approximate scalar | vector

Lower limit of range of inputs to function to approximate, specified as a scalar or vector. If you specify inf, the InputLowerBounds used during the approximation is derived from the InputTypes property. The dimensions of InputLowerBounds must match the NumberOfInputs.

```
Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64|
fi
```


## InputUpperBounds - Upper limit of range of inputs to function to approximate scalar | vector

Upper limit of range of inputs to function to approximate, specified as a scalar or vector. If you specify inf, the InputUpperBounds used during the approximation is derived from the InputTypes property. The dimensions of InputUpperBounds must match the NumberOfInputs.
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32 |uint64 | fi

## OutputType - Desired data type of the function approximation output numerictype|Simulink.Numerictype

Desired data type of the function approximation output, specified as a numerictype or Simulink. Numerictype. For example, to specify that you want the output to be a signed fixed-point data type with 16 -bit word length and best-precision fraction length, set the OutputType property to "numerictype(1,16)".
Example: problem.OutputType = "numerictype(1,16)";

## Options - Additional options and constraints to use in approximation

FunctionApproximation.Options object
Additional options and constraints to use in approximation, specified as a FunctionApproximation.Options object.

## Methods

solve Solve for optimized solution to function approximation problem

## Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects.

## Examples

## Create Problem Object to Approximate a Function Handle

Create a FunctionApproximation. Problem object, specifying a function handle that you want to approximate.

```
problem = FunctionApproximation.Problem(@(x,y) sin(x)+cos(y))
problem =
 FunctionApproximation.Problem with properties
 FunctionToApproximate: @(x,y)\operatorname{sin}(x)+\operatorname{cos}(y)
 NumberOfInputs: 2
 InputTypes: ["numerictype('double')" "numerictype('double')"]
 InputLowerBounds: [-Inf -Inf]
 InputUpperBounds: [Inf Inf]
 OutputType: "numerictype('double')"
 Options: [1\times1 FunctionApproximation.Options]
```

The FunctionApproximation. Problem object, problem, uses default property values.
Set the range of the function inputs to be between zero and $2 *$ pi.

```
problem.InputLowerBounds = [0,0];
problem.InputUpperBounds = [2*pi, 2*pi]
problem =
```

    FunctionApproximation. Problem with properties
    FunctionToApproximate: @(x,y)sin(x)+cos(y)
            NumberOfInputs: 2
                    InputTypes: ["numerictype('double')" "numerictype('double')"]
            InputLowerBounds: [0 0]
            InputUpperBounds: [6.2832 6.2832]
                OutputType: "numerictype('double')"
                    Options: [1×1 FunctionApproximation.Options]
    
## Create Problem Object to Approximate a Math Function

Create a FunctionApproximation. Problem object, specifying a math function to approximate.
problem = FunctionApproximation.Problem('log')
problem =
FunctionApproximation.Problem with properties
FunctionToApproximate: @(x)log(x)
NumberOfInputs: 1
InputTypes: "numerictype(1,16,10)"
InputLowerBounds: 0.6250
InputUpperBounds: 15.6250
OutputType: "numerictype(1,16,13)"
Options: [1×1 FunctionApproximation.Options]

The math functions have appropriate input range, input data type, and output data type property defaults.

## Create Problem Object to Approximate a Curve Fitting Object

Create a FunctionApproximation. Problem object, specifying a cfit object to approximate.

```
ffun = fittype('exp1');
cfun = cfit(ffun,0.1,0.2);
problem = FunctionApproximation.Problem(cfun);
problem =
```

    1×1 FunctionApproximation.Problem with properties:
    FunctionToApproximate: [1x1 cfit]
        NumberOfInputs: 1
            InputTypes: "numerictype('double')"
        InputLowerBounds: - Inf
        InputUpperBounds: Inf
            OutputType: "numerictype('double')"
                Options: [1×1 FunctionApproximation.Options]
    
## Create Problem Object to Optimize a Lookup Table Block

Create a FunctionApproximation. Problem object to optimize an existing lookup table.

```
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample',...
```

    'supportingfile','sldemo_fuelsys');
    problem = FunctionApproximation.Problem('sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping
problem $=$

FunctionApproximation. Problem with properties

```
 FunctionToApproximate: 'sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant'
```

            NumberOfInputs: 2
                        InputTypes: ["numerictype('single')" "numerictype('single')"]
            InputLowerBounds: [50 0.0500]
            InputUpperBounds: [1000 0.9500]
                    OutputType: "numerictype('single')"
                    Options: [1×1 FunctionApproximation.Options]
    The software infers the properties of the problem object from the model.

## Search for Floating-Point Solution to Function Approximation Problem

Since R2023a
This example shows how to search for pure floating-point solutions to the function approximation problem.

Create a FunctionApproximation. Problem object specifying a function to approximate.

```
problem = FunctionApproximation.Problem("sin");
```

Specify the input and output types to be a floating-point data type.

```
problem.InputTypes = [numerictype('Single')];
problem.OutputType = [numerictype('Single')];
```

Use the FunctionApproximation. Options object to specify wordlengths that can be used in the lookup table approximation. To search for floating-point solutions, specify word lengths corresponding to a single-precision or double-precision data type.
problem. Options.WordLengths = 32;
Use the solve method to generate an approximation of the function.
solve(problem)
Searching for fixed-point solutions.

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpec
0	128	0	2	32	32	Ev
1	1568	1	47	32	32	Ev
2	1536	1	46	32	32	Ev
3	1216	1	36	32	32	Ev
4	1184	1	35	32	32	Ev
5	832	1	24	32	32	Ev
6	800	1	23	32	32	Ev
7	448	0	12	32	32	Ev
8	608	0	17	32	32	Ev
9	704	0	20	32	32	Ev
10	736	0	21	32	32	Ev
11	768	1	22	32	32	Ev
12	128	0	2	32	32	EvenPo
13	1152	1	18	32	32	Expli
14	1024	0	16	32	32	Expli
15	1152	0	18	32	32	Expli
16	1280	1	20	32	32	Expli
Searching for floating-point solutions.						
\| 17	1536	1	46	32	32	Ev
18	128	0	2	32	32	EvenPo
19	1152	1	18	32	32	Expli
\| 20	1024	0	16	32	32	Expli
Best Solution						
\| ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpec
\| 11	768	1	22	32	32	Ev
ans =						
1x1 FunctionApproximation.LUTSolution with properties:						
$\begin{gathered} \text { ID: } 11 \\ \text { Feasible: "true" } \end{gathered}$						

The solve method returns all feasible solutions. In the table, fixed-point solutions are returned first, followed by floating-point solutions. The Lookup Table Optimizer selects a floating-point solution as the best solution when all of these conditions are met:

- The floating-point solution requires equal or less memory than a fixed-point solution.
- Both the InputTypes and OutputType properties of the FunctionApproximation.Problem object specify a floating-point data type.
- The WordLengths property of the FunctionApproximation. Options object includes word lengths corresponding to a single-precision or double-precision data type.


## Limitations

- Lookup table objects and breakpoint objects are not supported in a model mask workspace.


## Algorithms

## Required Specifications

Functions and function handles that you approximate must meet the following criteria.

- The function must be time-invariant.
- The function must operate element-wise, meaning for each input there is one output.
- The function must not contain states.

For more information, see "Vectorization".

## Infinite Upper and Lower Input Bounds

When a Problem object specifies infinite input ranges and the input type is non-floating-point, during the approximation, the software infers upper and lower ranges based on the range of the input data type. The resulting FunctionApproximation. LUTSolution object specifies the bounds that the algorithm used during the approximation, not the originally specified infinite bounds.

## Upper and Lower Input Bounds and Input Data Type Range

If the InputLowerBounds or InputUpperBounds specified for a Problem object fall outside the range of the specified InputTypes, the algorithm uses the range of the data type specified by InputTypes for the approximation.

In cases where the BreakpointSpecification property of the FunctionApproximation.Options object is set to 'EvenSpacing', but the InputUpperBounds or InputLowerBounds property of the FunctionApproximation. Problem object is equal to the range of the InputTypes, the algorithm does not attempt to find a solution using 'EvenPow2Spacing'.

## Version History

## Introduced in R2018a

## R2022a: Support for curve fitting objects

The FunctionApproximation. Problem object now supports curve fitting cfit objects as valid inputs for approximation.

## R2022a: Improved memory reduction for 1D and flat interpolation

The Lookup Table Optimizer has an improved algorithm for lookup table value and breakpoint optimization for one-dimensional functions with flat interpolation. This enhancement can enable improved memory reduction of the optimized lookup table and faster completion of the lookup table optimization process.

This improvement applies when the function to approximate is one-dimensional and all of these options are specified in FunctionApproximation. Options:

- Interpolation is set to Flat.
- BreakpointSpecification is set to ExplicitValues.
- OnCurveTableValues is set to false.


## R2021b: Generate an optimized lookup table approximation as a MATLAB function

You can now use the FunctionApproximation. Problem object to generate an optimized lookup table approximation as a MATLAB function. To generate MATLAB function, in a FunctionApproximation.Options object, set the ApproximateSolutionType property to MATLAB.

The generated MATLAB function is editable and supports $\mathrm{C} / \mathrm{C}++$ code generation using MATLAB Coder.

## R2021a: Lookup table optimization support for functions with scalar inputs

Previously, the FunctionApproximation. Problem class required that functions and function handles to approximate were vectorized, meaning that for each input, there is exactly one output. Lookup table optimization now fully supports approximation of Simulink blocks and subsystems that only allow scalar inputs.

## R2021a: Improved lookup table value optimization

The Lookup Table Optimizer has an improved algorithm for lookup table value optimization for the Flat and Nearest interpolation methods when off-curve table values are allowed. This enhancement can enable faster completion of the lookup table optimization process and improved memory reduction of the optimized lookup table.

## See Also

## Apps

Lookup Table Optimizer

## Classes

FunctionApproximation.Options | FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator

## Functions

solve | approximate | compare

## Topics

"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"
"Generate an Optimized Lookup Table as a MATLAB Function Programmatically"
"Generate an Optimized Lookup Table as a MATLAB Function"
"Optimize Lookup Tables for Periodic Functions"

# FunctionApproximation.TransformFunction class 

Package: FunctionApproximation
Object defining transform function to approximate

## Description

Use the FunctionApproximation.TransformFunction object to define a score transformation function of a trained classifier to approximate with an optimized lookup table to use for fixed-point code generation. After defining the FunctionApproximation. TransformFunction object, use the approximate method to solve for the lookup table approximation.

## Creation

## Description

approx0bj = FunctionApproximation.TransformFunction(filename, X, T)

## Input Arguments

## filename - Name of MAT-file that contains structure array representing model object character vector | string scalar

Name of MAT-file that contains structure array representing a model object, specified as a character vector or string scalar.

After training a machine learning model, use the saveLearnerForCoder function to create filename. The extension of filename must be .mat.
Example: saveLearnerForCoder(model,'filename');
Data Types: char | string

## X - Predictor data

numeric matrix
Predictor data for the predict function of the model stored in filename, specified as an $n$-by- $p$ numeric matrix, where $n$ is the number of observations and $p$ is the number of predictor variables.

The data set X used in FunctionApproximation.TransformFunction must be the same data that was passed to the generateLearnerDataTypeFcn function.

## Data Types: single | double

## T - Data types for fixed-point code generation

## structure

Data types for fixed-point code generation, specified as a structure.
Use the generateLearnerDataTypeFcn function to generate the myMdl_datatype function. Then, use the myMdl_datatype function to create a structure that defines the fixed-point data types.

Example: generateLearnerDataTypeFcn('myMdl',[X; XTest]); T = myMdl_datatype('Fixed');

## Properties

## Problem - Score transformation function to approximate with lookup table <br> FunctionApproximation. ClassregProblem class

Score transformation function to approximate with a lookup table, specified as a FunctionApproximation. ClassregProblem class. The software defines the Problem property when you create a FunctionApproximation.TransformFunction object.

## Tips

- If you use a nondefault score transformation function such as doublelogit, logit, or symmetriclogit for the trained classifier, you can use FunctionApproximation.TransformFunction and approximate to update the fixed-point data type structure to include a lookup table that approximates the score transformation function.


## Version History

Introduced in R2023a

## See Also

approximate | FunctionApproximation.ClassregProblem

## Topics

"Use Lookup Table to Approximate Score Transformation" (Statistics and Machine Learning Toolbox)

## fxpOptimizationOptions class

Specify options for data type optimization

## Description

The fxpOptimizationOptions object enables you to specify options and constraints to use during the data type optimization process.

## Construction

opt = fxpOptimizationOptions() creates a fxpOptimizationOptions object with default values.
opt $=$ fxpOptimizationOptions(Name,Value) creates an fxpOptimizationOptions object with property values specified by one or more Name, Value pair arguments. Name must appear inside single quotes (' ' ). You can specify several name-value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## Properties

## MaxIterations - Maximum number of iterations to perform

50 (default) | scalar integer
Maximum number of iterations to perform, specified as a scalar integer. The optimization process iterates through different solutions until it finds an ideal solution, reaches the maximum number of iterations, or reaches another stopping criteria.

Example: opt.MaxIterations = 75;
Data Types: double

## MaxTime - Maximum amount of time for the optimization to run (in seconds)

600 (default) | scalar
Maximum amount of time for the optimization to run, specified in seconds as a scalar number. The optimization runs until it reaches the time specified, an ideal solution, or another stopping criteria.
Example: opt.MaxTime = 1000;
Data Types: double
Patience - Maximum number of iterations where no new best solution is found
10 (default) | scalar integer
Maximum number of iterations where no new best solution is found, specified as a scalar integer. The optimization continues as long as the algorithm continues to find new best solutions.
Example: opt.Patience $=15$;
Data Types: double

## Verbosity - Level of information displayed at the command line during the optimization <br> 'High' (default)|'Moderate'|'Silent'

The level of information displayed at the command line during the optimization process, specified as either 'High', 'Moderate', or 'Silent'.

- 'Silent ' - Nothing is displayed at the command line until the optimization process is finished
- 'Moderate ' - Information is displayed at each major step of the optimization process, including when the process is in the preprocessing, modeling, and optimization phases.
- 'High ' - Information is displayed at the command line at each iteration of the optimization process, including whether a new best solution was found, and the cost of the solution.

Example: opt.Verbosity = 'Moderate';
Data Types: char \| string

## AllowableWordLengths - Word lengths that can be used in your optimized system under design

[2:128] (default) | scalar integer | vector of integers
Specify the word lengths that can be used in your optimized system under design. Use this property to target the neighborhood search of the optimization process. The final result of the optimization uses word lengths in the intersection of the AllowableWordLengths and word lengths compatible with hardware constraints specified in the Hardware Implementation pane of your model.

Example: opt.AllowableWordLengths = [8:11,16,32];
Data Types: double

## ObjectiveFunction - Objective function to use during optimization search 'BitWidthSum' (default)|'OperatorCount'

Objective function to use during optimization search, specified as one of these values:

- 'BitWidthSum' - Minimize total bit width sum.
- 'OperatorCount ' - Minimize estimated count of operators in generated C code.

This option may result in a lower program memory size for C code generated from Simulink models. The ' OperatorCount ' objective function is not suitable for FPGA or ASIC targets.

Note To use 'OperatorCount ' as the objective function during optimization, the model must be ready for code generation. For more information about determining code generation readiness, see "Check Model and Configuration for Code Generation" (Embedded Coder).

Data Types: char

## UseParallel - Whether to run iterations in parallel

false (default) | true
Whether to run iterations of the optimization in parallel, specified as a logical. Running the iterations in parallel requires a Parallel Computing Toolbox license. If you do not have a Parallel Computing Toolbox license, or if you specify false, the iterations run in serial.
Data Types: logical

## AdvancedOptions - Additional options for optimization

object
Additional advanced options for optimization. AdvancedOptions is an object containing additional properties that can affect the optimization.

Property	Description
PerformNeighborhoodSearch	- 1 (default) - Perform a neighborhood search for the optimized solution.   - 0 - Do not perform a neighborhood search. Selecting this option can increase the speed of the optimization process, but also increases the chances of finding a less ideal solution.
EnforceLooseCoupling	Some blocks have a parameter that forces inputs to share a data type, or forces the output to share the same data type as the input.   - 1 (default) - Allow the optimizer to relax this restriction on all blocks in the system under design. Relaxing this restriction enables the optimizer to provide better fitting data types.   - 0 - Do not allow the optimizer to relax this restriction on blocks in the system under design.
UseDerivedRangeAnalysis	- 0 (default) - The optimizer does not consider ranges derived from design ranges in the model when assessing a solution.   - 1 - The optimizer considers both observed simulation ranges and ranges derived from design ranges in the model when assessing a solution.   Depending on the model configuration, derived range analysis may take longer than simulation of the model.
SimulationScenarios	Define additional simulation scenarios to consider during optimization using a Simulink. SimulationInput object. For an example, see "Optimize Data Types Using Multiple Simulation Scenarios".
SafetyMargin	Enter a safety margin, specified as a positive scalar value indicating the percentage increase in the bounds of the collected range. The safety margin is applied to the union of all collected ranges, including simulation ranges, derived ranges, and design ranges.


Property	Description
DataTypeOverride	Override data types specified in the model when simulating during the range collection phase of optimization.   - 'Off' (default) - Do not override data types   - 'Single' - Override data types with singles   - 'Double' - Override data types with doubles   - 'ScaledDouble' - Override data types with scaled doubles
HandleUnsupported	Some blocks are not supported for fixed-point conversion. For more information, see "Blocks That Do Not Support Fixed-Point Data Types".   - 'Isolate' (default) - Isolate unsupported blocks with Data Type Conversion blocks. Isolated blocks are ignored by the optimizer.   - 'Error' - Stop optimization and report an error when the system contains blocks that are not supported for fixed-point conversion.   - 'Warn' - Warn when the system contains blocks that are not supported for fixed-point conversion. Ignore unsupported blocks and continue optimization. This option allows you to replace unsupported constructs with other solutions, such as lookup tables, after optimization is complete.
PerformSlopeBiasCancellation	- 0 (default) - Do not propagate slope-bias data types.   - 1 - Propagate slope-bias data types from outside the system under design. Slopes and biases are chosen to reduce the complexity of generated code.
InstrumentationContext	[model '/Subsystem'] - Restrict instrumentation for minimum, maximum, and overflow logging for the range collection step of optimization to a subsystem. The subsystem must be under the top-level model and contain the system under design.

## Methods

addSpecification addTolerance
showSpecifications
showTolerances

Specify known data types in a system
Specify numeric tolerance for optimized system
Show specifications for a system
Show tolerances specified for a system

## Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects.

## Examples

## Create an fxpOptimizationOptions Object

Create an fxpOptimization0bject with default property values.
options $=$ fxpOptimizationOptions();
Edit the properties after creation using dot syntax.

```
options.Patience = 15;
options.AllowableWordLengths = [8,16,32];
options.AdvancedOptions.UseDerivedRangeAnalysis = true
options =
 fxpOptimizationOptions with properties:
 MaxIterations: 50
 MaxTime: 600
 Patience: 15
 Verbosity: High
 AllowableWordLengths: [8 16 32]
 ObjectiveFunction: BitWidthSum
 UseParallel: 0
 Advanced Options
 AdvancedOptions: [1x1 DataType0ptimization.AdvancedFxp0ptimization0ptions]
```


## Create an fxpOptimizationOptions Object With Non-Default Settings

Use property name-value pairs to set properties at object creation.

```
options = fxp0ptimizationOptions('Patience',15,'AllowableWordLengths',[8,16,32])
options =
 fxpOptimizationOptions with properties:
 MaxIterations: 50
 MaxTime: 600
 Patience: 15
 Verbosity: High
 AllowableWordLengths: [8 16 32]
 ObjectiveFunction: BitWidthSum
 UseParallel: 0
 Advanced Options
 AdvancedOptions: [1x1 DataType0ptimization.AdvancedFxp0ptimization0ptions]
```

Specify advanced options.

```
options.AdvancedOptions.UseDerivedRangeAnalysis = 1
options =
 fxpOptimizationOptions with properties:
 MaxIterations: 50
 MaxTime: 600
 Patience: 15
 Verbosity: High
 AllowableWordLengths: [8 16 32]
 ObjectiveFunction: BitWidthSum
 UseParallel: 0
 Advanced Options
 AdvancedOptions: [1x1 DataType0ptimization.AdvancedFxp0ptimization0ptions]
```


## Import an fxpOptimizationOptions Object into Fixed-Point Tool

You can import an fxpOptimizationOptions object into the Fixed-Point Tool to perform data type optimization in the app. By importing an fxpOptimizationOptions object rather than specifying settings manually in the app, you can easily save and restore your settings.

Open the model.

```
model = 'ex_controllerHarness';
open_system(model);
```

To specify options for the optimization, such as the allowable word length and number of iterations, use the fxpOptimizationOptions object.

```
options = fxpOptimizationOptions('AllowableWordLengths',[2:32],...
 'MaxIterations',3e2,...
 'Patience',50);
```

Open the Fixed-Point Tool with the Controller subsystem selected.

```
fxptdlg('ex_controllerHarness/Controller')
```

In the Fixed-Point Tool, select New > Optimized Fixed-Point Conversion to start the data type optimization workflow.

In the Setup pane, under Advanced Options, select the optimization options object to import from the dropdown menu. Click Import.


Expand the Settings menu in the toolstrip to confirm that the optimization options were applied.

Settings	Optimize Data Types	Apply and Compare	Compare	Export Script
(?) Optimization Options Help				
Basic Options				
Allowable Wordlengths: 2:32				
Max Iterations: 300				
Max Time (sec): 600				
Patience (iterations): 50				
Safety Margin (\%): 0				
Objective Function				
Bit Width Sum   Sum of word lengths used in the system under design				
Operator Count   Sum of operator counts used in the system under design				
Advanced Options				
Perform Neighborhood Search   Perform a neighborhood search for the optimized solution				
Use Parallel   Run iterations of the optimization in parallel				

## Version History

## Introduced in R2018a

## R2021b: Restrict instrumentation to a subsystem

You can now restrict instrumentation to a subsystem by using the InstrumentationContext property of the fxpOptimization0ptions object to specify the subsystem to use for instrumentation and range collection.

## R2021b: Warn about unsupported constructs

You can now choose to display a warning message when fxpopt encounters blocks that are not supported for data type conversion, in addition to the existing options to isolate or error. To warn for
unsupported constructs, set the HandleUnsupported property of the fxp0ptimization0ptions object to 'Warn'.

## R2021a: Override data types with scaled doubles

You can now override data types in a model with scaled doubles.

## See Also

## Classes

OptimizationResult|OptimizationSolution

## Functions <br> addTolerance | showTolerances | explore|fxpopt

## Topics

"Optimize Fixed-Point Data Types for a System"

## OptimizationResult class

Result after optimizing fixed-point system

## Description

An OptimizationResult object contains the results after optimizing a fixed-point system. If the optimization process succeeds in finding a new fixed-point implementation, you can use this object to explore the different implementations that met the specified tolerances found during the process. Use the explore method to open the Simulation Data Inspector and view the behavior of the optimized system.

## Construction

result $=$ fxpopt (model, sud, options) optimizes the data types in the system specified by sud in the model, model, with additional options specified in the fxpOptimizationOptions object, options.

## Input Arguments

## model - Model containing system under design

character vector
Name of the model containing the system that you want to optimize.
Data Types: char
sud - System whose data types you want to optimize
character vector
System whose data types you want to optimize, specified as a character vector containing the path to the system.

## Data Types: char

## options - Additional optimization options

fxp0ptimizationOptions object
fxpOptimizationOptions object specifying additional options to use during the data type optimization process.

## Properties

## FinalOutcome - Message specifying whether a new optimal solution was found character vector

Message specifying whether the optimization process found a new optimal solution, returned as a character vector.

Data Types: char

## OptimizationOptions - fxpOptimizationOptions object associated with the result fxpOptimizationOptions object

The fxpOptimizationOptions object used as an input to the fxpopt function used to generate the OptimizationResult.

## Solutions - Vector of OptimizationSolution objects

OptimizationSolution object | vector of OptimizationSolution objects
A vector of OptimizationSolution objects found during the optimization process. If the optimization finds a feasible solution, the vector is sorted by cost, with the lowest cost (most optimal) solution as the first element of the vector. If the optimization does not find a feasible solution, the vector is sorted by maximum difference from the original design.

## Methods

explore Explore fixed-point implementations found during optimization process
revert Revert system data types and settings changed during optimization to original state
openSimulationManager Inspect simulations run during optimization in Simulation Manager

## Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects.

## Version History

## Introduced in R2018a

## See Also

```
Classes
fxpOptimizationOptions|OptimizationSolution
Functions
addTolerance | showTolerances | explore | fxpopt
Topics
"Optimize Fixed-Point Data Types for a System"
```


## OptimizationSolution class

Optimized fixed-point implementation of system

## Description

An OptimizationSolution object is a fixed-point implementation of a system whose data types were optimized using the fxpopt function.

## Construction

solution = explore(result) opens the Simulation Data Inspector. If the optimization found a solution, it returns the OptimizationSolution object with the lowest cost out of the vector of OptimizationSolution objects contained in the OptimizationResult object, result. If the optimization did not find a solution, it returns the OptimizationSolution object with the smallest MaxDifference.

You can also access a OptimizationSolution object by indexing the Solutions property of an OptimizationResult object. For example, to access the solution with the second lowest cost contained in the OptimizationResult object, result, enter

```
solution = result.Solutions(2)
```


## Input Arguments

## result - OptimizationResult containing the solution

OptimizationResult object
The Solutions property of the OptimizationResult object is a vector of OptimizationSolution objects found during the optimization process. If the optimization found a feasible solution, the vector is sorted by cost, with the lowest cost (most optimal) solution as the first element of the vector. If the optimization did not find a feasible solution, the vector is sorted by MaxDifference, with the solution with the smallest MaxDifference as the first element.

## Properties

## Cost - Sum of word lengths used in the system under design scalar integer

Sum of all word lengths used in the solution in the system under design. The most optimal solution is the solution with the smallest cost.
Data Types: double
Pass - Whether the solution meets specified criteria
1 | 0
Whether the solution meets the criteria specified by the associated fxp0ptimization0ptions object, specified as a logical.

Data Types: logical

## MaxDifference - Maximum absolute difference between baseline solution run scalar

The maximum absolute difference between the baseline the solution.
Data Types: double

## RunID - Run identifier

scalar integer
Unique numerical identification for the run used by the Simulation Data Inspector. For more information, see "Inspect and Compare Data Programmatically".

Data Types: double

## RunName - Name of the run

character vector
Name of the run in Simulation Data Inspector.
Data Types: char

## Methods

showContents Get summary of changes made during data type optimization

## Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects.

## Version History

Introduced in R2018a

## See Also

## Classes

fxpOptimizationOptions |OptimizationResult
Functions
addTolerance | showTolerances | explore | fxpopt
Topics
"Optimize Fixed-Point Data Types for a System"

Methods

## isHeterogeneous

Class: coder. CellType<br>Package: coder

Determine whether cell array type represents a heterogeneous cell array

## Syntax

tf = isHeterogeneous(t)

## Description

$\mathrm{tf}=\mathrm{isHeterogeneous}(\mathrm{t})$ returns true if the coder. CellType object t is heterogeneous. Otherwise, it returns false.

## Examples

## Determine Whether Cell Array Type Is Heterogeneous

Create a coder.CellType object for a cell array whose elements have different classes.

```
t = coder.typeof({'a', 1})
t =
coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 char
 f1: 1x1 double
```

Determine whether the coder. CellType object represents a heterogeneous cell array.
isHeterogeneous(t)
ans $=$

1

## Tips

- coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the cell array elements have the same class and size, coder. typeof returns a homogeneous cell array type. If the elements have different classes, coder. typeof returns a heterogeneous cell array type. For some cell arrays, the classification as homogeneous or heterogeneous is ambiguous. For example, the type for $\{1[23]\}$ can be a $1 \times 2$ heterogeneous type. The first element is double and the second element is 1 x 2 double. The type can also be a 1 x 3 homogeneous type in which the elements have class double and size 1x:2. For these ambiguous cases, coder. typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want a different classification, use the makeHomogeneous or makeHeterogeneous methods. The
makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification as homogeneous and heterogeneous, respectively. You cannot later use one of these methods to create a copy that has a different classification.

## Version History

Introduced in R2015b

## See Also

coder.typeof | coder.newtype

## Topics

"Code Generation for Cell Arrays"
"Specify Cell Array Inputs at the Command Line"

## isHomogeneous

Class: coder. CellType
Package: coder
Determine whether cell array type represents a homogeneous cell array

## Syntax

tf = isHomogeneous(t)

## Description

$t f=$ isHomogeneous(t) returns true if the coder. CellType object $t$ represents a homogeneous cell array. Otherwise, it returns false.

## Examples

## Determine Whether Cell Array Type Is Homogeneous.

Create a coder. CellType object for a cell array whose elements have the same class and size.

```
t = coder.typeof({1 2 3})
t =
coder.CellType
 1x3 homogeneous cell
 base: 1x1 double
```

Determine whether the coder. CellType object represents a homogeneous cell array.

```
isHomogeneous(t)
```

ans $=$

1

## Test for a Homogeneous Cell Array Type Before Executing Code

Write a function make_varsize. If the input type $t$ is homogeneous, the function returns a variablesize copy of $t$.

```
function c = make_varsize(t, n)
assert(isHomogeneous(t));
c = coder.typeof(t, [n n], [1 1]);
end
```

Create a heterogeneous type tc.

```
tc = coder.typeof({'a', 1});
```

Pass tc to make_varsize.
tcl = make_varsize(tc, 5)
The assertion fails because tc is heterogeneous.
Create a homogeneous type tc.

```
tc = coder.typeof({1 2 3});
```

Pass tc to make_varsize.
tcl = make_varsize(tc, 5)
tc1 =
coder.CellType
:5x:5 homogeneous cell
base: 1x1 double

## Tips

- coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the cell array elements have the same class and size, coder. typeof returns a homogeneous cell array type. If the elements have different classes, coder. typeof returns a heterogeneous cell array type. For some cell arrays, the classification as homogeneous or heterogeneous is ambiguous. For example, the type for $\{1[23]\}$ can be a $1 \times 2$ heterogeneous type. The first element is double and the second element is 1 x 2 double. The type can also be a 1 x 3 homogeneous type in which the elements have class double and size 1x:2. For these ambiguous cases, coder. typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want a different classification, use the makeHomogeneous or makeHeterogeneous methods. The makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification as homogeneous and heterogeneous, respectively. You cannot later use one of these methods to create a copy that has a different classification.

## Version History

## Introduced in R2015b

## See Also

coder.typeof | coder.newtype

## Topics

"Code Generation for Cell Arrays"
"Specify Cell Array Inputs at the Command Line"

## makeHeterogeneous

Class: coder. CellType
Package: coder
Make a heterogeneous copy of a cell array type

## Syntax

newt $=$ makeHeterogeneous( $t$ )
$t=$ makeHeterogeneous( t )

## Description

newt $=$ makeHeterogeneous ( $t$ ) creates a coder. CellType object for a heterogeneous cell array from the coder. CellType object t . t cannot represent a variable-size cell array.

The classification as heterogeneous is permanent. You cannot later create a homogeneous coder. CellType object from newt.
$t=$ makeHeterogeneous $(t)$ creates a heterogeneous coder. CellType object from $t$ and replaces $t$ with the new object.

## Examples

## Replace a Homogeneous Cell Array Type with a Heterogeneous Cell Array Type

Create a cell array type t whose elements have the same class and size.

```
t = coder.typeof({\begin{array}{lll}{1}&{2}&{3}\end{array}})
t =
coder.CellType
 1x3 homogeneous cell
 base: 1x1 double
```

The cell array type is homogeneous.
Replace $t$ with a cell array type for a heterogeneous cell array.

```
t = makeHeterogeneous(t)
t =
coder.CellType
 1\times3 locked heterogeneous cell
 f1: 1\times1 double
 f2: 1×1 double
 f3: 1\times1 doublee
```

The cell array type is heterogeneous. The elements have the size and class of the original homogeneous cell array type.

## Tips

- In the display of a coder. CellType object, the terms locked heterogeneous or locked homogeneous indicate that the classification as homogeneous or heterogeneous is permanent. You cannot later change the classification by using the makeHomogeneous or makeHeterogeneous methods.
- coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the cell array elements have the same class and size, coder. typeof returns a homogeneous cell array type. If the elements have different classes, coder. typeof returns a heterogeneous cell array type. For some cell arrays, the classification as homogeneous or heterogeneous is ambiguous. For example, the type for $\{1[23]\}$ can be a $1 \times 2$ heterogeneous type. The first element is double and the second element is 1 x 2 double. The type can also be a 1 x 3 homogeneous type in which the elements have class double and size 1x:2. For these ambiguous cases, coder. typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want a different classification, use the makeHomogeneous or makeHeterogeneous methods.


## Version History

## Introduced in R2015b

## See Also

coder.typeof | coder.newtype

## Topics

"Code Generation for Cell Arrays"
"Specify Cell Array Inputs at the Command Line"

## makeHomogeneous

Class: coder. CellType
Package: coder
Create a homogeneous copy of a cell array type

## Syntax

newt = makeHomogeneous( t )
$\mathrm{t}=$ makeHomogeneous( t )

## Description

newt = makeHomogeneous( t ) creates a coder.CellType object for a homogeneous cell array newt from the coder. CellType object $t$.

To create newt, the makeHomogeneous method must determine a size and class that represent all elements of $t$ :

- If the elements of $t$ have the same class, but different sizes, the elements of newt are variable size with upper bounds that accommodate the elements of $t$.
- If the elements of $t$ have different classes, for example, char and double, the makeHomogeneous method cannot create a coder. CellType object for a homogeneous cell array.

The classification as homogeneous is permanent. You cannot later create a heterogeneous coder. CellType object from newt.
$t=$ makeHomogeneous( $t$ ) creates a homogeneous coder. CellType object from $t$ and replaces $t$ with the new object.

## Examples

## Replace a Heterogeneous Cell Array Type with a Homogeneous Cell Array Type

Create a cell array type t whose elements have the same class, but different sizes.

```
t = coder.typeof({1 [2 3]})
t =
coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 double
 f1: 1x2 double
```

The cell array type is heterogeneous.
Replace $t$ with a cell array type for a homogeneous cell array.

```
t = makeHomogeneous(t)
t =
coder.CellType
 1\times2 locked homogeneous cell
 base: 1x:2 double
```

The new cell array type is homogeneous.

## Tips

- In the display of a coder.CellType object, the terms locked heterogeneous or locked homogeneous indicate that the classification as homogeneous or heterogeneous is permanent. You cannot later change the classification by using the makeHomogeneous or makeHeterogeneous methods.
- coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the cell array elements have the same class and size, coder. typeof returns a homogeneous cell array type. If the elements have different classes, coder. typeof returns a heterogeneous cell array type. For some cell arrays, the classification as homogeneous or heterogeneous is ambiguous. For example, the type for $\{1$ [2 3]\} can be a $1 \times 2$ heterogeneous type. The first element is double and the second element is 1 x 2 double. The type can also be a 1 x 3 homogeneous type in which the elements have class double and size $1 \mathrm{x}: 2$. For these ambiguous cases, coder. typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want a different classification, use the makeHomogeneous or makeHeterogeneous methods.


## Version History

## Introduced in R2015b

See Also<br>coder.typeof | coder.newtype<br>Topics<br>"Code Generation for Cell Arrays"<br>"Specify Cell Array Inputs at the Command Line"

## addApproximation

Class: coder. FixPtConfig
Package: coder
Replace floating-point function with lookup table during fixed-point conversion

## Syntax

addApproximation(approximation0bject)

## Description

addApproximation(approximationObject) specifies a lookup table replacement in a coder.FixPtConfig object. During floating-point to fixed-point conversion, the conversion process generates a lookup table approximation for the function specified in the approximation0bject.

## Input Arguments

approximation0bject - Function replacement configuration object
coder.mathfcngenerator. LookupTable configuration object
Function replacement configuration object that specifies how to create an approximation for a MATLAB function. Use the coder. FixPtConfig configuration object addApproximation method to associate this configuration object with a coder. FixPtConfig object. Then use the fiaccel function - float2fixed option with coder. FixPtConfig to convert floating-point MATLAB code to fixed-point MATLAB code.

## Examples

## Replace log function with an optimized lookup table replacement

Create a function replacement configuration object that specifies to replace the log function with an optimized lookup table.

```
logAppx = coder.approximation('Function','log','OptimizeLUTSize',...
 true,'InputRange',[0.1,1000],'InterpolationDegree',1,...
 'ErrorThreshold',1e-3,...
 'FunctionNamePrefix','log_optim_','OptimizeIterations',25);
```

Create a fixed-point configuration object and associate the function replacement configuration object with it.

```
fixptcfg = coder.config('fixpt');
fixptcfg.addApproximation(logAppx);
```

You can now generate fixed-point code using the fiaccel function.

## See Also

coder.FixPtConfig|fiaccel

## Topics

"Replace the $\exp$ Function with a Lookup Table"
"Replace a Custom Function with a Lookup Table"
"Replacing Functions Using Lookup Table Approximations"

## addDesignRangeSpecification

Class: coder.FixPtConfig
Package: coder
Add design range specification to parameter

## Syntax

addDesignRangeSpecification(fcnName,paramName,designMin, designMax)

## Description

addDesignRangeSpecification(fcnName,paramName,designMin, designMax) specifies the minimum and maximum values allowed for the parameter, paramName, in function, fcnName. The fixed-point conversion process uses this design range information to derive ranges for downstream variables in the code.

## Input Arguments

fcnName - Function name
string
Function name, specified as a string.
Data Types: char
paramName - Parameter name
string
Parameter name, specified as a string.
Data Types: char
designMin - Minimum value allowed for this parameter
scalar
Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

## designMax - Maximum value allowed for this parameter scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

## Examples

## Add a Design Range Specification

Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecifīcation('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
Derive ranges and generate fixed-point code
fiaccel -float2fixed cfg dti;

## See Also

coder.FixPtConfig|fiaccel|hasDesignRangeSpecification| removeDesignRangeSpecification|clearDesignRangeSpecifications| getDesignRangeSpecification

## addFunctionReplacement

Class: coder.FixPtConfig
Package: coder
Replace floating-point function with fixed-point function during fixed-point conversion

## Syntax

addFunctionReplacement(floatFn,fixedFn)

## Description

addFunctionReplacement(floatFn,fixedFn) specifies a function replacement in a coder.FixPtConfig object. During floating-point to fixed-point conversion, the conversion process replaces the specified floating-point function with the specified fixed-point function. The fixed-point function must be in the same folder as the floating-point function or on the MATLAB path.

## Input Arguments

## floatFn - Name of floating-point function

' ' (default) | string
Name of floating-point function, specified as a string.

## fixedFn - Name of fixed-point function

' ' (default) | string
Name of fixed-point function, specified as a string.

## Examples

## Specify Function Replacement in Fixed-Point Conversion Configuration Object

Suppose that:

- The function myfunc calls a local function myadd.
- The test function mytest calls myfunc.
- You want to replace calls to myadd with the fixed-point function fi_myadd.

Create a coder. FixPtConfig object, fixptcfg, with default settings.

```
fixptcfg = coder.config('fixpt');
```

Set the test bench name. In this example, the test bench function name is mytest.

```
fixptcfg.TestBenchName = 'mytest';
```

Specify that the floating-point function, myadd, should be replaced with the fixed-point function, fi_myadd.
fixptcfg.addFunctionReplacement('myadd', 'fi_myadd');
Convert the floating-point MATLAB function, myfunc, to fixed-point.
fiaccel -float2fixed fixptcfg myfunc
fiaccel replaces myadd with fi_myadd during floating-point to fixed-point conversion.

## See Also

coder.FixPtConfig|fiaccel

## addFunctionReplacement

Class: coder. SingleConfig
Package: coder
Replace double-precision function with single-precision function during single-precision conversion

## Syntax

addFunctionReplacement(doubleFn,singleFn)

## Description

addFunctionReplacement (doubleFn, singleFn) specifies a function replacement in a coder.SingleConfig object. During double-precision to single-precision conversion, the conversion process replaces the specified double-precision function with the specified single-precision function. The single-precision function must be in the same folder as the double-precision function or on the MATLAB path. It is a best practice to provide unique names to local functions that a replacement function calls. If a replacement function calls a local function, do not give that local function the same name as a local function in a different replacement function file.

## Input Arguments

## doubleFn - Name of double-precision function

## ' ' (default) | string

Name of double-precision function, specified as a string.

## singleFn - Name of single-precision function

' ' (default) | string
Name of single-precision function, specified as a string.

## Examples

## Specify Function Replacement in Single-Precision Conversion Configuration Object

Suppose that:

- The function my func calls a local function myadd.
- The test function mytest calls myfunc.
- You want to replace calls to myadd with the single-precision function single_myadd.

Create a coder.SingleConfig object, scfg, with default settings.

```
scfg = coder.config('single');
```

Set the test file name. In this example, the test file function name is mytest.

```
scfg.TestBenchName = 'mytest';
```

Specify that you want to replace the double-precision function, myadd, with the single-precision function, single_myadd.
scfg.addFunctionReplacement('myadd', 'single_myadd');
Convert the double-precision MATLAB function, myfunc to a single-precision MATLAB function. convertToSingle -config scfg myfunc

The double-precision to single-precision conversion replaces instances of myadd with single_myadd.

## Version History Introduced in R2015b

## clearDesignRangeSpecifications

Class: coder.FixPtConfig
Package: coder
Clear all design range specifications

## Syntax

clearDesignRangeSpecifications()

## Description

clearDesignRangeSpecifications() clears all design range specifications.

## Examples

## Clear a Design Range Specification

```
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecifīcation('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
% Now remove the design range
cfg.clearDesignRangeSpecifications()
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
```


## See Also

coder.FixPtConfig|fiaccel|addDesignRangeSpecification| removeDesignRangeSpecification | hasDesignRangeSpecification| getDesignRangeSpecification

## getDesignRangeSpecification

Class: coder. FixPtConfig
Package: coder
Get design range specifications for parameter

## Syntax

[designMin, designMax] = getDesignRangeSpecification(fcnName,paramName)

## Description

[designMin, designMax] = getDesignRangeSpecification(fcnName, paramName) gets the minimum and maximum values specified for the parameter, paramName, in function, fcnName.

## Input Arguments

fcnName - Function name
string
Function name, specified as a string.
Data Types: char
paramName - Parameter name
string
Parameter name, specified as a string.
Data Types: char

## Output Arguments

designMin - Minimum value allowed for this parameter scalar

Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

## designMax - Maximum value allowed for this parameter scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

## Examples

## Get Design Range Specifications

```
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecifīcation('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Get the design range for the 'dti' function parameter 'u_in'
[designMin, designMax] = cfg.getDesignRangeSpecification('dti','u_in')
designMin =
 -1
designMax =
 1
```


## See Also

coder.FixPtConfig|fiaccel|addDesignRangeSpecification | hasDesignRangeSpecification | removeDesignRangeSpecification| clearDesignRangeSpecifications

## hasDesignRangeSpecification

Class: coder.FixPtConfig
Package: coder
Determine whether parameter has design range

## Syntax

hasDesignRange = hasDesignRangeSpecification(fcnName,paramName)

## Description

hasDesignRange = hasDesignRangeSpecification(fcnName, paramName) returns true if the parameter, param_name in function, fcn, has a design range specified.

## Input Arguments

## fcnName - Name of function

string
Function name, specified as a string.
Example: 'dti'
Data Types: char
paramName - Parameter name
string
Parameter name, specified as a string.
Example: 'dti'
Data Types: char

## Output Arguments

hasDesignRange - Parameter has design range
true | false
Parameter has design range, returned as a boolean.
Data Types: logical

## Examples

Verify That a Parameter Has a Design Range Specification

```
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
```

```
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
hasDesignRanges =
```

    1
    
## See Also

coder.FixPtConfig| fiaccel|addDesignRangeSpecification| removeDesignRangeSpecification|clearDesignRangeSpecifications | getDesignRangeSpecification

## removeDesignRangeSpecification

Class: coder. FixPtConfig
Package: coder
Remove design range specification from parameter

## Syntax

removeDesignRangeSpecification(fcnName, paramName)

## Description

removeDesignRangeSpecification(fcnName, paramName) removes the design range information specified for parameter, paramName, in function, fonName.

## Input Arguments

fcnName - Name of function string

Function name, specified as a string.
Data Types: char
paramName - Parameter name
string
Parameter name, specified as a string.
Data Types: char

## Examples

## Remove Design Range Specifications

```
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
% Now clear the design ranges and verify that
% hasDesignRangeSpecification returns false
cfg.removeDesignRangeSpecification('dti', 'u_in')
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
```


## See Also

coder.FixPtConfig| fiaccel|addDesignRangeSpecification| clearDesignRangeSpecifications|hasDesignRangeSpecification| getDesignRangeSpecification

## applyDataTypes

Package: DataTypeWorkflow
Apply proposed data types to model

## Syntax

applyDataTypes(converter,RunName)

## Description

applyDataTypes (converter,RunName) applies the proposed data types for the specified run, RunName, to the system specified by the converter object.

## Input Arguments

## converter - Converter object

DataTypeWorkflow. Converter object
Converter object for the system under design, specified as a DataTypeWorkflow. Converter object.

## RunName - Name of run to apply data types to

character vector
Name of run to apply data types to, specified as a character vector.
Example: applyDataTypes(converter, 'Run1')
Data Types: char

## Alternatives

The applyDataTypes object function provides functionality similar to the Fixed-Point Tool button Apply Data Types . For more information, see Fixed-Point Tool.

## Version History

## Introduced in R2014b

## See Also

DataTypeWorkflow.ProposalSettings|proposeDataTypes

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## applySettingsFromRun

Package: DataTypeWorkflow
Apply system settings used in previous run to model

## Syntax

applySettingsFromRun(converter,RunName)

## Description

applySettingsFromRun (converter, RunName) applies the data type override and instrumentation settings used in a previous run, RunName, to the model specified in the converter object.

## Input Arguments

converter - Converter object
DataTypeWorkflow. Converter object
Converter object for the system under design, specified as a DataTypeWorkflow. Converter object.

## RunName - Name of run

character vector
Name of run from which to apply settings, specified as a character vector.
Example: applySettingsFromRun(converter,'Run1')
Data Types: char

## Version History <br> Introduced in R2014b

## See Also

DataTypeWorkflow.Converter|applySettingsFromShortcut

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## applySettingsFromShortcut

Package: DataTypeWorkflow
Apply settings from shortcut to model

## Syntax

applySettingsFromShortcut(converter,shortcutName)

## Description

applySettingsFromShortcut (converter, shortcutName) applies settings from the specified system shortcut, shortcutName, to a converter object.

## Examples

## Configure Model for Conversion Using a Shortcut

This example shows how to configure a model for fixed-point conversion using a shortcut.
Open the fxpdemo_feedback model.
open_system('fxpdemo_feedback');

Scaling a Fixed-Point Control Design


Create a DataTypeWorkflow. Converter object for the Controller subsystem.
converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');
Configure the model for conversion by using a shortcut. Find the shortcuts that are available for the system by accessing the ShortcutsForSelectedSystem property of the converter object.
shortcuts $=$ converter.ShortcutsForSelectedSystem

```
6x1 cell array
 {'Range collection using double override' }
 {'Range collection with specified data types' }
 {'Range collection using single override' }
 {'Disable range collection' }
 {'Remove overrides and disable range collection'}
 {'Range collection using scaled double override'}
```

To collect idealized ranges for the system, use the 'Range collection using double override' shortcut to override the system with double-precision data types and enable instrumentation.

```
applySettingsFromShortcut(converter,shortcuts{1})
```

This shortcut also updates the current run name property of the converter object.

```
converter.CurrentRunName
ans =
 'Ranges(Double)'
```


## Input Arguments

## converter - Converter object

DataTypeWorkflow. Converter object
Converter object for the system under design, specified as a DataTypeWorkflow.Converter object.

## shortcutName - Name of shortcut

character vector
Name of the shortcut that specifies which settings to use, specified as a character vector.
Example: applySettingsFromShortcut(converter,'Range collection using double override')
Data Types: char

## Version History <br> Introduced in R2014b

## See Also

applySettingsFromRun | DataTypeWorkflow. Converter

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## deriveMinMax

Package: DataTypeWorkflow
Derive range information for model

## Syntax

deriveMinMax(converter)

## Description

deriveMinMax (converter) derives the minimum and maximum values for each block in the system specified by the DataTypeWorkflow. Converter object based on design minimum and maximum values.

## Input Arguments

converter - Converter object for system under design
DataTypeWorkflow. Converter object
Converter object for the system under design, specified as a DataTypeWorkflow. Converter object.

## Tips

If any issues come up during the derivation, they can be queried using the proposalIssues object function.

## Alternatives

The deriveMinMax object function is equivalent to the Collect Ranges button $\left(\frac{\left.\operatorname{lin}^{2} \pm\right)}{\infty}\right)$ with Range Collection Mode set to Derived Ranges in the Fixed-Point Tool. For more information, see FixedPoint Tool.

## Version History <br> Introduced in R2014b

## See Also

DataTypeWorkflow. Converter|simulateSystem | proposalIssues
Topics
"Convert a Model to Fixed Point Using the Command Line"

## proposeDataTypes

Package: DataTypeWorkflow

Propose data types for system

## Syntax

proposeDataTypes(converter,RunName, propSettings)

## Description

proposeDataTypes(converter,RunName, propSettings) proposes data types for the system specified by the DataTypeWorkflow. Converter object, converter, based on the range results stored in RunName and the settings specified in propSettings.

## Input Arguments

## converter - Converter object <br> DataTypeWorkflow. Converter object

Converter object, specified as a DataTypeWorkflow. Converter object, for the system under design.

## RunName - Name of run

character vector
Name of run to propose data types for, specified as a character vector.
Data Types: char
propSettings - Proposed data type settings
DataTypeWorkflow. ProposalSettings object
Proposed data type settings, specified as a DataTypeWorkflow. ProposalSettings object. Use this object to specify proposal settings such as the default data type for all floating point signals.
Data Types: char

## Alternatives

The proposeDataTypes object function provides functionality similar to the Fixed-Point Tool Propose Data Types button. For more information, see Fixed-Point Tool.

## Version History

Introduced in R2014b

## See Also

DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings | applyDataTypes
Topics
"Convert a Model to Fixed Point Using the Command Line"

## results

## Package: DataTypeWorkflow

Find results for selected system in converter object

## Syntax

results = results(converter,RunName)
results $=$ results(converter,RunName,filterFunc)

## Description

results $=$ results (converter, RunName) returns all results in the specified run, for the model specified by the DataTypeWorkflow. Converter object, converter.
results $=$ results (converter, RunName,filterFunc) returns the results in the specified run that match the criteria specified by filterFunc.

## Input Arguments

## converter - Converter object

DataTypeWorkflow. Converter object
Converter object for the system under design, specified as a DataTypeWorkflow. Converter object.

## RunName - Name of run

character vector
Name of the run to query, specified as a character vector.
Data Types: char
filterFunc - Function to use to filter results
function handle
Function to use to filter results, specified as a function handle with a DataTypeWorkflow. Result object as its input.

Data Types: function_handle

## Output Arguments

results - Filtered results
array of Result objects
Filtered results, returned as an array of DataTypeWorkflow. Result objects.

## Alternatives

The results object function offers a command-line approach to using the Fixed-Point Tool. For more information, see Fixed-Point Tool.

## Version History

Introduced in R2014b

## See Also

DataTypeWorkflow.Converter|proposalIssues|wrap0verflows|saturation0verflows

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## proposallssues

Package: DataTypeWorkflow
Get results which have comments associated with them

## Syntax

results = proposalIssues(converter,RunName)

## Description

results = proposalIssues (converter, RunName) returns all results in RunName for the model specified by a DataTypeWorkflow. Converter object, converter, that have associated comments. The comments field of the returned results provides information related to any issues found.

## Input Arguments

converter - Converter object
DataTypeWorkflow. Converter object
Converter object for system under design, specified as a DataTypeWorkflow. Converter object.

## RunName - Name of run

character vector
Name of the run to look for comments in, specified as a character vector.
Data Types: char

## Output Arguments

## results - Results that have associated comments

DataTypeWorkflow. Result object
Results that have associated comments, returned as a DataTypeWorkflow.Result object, for all signals in RunName.

## Alternatives

The DataTypeWorkflow.Converter.proposalIssues object function offers a command-line approach to using the Fixed-Point Tool. See Fixed-Point Tool for more information.

## Version History <br> Introduced in R2014b

## See Also

DataTypeWorkflow. Converter|results|wrap0verflows | saturationOverflows

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## saturationOverflows

Package: DataTypeWorkflow
Get results where saturation occurred

## Syntax

results = saturationOverflows(converter,RunName)

## Description

results = saturationOverflows (converter,RunName) returns all results in RunName, for the model specified by the DataTypeWorkflow. Converter object, converter, that saturated during simulation.

## Examples

## Get Saturation Results for Specified Run

This example shows how to get saturation results for the specified run of a DataTypeWorkflow. Converter object.

Open the fxpdemo_feedback model.
open_system('fxpdemo_feedback');

## Scaling a Fixed-Point Control Design



Create a DataTypeWorkflow. Converter object for the Controller subsystem.

```
converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');
```

Simulate the model and store the results in a run titled InitialRun.

```
converter.CurrentRunName = 'InitialRun';
```

simulateSystem(converter);

Determine if there were any overflows in the run.

```
saturations = saturationOverflows(converter,'InitialRun')
saturations =
 Result with properties:
 ResultName: 'fxpdemo_feedback/Controller/Up Cast'
 SpecifiedDataType: 'fixdt(1,16,14)'
 CompiledDataType: 'fixdt(1,16,14)'
 ProposedDataType:
 Wraps: []
 Saturations: 23
 WholeNumber: 0
 SimMin: -2
 SimMax: 1.9999
 DerivedMin: []
 DerivedMax: []
 RunName: 'InitialRun'
 Comments: {'An output data type cannot be specified on this result. The output type
 DesignMin: []
 DesignMax: []
```

A saturation occurs in the Up Cast block of the Controller subsystem during the simulation. There are no wrapping overflows.

## Input Arguments

## converter - Converter object

DataTypeWorkflow. Converter object
Converter object for the system under design, specified as a DataTypeWorkflow. Converter object.

## RunName - Name of run

character vector
Name of run to look for saturations in, specified as a character vector.
Example: saturations = saturationOverflows(converter,'Run 1')
Data Types: char

## Output Arguments

results - Results that saturated
DataTypeWorkflow. Result object
Results that saturated, returned as a DataTypeWorkflow. Result object.

## Version History <br> Introduced in R2014b

## See Also

DataTypeWorkflow. Converter|results | wrap0verflows | proposalIssues

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## simulateSystem

Package: DataTypeWorkflow
Simulate system specified by converter object

## Syntax

```
sim0ut = simulateSystem(converter)
sim0ut = simulateSystem(converter,Name,Value)
simOut = simulateSystem(converter,simIn)
sim0ut = simulateSystem(converter,ParameterStruct)
simOut = simulateSystem(converter,ConfigSet)
```


## Description

sim0ut = simulateSystem(converter) simulates the system specified by the DataTypeWorkflow. Converter object, converter.
sim0ut = simulateSystem(converter,Name,Value) simulates the system specified by the DataTypeWorkflow. Converter object, converter, using additional options specified by one or more Name, Value pair arguments. This function accepts the same Name, Value pairs as the sim function.
sim0ut = simulateSystem(converter, simIn) simulates the system specified by the DataTypeWorkflow. Converter object, converter, using the inputs specified in the Simulink. SimulationInput object simIn.
simOut = simulateSystem(converter, ParameterStruct) simulates the system specified by the DataTypeWorkflow. Converter object, converter, using the parameter values specified in the structure, ParameterStruct.
sim0ut = simulateSystem(converter,ConfigSet) simulates the system specified by the DataTypeWorkflow. Converter object, converter, using the configuration settings specified in the model configuration set, ConfigSet.

## Examples

## Simulate a DataTypeWorkflow. Converter Object's System

This example shows how to simulate the converter object's system.
Open the fxpdemo_feedback model.
open_system('fxpdemo_feedback');

## Scaling a Fixed-Point Control Design



Create a DataTypeWorkflow. Converter object for the Controller subsystem.
converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');
Simulate the model.
simulateSystem(converter);

## Input Arguments

## converter - Converter object

DataTypeWorkflow. Converter object
Converter object for the system under design, specified as a DataTypeWorkflow. Converter object.

## simIn - Simulation input for the system

Simulink. SimulationInput object | array of Simulink. SimulationInput objects
Simulation input for the system, specified as a Simulink. SimulationInput object or an array of Simulink. SimulationInput objects.

When you use a SimulationInput object as an input to the simulateSystem function, you can also specify the following Name, Value pair arguments.

Parameter	Values
ShowSimulationManager	- 'on ' - Opens the Simulation Manager.   $-\quad$ 'off' (default) - Does not open the   Simulation Manager.
ShowProgress	'on' - View the progress of the simulation in   the command window.   'off' (default) - The progress of the   simulation does not display in the command   window.

## ParameterStruct - Parameter settings

structure

Names of the configuration parameters for the simulation, specified as a structure. The corresponding values are the parameter values.

Data Types: struct

## ConfigSet - Configuration set

Simulink. ConfigSet object
Configuration set, specified as a Simulink. ConfigSet object, that contains the values of the model parameters.

## Output Arguments

## simOut - Simulation output

Simulink. SimulationOutput object
Simulation output, returned as a Simulink. Simulation0utput object. The returned object includes the simulation outputs: logged time, states, and signals.

## Tips

- To name your simulation run, before simulation, change the CurrentRunName property of the DataTypeWorkflow. Converter object.
- simulateSystem provides functionality similar to the sim command, except that simulateSystem preserves the model-wide data type override and instrumentation settings of each run.


## Note

- The SimulationMode property must be set to normal. The Fixed-Point Designer software does collect simulation ranges in Rapid accelerator or Hot restart modes.
- The StopTime property cannot be set to inf.
- The SrcWorkspace parameter must be set to either base or current.


## Version History

## Introduced in R2014b

## See Also

sim | DataTypeWorkflow.Converter

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## verify

Package: DataTypeWorkflow
Compare behavior of baseline and autoscaled systems

## Syntax

verificationResult = verify(converter,baselineRun, verificationRunName)

## Description

verificationResult = verify(converter,baselineRun, verificationRunName) simulates the system specified by the DataTypeWorkflow. Converter object, converter, and stores the run information in a new run, verificationRun. It returns a DataTypeWorkflow. VerificationResult object that compares the baseline and verification runs.

## Input Arguments

converter - Converter object for system to verify
DataTypeWorkflow. Converter object
Converter object for system to verify, specified as a DataTypeWorkflow. Converter object. The DataTypeWorkflow. Converter object contains instrumentation data from the baseline run, as well as the tolerances specified on the associated DataTypeWorkflow. ProposalSettings object. The software determines if the behavior of the verification run is acceptable using the tolerances specified on the ProposalSettings object.

## baselineRun - Baseline run to compare against

character vector
Baseline run to compare against, specified as a character vector.
Data Types: char|string
verificationRunName - Name of the verification run to create
character vector
Name of the verification run to create during the embedded simulation, specified as a character vector.

Data Types: char | string

## Output Arguments

verificationResult - Comparison of the baseline run and the verification run DataTypeWorkflow.VerificationResult object

Comparison of the baseline run and the verification run, returned as a DataTypeWorkflow.VerificationResult object.

## Version History

Introduced in R2019a

## See Also

DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings |
DataTypeWorkflow.VerificationResult

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## wrapOverflows

Package: DataTypeWorkflow
Get results where wrapping occurred

## Syntax

results = wrap0verflows(converter,RunName)

## Description

results = wrapOverflows(converter,RunName) returns all results in RunName, for the system specified by the DataTypeWorkflow. Converter object, converter, that wrapped during simulation.

## Input Arguments

converter - Converter object
DataTypeWorkflow. Converter object
Converter object, specified as a DataTypeWorkflow. Converter object, for the system under design.

## RunName - Name of run

character vector
Name of run in which to look for wrap overflows, specified as a character vector.
Example: results = wrap0verflows(converter,'Run3')
Data Types: char

## Output Arguments

results - Signals that wrapped during the specified run
DataTypeWorkflow.Result object
Signals that wrapped during the specified run, returned as a DataTypeWorkflow. Result object.

## Version History

Introduced in R2014b

## See Also

results | saturation0verflows | proposalIssues

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## addTolerance

Package: DataTypeWorkflow
Specify numeric tolerance for converted system

## Syntax

addTolerance(proposalSettings,block_path, port_index,tolerance_type, tolerance_value)

## Description

addTolerance(proposalSettings,block_path, port_index,tolerance_type, tolerance_value) adds numeric tolerance data to a DataTypeWorkflow. ProposalSettings object for the output signal specified by block_path and port_index, with the tolerance type specified by tolerance_type and value specified by tolerance_value.

## Examples

## Specify Signal Tolerances

This example shows how to apply and remove tolerances from signals in a system. In this example, you add tolerances to a DataTypeWorkflow. proposalSettings object, and then remove all tolerances from this object.

```
model = 'fxpdemo_feedback';
open_system(model);
```


## Scaling a Fixed-Point Control Design



Copyright 1990-2019 The MathWorks, Inc.

Create a DataTypeWorkflow.ProposalSettings object.
propSettings = DataTypeWorkflow.ProposalSettings;
Add an absolute tolerance of 0.05 to the output of the Down Cast block in the Controller subsystem.

```
addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'AbsTol',5e-2);
```

Add a relative tolerance of $1 \%$ to the same signal.

```
addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'RelTol',1e-2);
```

Use showTolerances to see all tolerances associated with the proposal settings object.

```
showTolerances(propSettings)
```

    Path Port_Index Tolerance_Type Tolerance Value
    \{'fxpdemo_feedback/Controller/Down Cast'\}
    \{'fxpdemo_feedback/Controller/Down Cast'\}

| Port_Index |  | Tolerance_Type |  |
| :---: | :---: | :---: | :---: | | Tolerance_Value |
| :---: |
|  |
| 1 |

Clear the tolerances stored in the ProposalSettings object.
clearTolerances(propSettings)
Using showTolerances, verify that there are no longer any tolerances stored in the ProposalSettings object.
showTolerances(propSettings)

## Input Arguments

proposalSettings - Object that contains proposal settings
DataTypeWorkflow. ProposalSettings object
Object that contains proposal settings, specified as a DataTypeWorkflow. ProposalSettings object. You add tolerance specifications to the DataTypeWorkflow. ProposalSettings object.

## block_path - Path to block for which to add tolerance

character vector
Path to the block for which to add a tolerance to, specified as a character vector.

## Data Types: char | string

## port_index - Index of output port of block

scalar integer
Index of the output port of the blocks, specified as a scalar integer.
Data Types: double

## tolerance_type - Type of tolerance

'AbsTol'|'RelTol'|'TimeTol'
Type of tolerance, specified as one of these values:

- 'AbsTol' - Absolute tolerance
- 'RelTol' - Relative tolerance
- 'TimeTol' - Time tolerance


## tolerance_value - Acceptable difference between original output and output of new design

scalar double
Acceptable difference between the original output and the output of the new design, specified as a scalar double.

If tolerance_type is set to 'AbsTol', then tolerance_value represents the absolute value of the maximum acceptable difference between the original output and the output of the new design.

If tolerance_type is set to 'RelTol', then tolerance_value represents the maximum relative difference, specified as a percentage, between the original output and the output of the new design. For example, a value of $1 \mathrm{e}-2$ indicates a maximum difference of one percent between the original output and the output of the new design.

If tolerance_type is set to 'TimeTol', then tolerance_value defines a time interval, in seconds, in which the maximum and minimum values define the upper and lower values to compare against. For more information, see "How the Simulation Data Inspector Compares Data".
Data Types: double

## Version History <br> Introduced in R2019a

## See Also

DataTypeWorkflow.ProposalSettings | showTolerances |clearTolerances
Topics
"Convert a Model to Fixed Point Using the Command Line"
"The Command-Line Interface for the Fixed-Point Tool"

## clearTolerances

Package: DataTypeWorkflow
Clear all tolerances specified by a DataTypeWorkflow. ProposalSettings object

## Syntax

clearTolerances(proposalSettings)

## Description

clearTolerances (proposalSettings) clears the absolute, relative, and time tolerances of a proposalSettings object.

## Examples

## Specify Signal Tolerances

This example shows how to apply and remove tolerances from signals in a system. In this example, you add tolerances to a DataTypeWorkflow. proposalSettings object, and then remove all tolerances from this object.

```
model = 'fxpdemo feedback';
open_system(model);
```

Scaling a Fixed-Point Control Design


Create a DataTypeWorkflow.ProposalSettings object.
propSettings = DataTypeWorkflow.ProposalSettings;
Add an absolute tolerance of 0.05 to the output of the Down Cast block in the Controller subsystem. addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'AbsTol',5e-2);

Add a relative tolerance of $1 \%$ to the same signal.

```
addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'RelTol',1e-2);
```

Use showTolerances to see all tolerances associated with the proposal settings object.

```
showTolerances(propSettings)
```

    Path Port_Index
    Tolerance_Type
Tolerance_Value
\{'fxpdemo_feedback/Controller/Down Cast'\}
\{'fxpdemo_feedback/Controller/Down Cast'\} 0.01
\{'AbsTol'\}
0.05

Clear the tolerances stored in the ProposalSettings object.

```
clearTolerances(propSettings)
```

Using showTolerances, verify that there are no longer any tolerances stored in the ProposalSettings object.

```
showTolerances(propSettings)
```


## Input Arguments

## proposalSettings - Object that contains proposal settings

DataTypeWorkflow. ProposalSettings object
Object that contains proposal settings, specified as a DataTypeWorkflow. ProposalSettings object. A DataTypeWorkflow. ProposalSettings object specifies tolerances and settings to use during the data type proposal process.

## Version History

Introduced in R2019a

## See Also

DataTypeWorkflow.ProposalSettings|showTolerances|addTolerance

## Topics

"Convert a Model to Fixed Point Using the Command Line"
"The Command-Line Interface for the Fixed-Point Tool"

## showTolerances

Package: DataTypeWorkflow

Show tolerances specified for a system

## Syntax

showTolerances(proposalSettings)

## Description

showTolerances(proposalSettings) displays the absolute, relative, and time tolerances specified for a system specified by the proposalSettings object. If the proposalSettings object has no tolerances specified, the showTolerances object function does not display anything.

## Examples

## Specify Signal Tolerances

This example shows how to apply and remove tolerances from signals in a system. In this example, you add tolerances to a DataTypeWorkflow. proposalSettings object, and then remove all tolerances from this object.

```
model = 'fxpdemo_feedback';
open_system(mode\overline{l});
```

Scaling a Fixed-Point Control Design


Create a DataTypeWorkflow. ProposalSettings object.
propSettings = DataTypeWorkflow.ProposalSettings;
Add an absolute tolerance of 0.05 to the output of the Down Cast block in the Controller subsystem.

```
addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'AbsTol',5e-2);
```

Add a relative tolerance of $1 \%$ to the same signal.

```
addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'RelTol',1e-2);
```

Use showTolerances to see all tolerances associated with the proposal settings object.

```
showTolerances(propSettings)
```

Path Port_Index Tolerance_Type Tolerance_Value
$\begin{array}{llll}\text { \{'fxpdemo_feedback/Controller/Down Cast'\} } & 1 & \text { \{'AbsTol'\} } & 0.05 \\ \text { \{'fxpdemo_feedback/Controller/Down Cast'\} } & 1 & \text { \{'RelTol'\} } & 0.01\end{array}$

Clear the tolerances stored in the ProposalSettings object.

```
clearTolerances(propSettings)
```

Using showTolerances, verify that there are no longer any tolerances stored in the ProposalSettings object.
showTolerances(propSettings)

## Input Arguments

proposalSettings - Object that contains proposal settings
DataTypeWorkflow. ProposalSettings object
Object that contains proposal settings, specified as a DataTypeWorkflow. ProposalSettings object. This object specifies tolerances and settings to use during the data type proposal process.

## Version History

Introduced in R2019a

## See Also

DataTypeWorkflow.ProposalSettings|clearTolerances|addTolerance
Topics
"Convert a Model to Fixed Point Using the Command Line"
"The Command-Line Interface for the Fixed-Point Tool"

## convertToSingle

Package: DataTypeWorkflow
Convert a double-precision system to single precision

## Syntax

ConversionReport = DataTypeWorkflow.Single.convertToSingle(systemToConvert)

## Description

ConversionReport = DataTypeWorkflow.Single.convertToSingle(systemToConvert) converts the system specified by systemToConvert to single precision and returns a report. Data types that are specified as Boolean, fixed point, or one of the built-in integers are not affected by conversion.

## Examples

## Convert System to Single Precision

This example shows how to convert a double-precision system to single precision.
Open the system to convert to single precision.
open_system('ex_fuel_rate_calculation');

## Fuel Rate Calculation



Use the DataTypeWorkflow. Single. convertToSingle method to convert the system from double precision to single precision.
report = DataTypeWorkflow.Single.convertToSingle('ex_fuel_rate_calculation');
Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manage
The specified system now uses single-precision data types instead of double-precision data types. Data types in the model that were specified as Boolean, fixed-point, or one of the built-in integers remain the same after conversion.

## Input Arguments

## systemToConvert - System to convert to single precision

character vector
The system to convert from double-precision to single-precision, specified as a character vector. The system must be open before using this method.

Data Types: char

## Output Arguments

## ConversionReport - Report containing results from the conversion report

Report containing results from the conversion.

## Alternatives

You can also use the Single Precision Converter app to convert a system from double precision to single precision. To open the Single Precision Converter app, in the Simulink Apps tab, select Single
Precision Converter. For more information, see "Getting Started with Single Precision Converter".

## Version History

Introduced in R2016b

## See Also

Single Precision Converter

## Topics

"Convert a System to Single Precision"
"Getting Started with Single Precision Converter"

## explore

Package: DataTypeWorkflow
Explore comparison of baseline and fixed-point implementations

## Syntax

explore(verificationResult)

## Description

explore(verificationResult) opens the Simulation Data Inspector with the logged data for the DataTypeWorkflow.VerificationResult object specified by verificationResult.

## Input Arguments

verificationResult - Object comparing behavior of a baseline run and a verification run DataTypeWorkflow.VerificationResult object

Object comparing the behavior of a baseline run and a verification run, specified as a DataTypeWorkflow. VerificationResult object.

## Version History

Introduced in R2019a

## See Also

DataTypeWorkflow.Converter| DataTypeWorkflow.ProposalSettings |
DataTypeWorkflow.VerificationResult

## Topics

"Convert a Model to Fixed Point Using the Command Line"

## getNumDataPointsInfo

Package: fixed
Get information about number of data points in generated data

## Syntax

datainfo = getNumDataPointsInfo(datagenerator)

## Description

datainfo = getNumDataPointsInfo(datagenerator) returns information about the data points generated by the fixed.DataGenerator object, datagenerator.

## Examples

## Get information about number of data points in generated data

The getNumDataPointsInfo function returns information related to the number of data points in the data generated from a fixed. DataGenerator object.

```
dataspec = fixed.DataSpecification('fixdt(1,16,13)',...
 'Intervals', {-1,1})
dataspec =
 fixed.DataSpecification with properties:
 DataTypeStr: 'sfix16_En13'
 Intervals: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1
datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 20);
getNumDataPointsInfo(datagen)
ans =
 struct with fields:
 Current: 20
 Next: 21
 Min: 5
 Max: 75
```

The output indicates that there are currently 20 data combinations in the generated data. The maximum number of combinations that the DataGenerator object would produce is 75.

## Get information about number of data points for multidimensional data

When the dimension of the generated data is greater than one, it can be useful to find the next possible size of generated data.

Create a DataGenerator object where the associated DataSpecification object specifies 2dimensional data.

```
dataspec = fixed.DataSpecification('single', 'Dimensions', 2);
datagen = fixed.DataGenerator('DataSpecifications', dataspec)
datagen =
 fixed.DataGenerator with properties:
 DataSpecifications: {[1\times1 fixed.DataSpecification]}
 NumDataPointsLimit: 100000
```

The DataGenerator object uses the default limit of 100000 data points in the generated data. Get information about the number of data points generated.

```
getNumDataPointsInfo(datagen)
ans =
 struct with fields:
 Current: 99856
 Next: 100489
 Min: }8
 Max: 130321
```

The current size of the generated data is 99856 points. By setting the NumDataPointsLimit property of the DataGenerator object to the value specified in Max, you can get the maximum possible number of data combinations.
Set the NumDataPointsLimit property of the DataGenerator object to the maximum possible number of data points.

```
datagen.NumDataPointsLimit = 130321;
getNumDataPointsInfo(datagen)
ans =
 struct with fields:
 Current: 130321
 Next: 130321
 Min: 81
 Max: 130321
```


## Input Arguments

## datagenerator - Object from which you want to get information

## fixed.DataGenerator object

Object from which you want to get information, specified as a fixed. DataGenerator object.

## Output Arguments

## datainfo - Information about the number of data points

struct
Information about the number of data points in the data generated from a fixed. DataGenerator object, returned as a struct with the following fields.

Field	Description
Current	The number of data combinations in the   generated data.
Next	Next possible size of data combinations.
Min	Minimum number of combinations of data   required to be in the generated data.   This number is equal to the number of boundary   values and mandatory values in the   DataSpecification objects associated with the   DataGenerator object.
Max	Maximum number of combinations that could be   in the generated data.

## Version History

Introduced in R2019b

## See Also

fixed.DataGenerator|getUniqueValues|outputAllData

## getUniqueValues

Package: fixed
Get unique values from fixed.DataGenerator object

## Syntax

```
data = getUniqueValues(datagenerator)
```


## Description

data = getUniqueValues(datagenerator) returns all unique values in the data generated by the fixed.DataGenerator object, datagenerator.

## Examples

## Get unique values in data from DataGenerator object

In data generated from a fixed.DataGenerator object, there can be repeated values. Use the getUniqueValues function to get all of the unique values in the data set.

```
dataspec = fixed.DataSpecification('fixdt(1,16,13)',...
 'Intervals', {-1,1})
dataspec =
 fixed.DataSpecification with properties:
 DataTypeStr: 'sfix16_En13'
 Intervals: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1
datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 20);
getUniqueValues(datagen)
ans =
 -1.0000
 -0.9999
 -0.4999
 -0.2500
 -0.0624
 -0.0313
 -0.0039
 -0.0021
 -0.0005
 -0.0002
 0
```

0.0010
0.0018
0.0078
0.0155
0.0157
0.1249
0.1251
0.9999
1.0000

DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16
FractionLength: 13

## Input Arguments

datagenerator - Input fixed. DataGenerator object
fixed.DataGenerator object
Input fixed. DataGenerator object to get unique values from.

## Output Arguments

## data - Unique set of values in data

scalar | vector | matrix
Unique set of data generated by the input fixed.DataGenerator object, returned as a scalar, vector, or matrix.

## Version History

Introduced in R2019b

## See Also

fixed.DataGenerator|getNumDataPointsInfo|outputAllData

## outputAllData

Package: fixed
Get data from fixed.DataGenerator object

## Syntax

```
data = outputAllData(datagenerator)
data = outputAllData(datagenerator, format)
```


## Description

data $=$ outputAllData(datagenerator) returns the data generated by the fixed.DataGenerator object, datagenerator.
data = outputAllData(datagenerator, format) returns the data generated by the fixed.DataGenerator object, datagenerator, in the format specified by format.

## Examples

## Get data as an array

Get the data from a fixed.DataGenerator object, returned as an array of values.

```
dataspec = fixed.DataSpecification('int8', 'Intervals', {-1,1});
datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 20)
datagen =
 fixed.DataGenerator with properties:
 DataSpecifications: {[1×1 fixed.DataSpecification]}
 NumDataPointsLimit: 20
```

Use the outputAllData function to access the data in the DataGenerator object.

```
data = outputAllData(datagen)
```

data =
1×3 int8 row vector
$\begin{array}{lll}-1 & 0 & 1\end{array}$

The function returns the data in an array with the type specified by the fixed.DataSpecification object.

## Get data as a timeseries object

Get the data from a fixed. DataGenerator object, returned as a timeseries object.

```
dataspec = fixed.DataSpecification('int8', 'Intervals', {-1,1});
datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 2000)
datagen =
 fixed.DataGenerator with properties:
 DataSpecifications: {[1\times1 fixed.DataSpecification]}
 NumDataPointsLimit: 20000
```

Specify the format of the output type to get a timeseries object.

```
data = outputAllData(datagen, 'timeseries')
 timeseries
 Common Properties:
 Name: 'unnamed'
 Time: [3x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [3x1 int8]
 DataInfo: [1x1 tsdata.datametadata]
```


## Input Arguments

datagenerator - Object from which you want to get data
fixed.DataGenerator object
Object from which you want to get data, specified as a fixed. DataGenerator object.

## format - Format in which you want data returned

'array' (default)|'timeseries'|'dataset'
Format in which you want data returned, specified as either 'array ', 'timeseries', or 'dataset'.

Specifying 'dataset' returns a Simulink.SimulationData. Dataset object. Specifying 'timeseries' returns a timeseries object.
Example: data = outputAllData(datagen, 'timeseries');
Data Types: char

## Output Arguments

## data - Data from the DataGenerator object

scalar | vector | matrix | timeseries object
Data from the DataGenerator object, returned as either a scalar, vector, matrix, or timeseries object.

## Version History

Introduced in R2019b

## See Also

fixed.DataGenerator|getUniqueValues | getNumDataPointsInfo

## applyOnRootInport

Package: fixed
(To be removed) Apply properties to Inport block

Note applyOnRootInport will be removed in a future release.

## Syntax

applyOnRootInport(dataspec, model, inportnumber)

## Description

applyOnRootInport(dataspec, model, inportnumber) applies the properties specified in fixed.DataSpecification object, dataspec to the specified Inport block in model.

## Input Arguments

## dataspec - Properties to apply to Inport block

fixed.DataSpecification object
Properties to apply to Inport block, specified as a fixed.DataSpecification object.

## model - Model containing Inport block

character vector
Name of the model containing the Inport block to apply settings to, specified as a character vector.
Data Types: char

## inportnumber - Number of Inport block scalar integer

Port number of root-level Inport block on which you want to apply properties from the fixed.DataSpecification object. The following properties of the DataSpecification object are applied to the block:

- Data type
- Complexity
- Dimensions

Data Types: double

## Version History

Introduced in R2019b
R2020a: applyOnRootInport will be removed
Warns starting in R2020a
applyOnRootInport will be removed in a future release.

## See Also

fixed.DataSpecification|contains

## contains

Package: fixed
Determine whether value domain of a DataSpecification object contains a specified value

## Syntax

```
bool = contains(dataspec, value)
```


## Description

bool $=$ contains(dataspec, value) returns a boolean value indicating whether the value domain of the fixed.DataSpecification object, dataspec, contains the value, value.

## Examples

## Determine whether a fixed. DataSpecification object contains a value

Use the contains function to determine whether a fixed. DataSpecification object contains a specified value.

```
dataspec = fixed.DataSpecification('int8', 'Intervals', {-1,1})
dataspec =
 fixed.DataSpecification with properties:
 DataTypeStr: 'int8'
 Intervals: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1
```

Determine whether dataspec contains the value 0 .

```
bool = contains(dataspec, 0)
bool =
 logical
 1
```


## Input Arguments

## value - Value

scalar | vector
Value or values to check for in the fixed. DataSpecification object, specified as a scalar, or vector.

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| fi

## Output Arguments

## bool - Whether the fixed. DataSpecification object contains the value true | false | vector of logical values

Whether the fixed. DataSpecification object contains the value, returned as a boolean value. If the value argument is a vector, the output is a boolean vector of the same length.

## Version History

Introduced in R2019b

## See Also

fixed. DataSpecification|applyOnRootInport

## contains

Package: fixed
Determine if one fixed. Interval object contains another

## Syntax

```
bool = contains(A, B)
```


## Description

bool = contains(A, B) returns a boolean indicating whether fixed. Interval object A contains the fixed. Interval object $B$.

## Examples

## Determine if a fixed. Interval object contains another

Create two fixed.Interval objects. Use the contains function to determine if the intervals in interval2 are contained within the corresponding intervals in intervall.

```
interval1 = fixed.Interval({0,1}, {2,3}, {3,4});
interval2 = fixed.Interval({0,0.5}, {2.5, 3}, {4,5});
bool = contains(interval1, interval2)
bool = 1x3 logical array
 1 0
```

When the second input is a scalar Interval object, contains determines whether each interval of the first input contains the interval of the second input.

```
interval2 = fixed.Interval(0,1);
bool = contains(interval1, interval2)
bool = 1x3 logical array
 10
```


## Input Arguments

A, B - Input fixed. Interval objects
fixed.Interval object | array of fixed. Interval objects
Input fixed. Interval objects, specified as fixed. Interval objects, or arrays of fixed.Interval objects.

If A is an array of Interval objects, $B$ must be a scalar Interval object or an Interval object with the same dimensions as $A$.

## Output Arguments

## bool - Whether B is contained in A

true | false | logical array
Whether fixed. Interval object $B$ is contained in fixed. Interval object $A$, returned as a logical value.

When $A$ is an array of Interval objects, the output is an array of logical values of the same size as A.

## Version History

Introduced in R2019b

## See Also

fixed.Interval|intersect|overlaps|setdiff|union|unique

## intersect

Package: fixed
Intersection of fixed.Interval objects

## Syntax

C = intersect(A, B)

## Description

$C=$ intersect $(A, B)$ returns the intersection of fixed. Interval objects $A$ and $B$.

## Examples

Get intersection of two fixed. Interval objects

```
Create two fixed.Interval objects.
interval1 = fixed.Interval(-10,10)
intervall =
 [-10,10]
 1x1 fixed.Interval with properties:
 LeftEnd: -10
 RightEnd: 10
 IsLeftClosed: true
 IsRightClosed: true
interval2 = fixed.Interval(0,20)
interval2 =
 [0,20]
 1x1 fixed.Interval with properties:
 LeftEnd: 0
 RightEnd: 20
 IsLeftClosed: true
 IsRightClosed: true
```

Find the intersection of the two Interval objects.

```
intervalIntersection12 = intersect(interval1,interval2)
intervalIntersection12 =
 [0,10]
 1x1 fixed.Interval with properties:
```

```
 LeftEnd: 0
 RightEnd: 10
 IsLeftClosed: true
IsRightClosed: true
```

The output is an Interval object whose range is the intersection of the ranges of the two input Interval objects.

When the ranges of the two input Interval objects do not overlap, the output is an empty Interval object.

```
interval3 = fixed.Interval(100,200)
interval3 =
 [100,200]
 1x1 fixed.Interval with properties:
 LeftEnd: 100
 RightEnd: 200
 IsLeftClosed: true
 IsRightClosed: true
intervalIntersection13 = intersect(interval1,interval3)
intervalIntersection13 =
 1x0 fixed.Interval with properties:
```

            LeftEnd
            RightEnd
        IsLeftClosed
        IsRightClosed
    
## Input Arguments

## A, B - Input fixed. Interval objects

fixed.Interval object | array of fixed. Interval objects
Input fixed.Interval objects, specified as fixed. Interval objects, or arrays of fixed.Interval objects.

## Output Arguments

## C - Intersection of fixed. Interval objects

fixed. Interval object | array of fixed. Interval objects
Intersection of input fixed. Interval objects, returned as a fixed. Interval object or an array of fixed.Interval objects.

The output Interval object contains all values in both inputs, A and B.

## Version History

Introduced in R2019b

## See Also

fixed.Interval|contains|overlaps|setdiff|union|unique

## isDegenerate

Package: fixed

Determine whether the left and right ends of a fixed.Interval object are degenerate

## Syntax

```
bool = isDegenerate(A)
```


## Description

bool = isDegenerate $(\mathrm{A})$ returns a boolean indicating whether the left and right ends of the fixed. Interval object A are the same, or equivalently, whether the interval contains only one point.

## Examples

## Determine if a fixed.Interval object has degenerate end points

Create a fixed.Interval object. Use the isDegenerate function to determine whether the left and right ends of the Interval object are the same.

```
interval = fixed.Interval({-pi,pi},{1,1});
bool = isDegenerate(interval)
bool = 1x2 logical array
 0 1
```

The output is a logical 0 when the left and right ends of the interval are different, and 1 when they are the same.

## Input Arguments

A - fixed. Interval object
fixed.Interval object | array of fixed. Interval objects
Input fixed.Interval object, specified as a fixed. Interval object, or an array of fixed.Interval objects.

## Output Arguments

## bool - Indicates whether left and right ends of $\boldsymbol{A}$ are degenerate true | false | logical array

Indicates whether the fixed. Interval object A has degenerate end points. Returns 1 (true) when the left and right ends of A are the same, or equivalently, when the interval contains only one point, and 0 (false) otherwise.

When $A$ is an array of Interval objects, the output is an array of logical values of the same size as A.

## Version History

Introduced in R2019b

## See Also

isLeftBounded|isRightBounded|isnan|fixed.Interval

## isLeftBounded

Package: fixed
Determine whether a fixed. Interval object is left-bounded

## Syntax

bool = isLeftBounded (A)

## Description

bool = isLeftBounded $(A)$ returns a boolean indicating whether the fixed. Interval object $A$ is left-bounded.

## Examples

## Determine if a fixed. Interval object is left bounded

Create a fixed. Interval object. Use the isLeftBounded function to determine whether the interval is bounded on the left.

```
interval = fixed.Interval({-pi,pi},{-inf,1});
bool = isLeftBounded(interval)
bool = 1x2 logical array
 1 0
```

The output is a logical 1 when the left end of the interval is bounded, and 0 otherwise.

## Input Arguments

## A - fixed.Interval object

fixed. Interval object|array of fixed. Interval objects
Input fixed. Interval object, specified as a fixed.Interval object, or an array of fixed.Interval objects.

## Output Arguments

## bool - Indicates whether left end of $\boldsymbol{A}$ is bounded

true | false | logical array
Indicates whether the fixed. Interval object A is left-bounded, returned as a logical value. Returns 0 (false) when A contains - inf, and 1 (true) otherwise.

When $A$ is an array of Interval objects, the output is an array of logical values of the same size as $A$.

## Version History <br> Introduced in R2019b

See Also<br>isDegenerate |isRightBounded|isnan|fixed.Interval

## isnan

Package: fixed
Determine whether a fixed. Interval object is NaN

## Syntax

bool = isnan(A)

## Description

bool $=$ isnan (A) returns a boolean indicating whether a fixed. Interval object A is NaN .

## Examples

## Determine if a fixed.Interval object is $\mathbf{N a N}$

Create a fixed.Interval object. Use the isnan function to determine whether the Interval object is not a number.

```
interval = fixed.Interval({-pi,pi},{nan,1},{nan,nan});
bool = isnan(interval)
bool = 1x3 logical array
 0 1 1
```

The output is a logical 1 when the interval contains one or more NaN elements, and 0 otherwise.

## Input Arguments

## A - fixed. Interval object

fixed. Interval object|array of fixed. Interval objects
Input fixed. Interval object, specified as a fixed. Interval object, or an array of fixed.Interval objects.

## Output Arguments

bool - Indicates whether elements of A are NaN
true | false | logical array
Indicates whether the fixed. Interval object A is NaN , returned as a logical value.
When A is an array of Interval objects, the output is an array of logical values of the same size as A.

# Version History <br> Introduced in R2019b 

See Also<br>isDegenerate |isLeftBounded|isRightBounded|fixed.Interval

## isRightBounded

Package: fixed
Determine whether the a fixed. Interval object is right-bounded

## Syntax

bool = isRightBounded(A)

## Description

bool = isRightBounded(A) returns a boolean indicating whether the fixed. Interval object $A$ is right-bounded.

## Examples

## Determine if a fixed.Interval object is right bounded

Create a fixed.Interval object. Use the isRightBounded function to determine whether the interval is bounded on the right.

```
interval = fixed.Interval({-pi,pi},{-1,inf});
bool = isRightBounded(interval)
bool = 1x2 logical array
 1 0
```

The output is logical 1 when the right end of the interval is bounded, and 0 otherwise.

## Input Arguments

## A - fixed.Interval object

fixed.Interval object | array of fixed. Interval objects
Input fixed.Interval object, specified as a fixed. Interval object, or an array of fixed.Interval objects.

## Output Arguments

## bool - Indicates whether right end of $\boldsymbol{A}$ is bounded <br> Boolean scalar | Boolean array

Indicates whether the fixed. Interval object A is right-bounded, returned as a logical value. Returns 0 (false) when A contains inf, and 1 (true) otherwise.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

## Version History <br> Introduced in R2019b

See Also<br>isDegenerate|isLeftBounded|isnan|fixed.Interval

## overlaps

Package: fixed
Determine if two fixed. Interval objects overlap

## Syntax

bool = overlaps(A, B)

## Description

bool = overlaps(A, B) returns a boolean indicating whether two fixed.Interval objects overlap.

## Examples

## Determine if two fixed. Interval objects overlap

Create two fixed. Interval objects and determine if their ranges overlap.

```
interval1 = fixed.Interval(-1, 1);
interval2 = fixed.Interval(0, 1);
overlaps(interval1, interval2)
ans =
 logical
 1
```

When the ranges of the Interval objects overlap, the overlaps function returns a value of 1, or true.

## Input Arguments

A, B - Input fixed. Interval objects
fixed.Interval object | array of fixed. Interval objects
Input fixed. Interval objects, specified as fixed. Interval objects, or arrays of fixed.Interval objects.

## Output Arguments

## bool - Whether the intervals overlap

true | false | vector of logical values
Whether the input fixed. Interval objects overlap, returned as a logical value or a vector of logical values.

# Version History <br> Introduced in R2019b 

## See Also

fixed.Interval|contains |intersect|setdiff|union|unique

## quantize

Package: fixed
Quantize interval to range of numeric data type

## Syntax

quantizedinterval = quantize(interval, numerictype)
quantizedinterval = quantize(interval, numerictype, Name, Value)

## Description

quantizedinterval = quantize(interval, numerictype) returns the quantized range of fixed.Interval object, interval, quantized to the numeric type specified by numerictype.
quantizedinterval = quantize(interval, numerictype, Name, Value) returns the quantized range of fixed. Interval object, interval, with additional properties specified as name-value pairs.

## Examples

## Quantize a numeric interval to uint8

Create a fixed. Interval object and find the range of the Interval object quantized to an unsigned 8-bit integer.

```
interval = fixed.Interval(-200,200);
quantizedInterval = quantize(interval, 'fixdt(0,8,0)')
quantizedInterval =
 1\times2 uint8 row vector
 0 200
```

Because fixdt ( $0,8,0$ ) is equivalent to uint8, the quantize function returns the quantized range as a uint8 row vector with the endpoints within the representable range of the numeric type.

To return the quantized row vector as a fixed-point data type, set the 'PreferBuiltIn' property to false.

```
quantizedInterval = quantize(interval, 'fixdt(0,8,0)',...
 'PreferBuiltIn', false)
quantizedInterval =
 0 200
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
```

WordLength: 8
FractionLength: 0

## Input Arguments

## interval - Input fixed. Interval objects to quantize

fixed.Interval object | array of fixed. Interval objects
Input fixed. Interval object, specified as a fixed. Interval object, or an array of fixed.Interval objects.

## numerictype - Numeric data type

Simulink. Numerictype object | embedded. numerictype object | character vector
Numeric data type to quantize the Interval, specified as a Simulink. Numerictype object, an embedded. numerictype object, or a character vector representing a numeric data type, for example, 'single'.
Example: quantizedinterval = quantize(interval, 'fixdt(1, 16,8)');

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: interval = quantize(interval, 'fixdt(1,16,0)', 'PreferBuiltIn', false, 'PreferStrict', true);

## PreferBuiltIn - Quantize to built-in data type when possible <br> true (default) | false

When this property is true, if the specified numerictype has an equivalent built-in integer type the software returns the built-in type. For example, when this property is true, a specified numerictype of 'fixdt $(1,8,0)$ ' would return an int8.
Data Types: logical

## PreferStrict - Quantize end points to numeric type

false (default) | true
When this property is true, all ends are quantized to the closest representable values within original intervals regardless of whether the intervals are closed or open.
Data Types: logical

## Output Arguments

quantizedinterval - Quantized interval range
N -by-2 matrix
$N$-by-2 matrix with rows consisting of endpoints of input Interval objects quantized to the numeric data type specified by numerictype.

When the 'PreferStrict' property is set to false, the end points after quantization may lie outside the original interval.

## Version History

## Introduced in R2019b

## See Also

fixed.Interval|contains|intersect|overlaps|union|unique

## setdiff

Package: fixed
Set difference of fixed.Interval objects

## Syntax

$C=\operatorname{setdiff}(A, B)$

## Description

$C=\operatorname{setdiff}(A, B)$ returns a fixed. Interval object containing the values in fixed.Interval object $A$, but not in $B$.

## Examples

## Get set difference of two fixed. Interval objects

Create two fixed. Interval objects. Use the setdiff function to find the values that are in Interval object intervall but not in interval2. In this example, intervall contains all values between 0 and 1, but interval2 only contains values from 0 to 0.5 , so the output Interval object has an interval from 0.5 to 1 .

```
interval1 = fixed.Interval(0,1);
interval2 = fixed.Interval(0,0.5);
intervaldiff = setdiff(interval1, interval2)
intervaldiff =
 (0.5000,1]
 1x1 fixed.Interval with properties:
```

            LeftEnd: 0.5000
            RightEnd: 1
                IsLeftClosed: false
        IsRightClosed: true
    
## Create an interval object that excludes zero

You can use the setdiff function to create an interval object based on another interval, while excluding zero.

Create an Interval object that contains zero.
myInterval $=$ fixed.Interval(-1,1);

To create an interval based on the Interval object, myInterval, use the setdiff function. Include the constructor for a degenerate Interval object containing only zero as the second argument.

```
myInterval_nozero = setdiff(myInterval, {0});
myInterval_nozero =
 [-1,0) (0,1]
 1x2 fixed.Interval with properties:
```

                LeftEnd
            RightEnd
        IsLeftClosed
        IsRightClosed
    The output Interval object, myInterval_nozero, contains two intervals, each with an open end point at zero. Therefore, the interval contains all values between -1 and 1 , except 0 .

## Input Arguments

## A, B - Input fixed. Interval objects

fixed.Interval object | array of fixed. Interval objects
Input fixed. Interval objects, specified as fixed. Interval objects, or arrays of fixed.Interval objects.

## Output Arguments

## C - Set difference of fixed. Interval objects

fixed.Interval object | array of fixed. Interval objects
Set difference of input fixed. Interval objects, returned as a fixed.Interval object or an array of fixed. Interval objects.

The output Interval object contains all values in first input, A, but not in B.

## Version History

Introduced in R2019b

## See Also

fixed.Interval|contains|intersect|overlaps|union

## union

Package: fixed
Union of fixed.Interval objects

## Syntax

$C=$ union( $A, B)$

## Description

$C=$ union(A, B) returns the union of fixed. Interval objects $A$ and $B$.

## Examples

## Get the union of two fixed. Interval objects

```
Create two fixed.Interval objects.
interval1 = fixed.Interval(-10, 10)
intervall =
 [-10,10]
 1x1 fixed.Interval with properties:
 LeftEnd: -10
 RightEnd: 10
 IsLeftClosed: true
 IsRightClosed: true
interval2 = fixed.Interval(0,20)
interval2 =
 [0,20]
 1x1 fixed.Interval with properties:
 LeftEnd: 0
 RightEnd: 20
 IsLeftClosed: true
 IsRightClosed: true
```

Find the union of the two Interval objects.

```
intervalUnion = union(interval1, interval2)
intervalUnion =
 [-10,20]
 1x1 fixed.Interval with properties:
```

```
 LeftEnd: -10
 RightEnd: 20
 IsLeftClosed: true
IsRightClosed: true
```

The output is an Interval object whose range is the union of the ranges of the two input objects.
When the ranges of the two input Interval objects do not overlap, the output is an array of Interval objects covering the union of the ranges of the inputs.

```
interval3 = fixed.Interval(100, 200)
interval3 =
 [100, 200]
 1x1 fixed.Interval with properties:
 LeftEnd: 100
 RightEnd: 200
 IsLeftClosed: true
 IsRightClosed: true
intervalUnion = union(intervall, interval3)
intervalUnion =
 [-10,10] [100,200]
 1x2 fixed.Interval with properties:
 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed
```


## Input Arguments

## A, B - Input fixed. Interval objects

fixed.Interval object | array of fixed. Interval objects
Input fixed.Interval objects, specified as fixed. Interval objects, or arrays of fixed.Interval objects.

## Output Arguments

## C - Union of fixed.Interval objects <br> fixed.Interval object | array of fixed. Interval objects

Union of input fixed. Interval objects, returned as a fixed. Interval object or an array of fixed.Interval objects.

The output Interval object contains all values in A or B.

## Version History

Introduced in R2019b

## See Also

fixed.Interval|contains|intersect|overlaps|setdiff

## unique

Package: fixed
Get set of unique values in fixed. Interval object

## Syntax

uniqueinterval = unique(interval)

## Description

uniqueinterval = unique(interval) returns a vector of incrementally sorted and non overlapping intervals that represent an equivalent value set as fixed. Interval object, interval.

## Examples

## Create a non-overlapping set of intervals from an array of Interval objects

Use the unique function to get a non-overlapping set of intervals from an array of Interval objects.

```
intervals = fixed.Interval({-5,5},{-10,10},{4,20},{50,100})
 [-5,5] [-10,10] [4,20] [50,100]
 1x4 fixed.Interval with properties:
 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed
```

The first three intervals represented in the object overlap with one another. The fourth interval is disjointed from the set.

```
uniqueInterval = unique(intervals)
uniqueInterval =
 [-10,20] [50,100]
 1x2 fixed.Interval with properties:
 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed
```

The output, uniqueInterval, an array of two Interval objects, merges the three overlapping intervals into a single Interval object.

## Input Arguments

## interval - fixed.Interval object

fixed. Interval object | array of fixed. Interval objects
Input fixed.Interval object, specified as a fixed. Interval object, or an array of fixed.Interval objects.

## Output Arguments

uniqueinterval - Non-overlapping set of Interval objects
fixed. Interval object | array of fixed. Interval objects
Non-overlapping set of Interval objects, returned as a fixed. Interval object or an array of fixed.Interval objects.

When interval is a scalar Interval object, the output is the same as the input.

## Version History

Introduced in R2019b

## See Also

fixed.Interval|contains|intersect|overlaps|setdiff|union

## quantize

Quantize fi values using fixed.Quantizer object

Note quantize and fixed.Quantizer are not recommended. Use cast, zeros, ones, eye, or subsasgn instead. For more information, see Compatibility Considerations.

## Syntax

$y=$ quantize $(q, x)$

## Description

$y=q u a n t i z e(q, x)$ uses the fixed.Quantizer object $q$ to quantize $x . x$ can be any fixed-point fi number except a Boolean value.

- If $x$ is a scaled double, the data of the output $y$ will be the same as the data of the input $x$. Only the fixed-point settings of $y$ will change.
- When $x$ is a double or single, then $y=x$. This functionality allows you to share the same code for both floating-point data types and fixed-point fi data types when quantizers are present.


## Examples

## Reduce Word Length Resulting From Adding Two Fixed-Point Numbers

Use fixed. Quantizer to reduce the word length that results from adding two fixed-point numbers.

```
q = fixed.Quantizer
x1 = fi(0.1,1,16,15);
x2 = fi(0.8,1,16,15);
y = quantize(q,x1+x2)
q =
 fixed.Quantizer with properties:
 Signed: 1
 WordLength: 16
 SlopeAdjustmentFactor: 1
 FixedExponent: -15
 Bias: 0
 Signedness: 'Signed'
 Slope: 3.0518e-05
 FractionLength: 15
 RoundingMethod: 'Floor'
 OverflowAction: 'Wrap'
y =
```

0.9000

```
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
FractionLength: 15
```


## Quantize Binary-Point Scaled Fixed-Point fi to Slope-Bias Scaled Fixed-Point fi

Use a fixed.Quantizer object to change a binary-point scaled fixed-point fi to a slope-bias scaled fixed-point fi.

```
x = fi(pi,1,16,13)
q = fixed.Quantizer(numerictype(1,7,1.6,0.2),'Round','Saturate')
y = quantize(q,x)
x =
 3.1416
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13
q =
 fixed.Quantizer with properties:
 Signed: 1
 WordLength: 7
 SlopeAdjustmentFactor: 1.6000
 FixedExponent: 0
 Bias: 0.2000
 Signedness: 'Signed'
 Slope: 1.6000
 FractionLength: 0
 RoundingMethod: 'Round'
 OverflowAction: 'Saturate'
y =
 3.4000
 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: }
 Slope: 1.6
 Bias: 0.2
```


## Input Arguments

## q - Data type properties

```
fixed.Quantizer object
```

Data type properties to use for quantization, specified as a fixed.Quantizer object.

## x - Data to quantize

fi object
Data to quantize, specified as a fi object.
Data Types: fi

## Version History

## Introduced in R2011b

## R2013a: quantize is not recommended

Not recommended starting in R2013a
quantize and fixed.Quantizer are not recommended. Use cast, zeros, ones, eye, or subsasgn instead. There are no plans to remove fixed.Quantizer.

Starting in R2013a, use cast, zeros, ones, eye, or subsasgn instead. The cast, zeros, ones, eye, and subsasgn functions can quantize other data types in addition to fi objects.

Not Recommended	Recommended
```x = fi(pi,1,16,13); q = fixed.Quantizer(numerictype(1,7,1.6, y = quantize(q,x) y = 3.4000 DataTypeMode: Fixed-point: slo Signedness: Signed WordLength: 7 Slope: 1.6 Bias: 0.2```	```x = fi(pi,1,16,13); OF.2F ,finmathl(' ',R&&&tdlimgitee't);od ' , 'Round ' , ' OverflowA nt = fi([],1,7,1.6,0.2,F); y = cast(x,'like',nt) y = 3.4000 pe and bias scaling DataTypeMode: Fixed-point: slope and Signedness: Signed WordLength: 7 Slope: 1.6 Bias: 0.2```

See Also

fixed.Quantizer

FunctionApproximation.compressLookupTables

Compress all Lookup Table blocks in a system

Syntax

CompressionResult = FunctionApproximation.compressLookupTables(system)
CompressionResult = FunctionApproximation. compressLookupTables(system, Name, Value)

Description

CompressionResult = FunctionApproximation.compressLookupTables(system) compresses all n-D Lookup Table blocks in the specified system. The compressed Lookup Table blocks output the same numerical results as the original Lookup Table blocks within the bounds of the breakpoints.

You can achieve additional memory savings by compressing each lookup table in the model individually and specifying tolerances for the compressed lookup table.

CompressionResult = FunctionApproximation.compressLookupTables(system, Name, Value) compresses all n-D Lookup Table blocks in the specified system with additional properties specified by name and value pair arguments.

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.
Open the model containing the lookup tables that you want to compress.

```
system = 'sldemo_fuelsys';
```

open_system(system)

Fault-Tolerant Fuel Control System

Open the Dashboard subsystem to simulate any combination of sensor failures.

Copyright 1990-2022 The MathWorks, Inc.

Use the FunctionApproximation. compressLookupTables function to compress all of the lookup tables in the model. The output specifies all blocks that are modified and the memory savings for each.

```
compressionResult = FunctionApproximation.compressLookupTables(system)
- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
    - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
    - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throt
    - 3.55% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estim
    - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map}e=stimate/Pressure E
    - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki
```

compressionResult =
LUTCompressionResult with properties:
MemoryUnits: bytes
MemoryUsageTable: [5x5 table]
NumLUTsFound: 5
NumImprovements: 5
TotalMemoryUsed: 6024
TotalMemoryUsedNew: 5796
TotalMemorySavings: 228
TotalMemorySavingsPercent: 3.7849
SUD: 'sldemo_fuelsys'

WordLengths: [8 16 32]
FindOptions: [1x1 Simulink.internal.FindOptions]
Display:

Use the replace function to replace each Lookup Table block with a block containing the original and compressed version of the lookup table.
replace(compressionResult);
You can revert the lookup tables back to their original state using the revert function.
revert(compressionResult);

Input Arguments

system - Name of model or subsystem in which to compress all Lookup Table blocks
character vector
Name of model or subsystem in which to compress all n-D Lookup Table blocks, specified as a character vector.

Example: compressionResult =
FunctionApproximation.compressLookupTables('sldemo_fuelsys');
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: CompressionResult =
FunctionApproximation.compressLookupTables('sldemo_fuelsys', 'WordLengths',
[8,16,32])
```

Display - Whether to display details of each iteration of the optimization true (default) | false

Whether to display details of each iteration of the optimization, specified as a logical. A value of 1 results in information in the command window at each iteration of the approximation process. A value of 0 does not display information until the approximation is complete.

Data Types: logical

WordLengths - Word lengths permitted in the lookup table approximate
 integer scalar | integer vector

Specify the word lengths, in bits, that can be used in the lookup table approximate based on your intended hardware. For example, if you intend to target an embedded processor, you can restrict the data types in your lookup table to native types, 8,16 , and 32 . The word lengths must be between 1 and 128.

Data Types: single | double | int8|int16|int32 | int64|uint8|uint16|uint32|uint64 | fi

FindOptions - Options for finding lookup tables in system Simulink.FindOptions object

Simulink. FindOptions object specifying options for finding lookup tables in the system.

Output Arguments

CompressionResult - LUTCompressionResult object created during compression of lookup tables
LUTCompressionResult object
Compression result object created during compression of the Lookup Table blocks in the model, returned as a LUTCompressionResult object.

Version History

Introduced in R2020a

See Also

Classes
LUTCompressionResult

Functions

replace | revert

lutmemoryusage

Class: FunctionApproximation.LUTMemoryUsageCalculator
Package: FunctionApproximation
Calculate memory used by lookup table blocks in a system

Syntax

memory = lutmemoryusage(calculator,system)

Description

memory = lutmemoryusage(calculator,system) calculates the memory used by each lookup table block in the specified model or subsystem.

Input Arguments

calculator - FunctionApproximation.LUTMemoryUsageCalculator object
FunctionApproximation.LUTMemoryUsageCalculator
FunctionApproximation.LUTMemoryUsageCalculator object.
system - Model or subsystem containing lookup table blocks
character vector
Model or subsystem containing lookup table blocks, specified as a character vector.
Data Types: char

Output Arguments

memory - Memory used by the lookup tables in the system

table
Table displaying the memory, in bits, used by each lookup table block in the specified system.

Examples

Calculate the Total Memory Used by Lookup Tables in a Model

Use the FunctionApproximation.LUTMemoryUsageCalculator class to calculate the memory used by lookup table blocks in a model.

Create a FunctionApproximation.LUTMemoryUsageCalculator object.
calculator $=$ FunctionApproximation.LUTMemoryUsageCalculator
Use the lutmemoryusage method to get the memory used by each lookup table block in the sldemo_fuelsys model.

```
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample',...
    'supportingfile','sldemo_fuelsys');
lutmemoryusage(calculator,'s\overline{ldemo_fuelsys')}
ans =
    5\times2 table
```

 BlockPath
 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant"
 "sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Est
 "sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation"
 "sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimati
 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki"

Version History

Introduced in R2018a

See Also

Apps
 Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator|
FunctionApproximation.LUTSolution

Topics

"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"

approximate

Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation
Generate a Lookup Table block or lookup table as a MATLAB function from a FunctionApproximation.LUTSolution

Syntax

```
approximate(solution)
approximate(solution,'Name',fileName)
approximate(solution,'Name',fileName,'Path',filePath)
```


Description

approximate(solution) generates either a Simulink model containing a subsystem made up of the Lookup Table block, or a lookup table as a MATLAB function, depending on the ApproximateSolutionType property of the FunctionApproximation.Options object. Data and breakpoints of the generated lookup table are specified by the
FunctionApproximation.LUTSolution object, solution. The generated Lookup Table block is surrounded with Data Type Conversion blocks.
approximate(solution, 'Name',fileName) generates a lookup table as a MATLAB function with the name of the generated .m script specified by fileName. This option is only available when the ApproximateSolutionType property of FunctionApproximation.Options is set to MATLAB.
approximate(solution, 'Name',fileName,'Path',filePath) generates a lookup table as a MATLAB function with the file path for the generated .m script specified by filePath. This option is only available when the ApproximateSolutionType property of FunctionApproximation.Options is set to MATLAB.

Input Arguments

solution - Solution to generate lookup table from

FunctionApproximation.LUTSolution object
The solution to generate a lookup table from, specified as a FunctionApproximation.LUTSolution object.

fileName - File name for generated MATLAB function
 approximateFunction_timeStamp (default)| character array

File name for generated MATLAB function, specified as a character array. If no custom file name is specified, a time stamp is used to generate a unique file name. For example,
approximateFunction_20210617T111033122.m.
Example: approximate(solution, 'Name','myLUT')
Data Types: char

filePath - File path for generated MATLAB function

current working directory (default) | character array
File path for generated MATLAB function, specified as a character array. If no custom file path name is specified, the current working directory is used.

```
Example: approximate(solution,'Name','myLUT','Path','C:\Users\myPath')
Data Types: char
```


Examples

Generate a Lookup Table Approximating a Function

Create a FunctionApproximation. Problem object defining the function you want to approximate.

```
problem = FunctionApproximation.Problem('tanh')
```

```
problem =
    1x1 FunctionApproximation.Problem with properties:
        FunctionToApproximate: @(x)tanh(x)
            NumberOfInputs: 1
                InputTypes: "numerictype(1,16,12)"
            InputLowerBounds: -8
            InputUpperBounds: 8
                OutputType: "numerictype(1,16,15)"
                        Options: [1x1 FunctionApproximation.Options]
```

Use default values for all other options. Approximate the tanh function using the solve method.
solution = solve(problem)
Searching for fixed-point solutions.

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpec
0	64	0	2	16	16	Ev
1	1248	1	76	16	16	Ev
2	1232	1	75	16	16	Ev
3	944	1	57	16	16	Ev
4	928	1	56	16	16	Ev
5	656	0	39	16	16	Ev
6	640	0	38	16	16	Ev
7	784	1	47	16	16	Ev
8	704	1	42	16	16	Ev
9	672	1	40	16	16	Ev
10	368	0	21	16	16	Ev
11	512	0	30	16	16	Ev
12	592	0	35	16	16	Ev
13	624	0	37	16	16	Ev
14	384	1	12	16	16	Expli
15	384	0	12	16	16	Expli
16	384	1	12	16	16	Expli

```
Best Solution
```



```
solution =
    1x1 FunctionApproximation.LUTSolution with properties:
            ID: 14
        Feasible: "true"
```

Generate a Simulink ${ }^{\mathrm{TM}}$ subsystem containing a Lookup Table block approximating the tanh function. approximate(solution)

Version History
 Introduced in R2018a

See Also

Apps
Lookup Table Optimizer
Classes
FunctionApproximation. Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator
Functions
solve| compare

Topics

"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"
"Generate an Optimized Lookup Table as a MATLAB Function Programmatically"
"Generate an Optimized Lookup Table as a MATLAB Function"

compare

Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation
Compare numerical results of FunctionApproximation. LUTSolution to original function or lookup table

Syntax

data = compare(solution)

Description

data = compare(solution) plots the difference between the data contained in the
FunctionApproximation. LUTSolution object, solution, and the original lookup table, function, or Math Function block.

Input Arguments

solution - Solution to compare original behavior against
FunctionApproximation. LUTSolution object
The solution to compare original behavior against, specified as a FunctionApproximation.LUTSolution object.

Output Arguments

data - Struct containing data comparing original and the solution struct

Struct containing data comparing the original function or lookup table and the approximation contained in the solution.

Examples

Compare Function Approximation to Original Function

Create a FunctionApproximation. Problem object defining the function you want to approximate.

```
problem = FunctionApproximation.Problem('tanh')
problem =
    1x1 FunctionApproximation.Problem with properties:
    FunctionToApproximate: @(x)tanh(x)
            NumberOfInputs: 1
                            InputTypes: "numerictype(1,16,12)"
            InputLowerBounds: -8
            InputUpperBounds: 8
                            OutputType: "numerictype(1,16,15)"
```

```
Options: [1x1 FunctionApproximation.Options]
```

Use default values for all other options. Approximate the tanh function using the solve method.

```
solution = solve(problem)
Searching for fixed-point solutions.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & Memory (bits) & Feasible & Table Size & Breakpoints WLs & TableData WL & BreakpointSpec \\
\hline 0 & 64 & 0 & 2 & 16 & 16 & Ev \\
\hline 1 & 1248 & 1 & 76 & 16 & 16 & Ev \\
\hline 2 & 1232 & 1 & 75 & 16 & 16 & Ev \\
\hline 3 & 944 & 1 & 57 & 16 & 16 & Ev \\
\hline 4 & 928 & 1 & 56 & 16 & 16 & Ev \\
\hline 5 & 656 & 0 & 39 & 16 & 16 & Ev \\
\hline 6 & 640 & 0 & 38 & 16 & 16 & Ev \\
\hline 7 & 784 & 1 & 47 & 16 & 16 & Ev \\
\hline 8 & 704 & 1 & 42 & 16 & 16 & Ev \\
\hline 9 & 672 & 1 & 40 & 16 & 16 & Ev \\
\hline 10 & 368 & 0 & 21 & 16 & 16 & Ev \\
\hline 11 & 512 & 0 & 30 & 16 & 16 & Ev \\
\hline 12 & 592 & 0 & 35 & 16 & 16 & Ev \\
\hline 13 & 624 & 0 & 37 & 16 & 16 & Ev \\
\hline 14 & 384 & 1 & 12 & 16 & 16 & Expli \\
\hline 15 & 384 & 0 & 12 & 16 & 16 & Expli \\
\hline 16 & 384 & 1 & 12 & 16 & 16 & Expli \\
\hline
\end{tabular}
Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpec.
solution =
    1x1 FunctionApproximation.LUTSolution with properties:
    ID: 14
    Feasible: "true"
```

Compare the original function and the function approximation.

```
data = compare(solution)
```


data = struct with fields:
Breakpoints: [65536x1 double]
Original: [65536x1 double]
Approximate: [65536x1 double]

Version History

Introduced in R2018a

See Also

Apps

Lookup Table Optimizer

Classes

FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator

Functions

solve| approximate
Topics
"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"

displayallsolutions

Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation
Display all solutions found during function approximation

Syntax

displayallsolutions(solution)

Description

displayallsolutions(solution) displays all solutions, including the non-feasible solutions, associated with a FunctionApproximation.LUTSolution object.

Input Arguments

solution - Solution object from which to display all associated solutions
 FunctionApproximation.LUTSolution object

FunctionApproximation.LUTSolution object from which to display all associated solutions.

Examples

Display All Solutions Found During Lookup Table Approximation

Create a FunctionApproximation. Problem object defining a math function to approximate. Then, use the solve method to get a FunctionApproximation. LUTSolution object.

Display all solutions found during the approximation process using the displayallsolutions method.

```
problem = FunctionApproximation.Problem('sin')
problem =
    FunctionApproximation.Problem with properties
        FunctionToApproximate: @(x)sin(x)
            NumberOfInputs: 1
            InputTypes: "numerictype(0,16,13)"
            InputLowerBounds: 0
            InputUpperBounds: 6.2832
            OutputType: "numerictype(1,16,14)"
                Options: [1\times1 FunctionApproximation.Options]
solution = solve(problem)
solution =
    FunctionApproximation.LUTSolution with properties
```

\title{

ID: 8
 Feasible: "true"
 displayallsolutions(solution)
 | | ID | Memory (bits) | ConstraintMet | Table Size | Breakpoints WLs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 64 | 0 | 2 | 16 |
| | 1 | 464 | 0 | 27 | 16 |
| | 2 | 864 | 1 | 52 | 16 |
| | 3 | 64 | 0 | 2 | 16 |
| \| | 4 | 560 | 1 | 33 | 16 |
| | 5 | 304 | 0 | 17 | 16 |
| | 6 | 432 | 0 | 25 | 16 |
| | 7 | 496 | 1 | 29 | 16 |
| | 8 | 464 | 1 | 27 | 16 |
| | 9 | 448 | 0 | 26 | 16 |
| 1 | 10 | 704 | 1 | 22 | 16 |
| Best Solution | | | | | |
| | ID | Memory (bits) | ConstraintMet | Table Size | Breakpoints WLs |
| | 8 | 464 | 1 | 27 | 16 |

TableData

TableData WI

Version History

Introduced in R2018a

See Also

Apps
 Lookup Table Optimizer

Classes

FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator|
FunctionApproximation.LUTSolution

Functions

totalmemoryusage | solutionfromID|displayfeasiblesolutions
Topics
"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"

displayfeasiblesolutions

Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation
Display all feasible solutions found during function approximation

Syntax

displayfeasiblesolutions(solution)

Description

displayfeasiblesolutions(solution) displays all feasible solutions found during the approximation process, including the best solution. Feasible solutions are defined as any solutions to the original FunctionApproximation. Problem object that met the constraints defined in the associated FunctionApproximation.Options object.

Input Arguments

solution - Solution object from which to display all associated feasible solutions
FunctionApproximation. LUTSolution object
FunctionApproximation.LUTSolution object from which to display all associated feasible solutions.

Examples

Display All Feasible Solutions Found During Lookup Table Approximation

Create a FunctionApproximation. Problem object defining a math function to approximate. Then, use the solve method to get a FunctionApproximation. LUTSolution object.

Display all feasible solutions found during the approximation process using the displayfeasiblesolutions method.

```
problem = FunctionApproximation.Problem('sin')
```

problem =

FunctionApproximation.Problem with properties
FunctionToApproximate: @(x)sin(x)
NumberOfInputs: 1
InputTypes: "numerictype(0,16,13)"
InputLowerBounds: 0
InputUpperBounds: 6.2832
OutputType: "numerictype(1,16,14)"
Options: [1×1 FunctionApproximation.Options]
solution = solve(problem)

```
solution =
    FunctionApproximation.LUTSolution with properties
            ID: 8
        Feasible: "true"
displayfeasiblesolutions(solution)
\begin{tabular}{|r|r|r|r|r|r|r} 
ID & Memory (bits) & ConstraintMet & Table Size & Breakpoints WLs & TableData W \\
2 & 864 & 52 & 16 & 1 \\
4 & 560 & 1 & 1 & 16 & 1 \\
7 & 496 & 1 & 23 & 16 & 1 \\
8 & 464 & 1 & 29 & 16 & 1 \\
10 & 704 & 1 & 27 & 16 & 1
\end{tabular}
Best Solution
| ID | Memory (bits) | ConstraintMet | Tr Table Size | Breakpoints WLs |
```


Version History

Introduced in R2018a

See Also

Apps

Lookup Table Optimizer
Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator|
FunctionApproximation.LUTSolution
Functions
compare | totalmemoryusage | solutionfromID|displayallsolutions
Topics
"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"

getErrorValue

Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation
Get the total error of the lookup table approximation

Syntax

memory = getErrorValue(solution)

Description

memory = getErrorValue(solution) returns the total error of the lookup table approximation specified by solution.

Input Arguments

solution - Solution to get error of

FunctionApproximation.LUTSolution object
Solution to get error of, specified as a FunctionApproximation. LUTSolution object.

Output Arguments

error - Total error of the lookup table approximation
struct
Total error of the lookup table approximation, returned as a struct.
The struct contains two fields. The MaxErrorInSolution field specifies the maximum difference between the original function or block and the lookup table approximation. The ErrorUpperBound field displays the maximum error that was acceptable according to the tolerances specified on the FunctionApproximation.Options object.

Examples

Calculate the Total Error of a Lookup Table Approximation

Create a FunctionApproximation. Problem object defining a math function to approximate. Then, use the solve method to get a FunctionApproximation. LUTSolution object.

Calculate the total error of the FunctionApproximation. LUTSolution object using the getErrorValue method.
problem = FunctionApproximation.Problem('sin')
problem =

```
    FunctionApproximation.Problem with properties
        FunctionToApproximate: @(x)sin(x)
        NumberOfInputs: 1
            InputTypes: "numerictype(0,16,13)"
        InputLowerBounds: 0
        InputUpperBounds: 6.2832
            OutputType: "numerictype(1,16,14)"
                Options: [1×1 FunctionApproximation.Options]
solution = solve(problem)
solution =
    FunctionApproximation.LUTSolution with properties
            ID: 8
        Feasible: "true"
error = getErrorValue(solution)
error =
    struct with fields:
        MaxErrorInSolution: 0.0073
            ErrorUpperBound: 0.0078
```


Version History

Introduced in R2019a

See Also

FunctionApproximation.LUTSolution
Topics
"Approximate Functions with a Direct Lookup Table"
"Optimize Lookup Tables for Memory-Efficiency Programmatically"

replaceWithApproximate

Class: FunctionApproximation. LUTSolution
Package: FunctionApproximation
Replace block with the generated lookup table approximation

Syntax

replaceWithApproximate(solution)

Description

replaceWithApproximate(solution) replaces the simulink block with its lookup table approximation, generated using the approximate method of the FunctionApproximation.LUTSolution object.

Input Arguments

solution - Solution to use to replace the source block

FunctionApproximation.LUTSolution object
Solution to replace the source block, specified as a FunctionApproximation.LUTSolution object.

Examples

Replace a Block with an Approximation

This example shows how to approximate a block using a lookup table approximation, replace the original block with the approximation, and then revert the block back to its original state.

Open the model containing the block to approximate. In this example, replace the tan block with a lookup table approximation.

```
open_system('ex_luto_approx')
```


Create a FunctionApproximation. Problem object specifying what you want to approximate. problem = FunctionApproximation.Problem('ex_luto_approx/Trigonometric Function') problem =

1x1 FunctionApproximation.Problem with properties:

```
FunctionToApproximate: 'ex_luto_approx/Trigonometric Function'
NumberOfInputs: 1
            InputTypes: "numerictype('double')"
InputLowerBounds: -1.5083
InputUpperBounds: 1.5083
OutputType: "numerictype('double')"
Options: [1x1 FunctionApproximation.Options]
```

Use default values for all other options. To approximate the block use the solve method.

```
solution = solve(problem)
```

Searching for fixed-point solutions.

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpec
0	48	0	2	8	16	Ev
1	800	0	49	8	16	Ev
2	1584	1	98	8	16	Ev
3	1056	0	65	8	16	Ev
4	544	0	33	8	16	Ev
5	416	0	25	8	16	Ev
6	368	0	22	8	16	Ev
7	64	0	2	16	16	Ev
8	768	1	46	16	16	Ev
9	752	1	45	16	16	Ev
10	592	1	35	16	16	Ev
11	576	1	34	16	16	Ev
12	416	0	24	16	16	Ev
13	400	0	23	16	16	Ev
14	496	0	29	16	16	Ev
15	528	1	31	16	16	Ev
16	512	0	30	16	16	Ev
17	288	0	16	16	16	Ev
18	464	0	27	16	16	E
19	80	0	2	8	32	Ev
20	48	0	2	8	16	EvenPo
21	416	0	25	8	16	EvenPo
22	224	0	13	8	16	EvenPo
23	64	0	2	16	16	EvenPo
24	432	0	25	16	16	EvenPo
25	240	0	13	16	16	EvenPo
26	80	0	2	8	32	EvenPo
27	432	0	13	8	32	EvenPo
28	96	0	2	16	32	EvenPo
29	448	0	13	16	32	EvenPo
30	128	0	2	32	32	EvenPo
31	480	0	13	32	32	EvenPo
32	96	0	2	32	16	EvenPo
33	464	0	25	32	16	EvenPo
34	272	0	13	32	16	EvenPo
35	216	1	9	8	16	Expli
36	192	0	8	8	16	Expli
37	192	0	8	8	16	Expli
38	192	0	8	8	16	Expli
39	192	0	8	8	16	Expli
40	192	1	8	8	16	Expli

Searching for floating-point solutions.

```
\begin{tabular}{|r|r|r|r|r|r|r|}
41 & 64 & 0 & 2 & 16 & 16 \\
42 & 768 & 0 & 46 & 16 & 16 \\
43 & 752 & 1 & 16 & 16 \\
44 & 160 & 0 & 2 & 16 & 16 \\
45 & 64 & 0 & 2 & 16 & 16 \\
46 & 160 & 0 & 2 & 16 & 64
\end{tabular}\(|\)
```


Best Solution

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & Memory (bits) & Feasible & Table Size & Breakpoints WLs & TableData WL & BreakpointSpec \\
\hline 40 & 192 & 1 & 8 & 8 & 16 & Expli \\
\hline
\end{tabular}
solution =
    1x1 FunctionApproximation.LUTSolution with properties:
            ID: 40
        Feasible: "true"
```

Generate a Simulink ${ }^{\mathrm{TM}}$ subsystem containing the lookup table approximation using the approximate method.
approximate(solution)

Replace the original block with the approximation.
replaceWithApproximate(solution)
You can revert the system back to its original state using the revertTo0riginal method.
revertToOriginal(solution)

Version History
 Introduced in R2018b

See Also

revertToOriginal|approximate

Topics

"Approximate Functions with a Direct Lookup Table"
"Optimize Lookup Tables for Memory-Efficiency Programmatically"

revertToOriginal

Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation
Revert the block that was replaced by the approximation back to its original state

Syntax

revertToOriginal(solution)

Description

revertToOriginal(solution) reverts the block that was replaced by a lookup table approximation back to its original state.

Note You can only revert a block back to its original state within a single MATLAB session.

Input Arguments

solution - Solution approximating the block you want to revert to its original state FunctionApproximation.LUTSolution object

The solution approximating the block you want to revert to its original state, specified as a FunctionApproximation.LUTSolution object.

Examples

Replace a Block with an Approximation

This example shows how to approximate a block using a lookup table approximation, replace the original block with the approximation, and then revert the block back to its original state.

Open the model containing the block to approximate. In this example, replace the tan block with a lookup table approximation.

```
open_system('ex_luto_approx')
```


Create a FunctionApproximation. Problem object specifying what you want to approximate.
problem = FunctionApproximation.Problem('ex_luto_approx/Trigonometric Function')

1x1 FunctionApproximation.Problem with properties:

```
FunctionToApproximate: 'ex_luto_approx/Trigonometric Function'
            NumberOfInputs: 1
            InputTypes: "numerictype('double')"
        InputLowerBounds: -1.5083
        InputUpperBounds: 1.5083
        OutputType: "numerictype('double')"
            Options: [1x1 FunctionApproximation.Options]
```

Use default values for all other options. To approximate the block use the solve method.

```
solution = solve(problem)
```

Searching for fixed-point solutions.

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpec
0	48	0	2	8	16	Ev
1	800	0	49	8	16	Ev
2	1584	1	98	8	16	Ev
3	1056	0	65	8	16	Ev
4	544	0	33	8	16	Ev
5	416	0	25	8	16	Ev
6	368	0	22	8	16	Ev
7	64	0	2	16	16	Ev
8	768	1	46	16	16	Ev
9	752	1	45	16	16	Ev
10	592	1	35	16	16	Ev
11	576	1	34	16	16	Ev
12	416	0	24	16	16	Ev
13	400	0	23	16	16	Ev
14	496	0	29	16	16	Ev
15	528	1	31	16	16	Ev
16	512	0	30	16	16	Ev
17	288	0	16	16	16	Ev
18	464	0	27	16	16	E
19	80	0	2	8	32	Ev
20	48	0	2	8	16	EvenPo
21	416	0	25	8	16	EvenPo
22	224	0	13	8	16	EvenPo
23	64	0	2	16	16	EvenPo
24	432	0	25	16	16	EvenPo
25	240	0	13	16	16	EvenPo
26	80	0	2	8	32	EvenPo
27	432	0	13	8	32	EvenPo
28	96	0	2	16	32	EvenPo
29	448	0	13	16	32	EvenPo
30	128	0	2	32	32	EvenPo
31	480	0	13	32	32	EvenPo
32	96	0	2	32	16	EvenPo
33	464	0	25	32	16	EvenPo
34	272	0	13	32	16	EvenPo
35	216	1	9	8	16	Expli
36	192	0	8	8	16	Expli
37	192	0	8	8	16	Expli
38	192	0	8	8	16	Expli


```
\begin{tabular}{|r|r|r|r|r|r|r|}
41 & 64 & 0 & 2 & 16 & 16 \\
42 & 768 & \(\mid\) & 0 & 46 & 16 & 16 \\
43 & 752 & 1 & 1 & 16 & 16 \\
44 & 160 & 0 & 2 & 16 & 64 \\
45 & 64 & 0 & 2 & 16 & 16 \\
46 & 160 & 0 & & 2 & 16 & 64
\end{tabular}
Best Solution
```



```
solution =
    1x1 FunctionApproximation.LUTSolution with properties:
            ID: 40
        Feasible: "true"
```

Generate a Simulink ${ }^{\mathrm{TM}}$ subsystem containing the lookup table approximation using the approximate method
approximate(solution)

Replace the original block with the approximation.
replaceWithApproximate(solution)
You can revert the system back to its original state using the revertTo0riginal method.
revertToOriginal(solution)

Version History

Introduced in R2018b

See Also

approximate | replaceWithApproximate

Topics

"Approximate Functions with a Direct Lookup Table"
"Optimize Lookup Tables for Memory-Efficiency Programmatically"

solutionfromID

Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation
Access a solution found during the approximation process

Syntax

other_solution = solutionfromID(solution,id)

Description

other_solution = solutionfromID(solution,id) returns the solution associated with the FunctionApproximation. LUTSolution object, solution, with the ID specified by id.

Input Arguments

solution - Solution object

FunctionApproximation.LUTSolution object
The solution object containing the solution you want to explore, specified as a FunctionApproximation.LUTSolution object.
id - ID of the solution
scalar integer
ID of the solution that you want to explore, specified as a scalar integer.
Data Types: double

Output Arguments

other_solution - FunctionApproximation. LUTSolution specified by id FunctionApproximation.LUTSolution object

FunctionApproximation.LUTSolution object associated with the specified ID.

Examples

Examine Infeasible Function Approximation Solution

This example shows how to use the solutionfromID method of the FunctionApproximation.LUTSolution object to examine other approximation solutions.

Create a FunctionApproximation. Problem object defining a math function to approximate. Then use the solve method to get a FunctionApproximation. LUTSolution object.

```
problem = FunctionApproximation.Problem('sin')
```

problem =
1x1 FunctionApproximation. Problem with properties:

```
FunctionToApproximate: @(x)sin(x)
    NumberOfInputs: 1
        InputTypes: "numerictype(0,16,13)"
    InputLowerBounds: 0
    InputUpperBounds: 6.2832
        OutputType: "numerictype(1,16,14)"
                        Options: [1x1 FunctionApproximation.Options]
```

solution = solve(problem)
Searching for fixed-point solutions.

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpec
0	64	0	2	16	16	Ev
1	784	1	47	16	16	Ev
2	768	1	46	16	16	Ev
3	608	1	36	16	16	Ev
4	592	1	35	16	16	Ev
5	416	1	24	16	16	Ev
6	400	1	23	16	16	Ev
7	224	0	12	16	16	Ev
8	304	0	17	16	16	Ev
9	352	1	20	16	16	Ev
10	320	0	18	16	16	Ev
11	336	1	19	16	16	E
12	64	0	2	16	16	EvenPo
13	576	1	18	16	16	Expli
14	512	0	16	16	16	Expli
15	576	1	18	16	16	Expli

Best Solution

| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpec |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 11 | 336 | 1 | 19 | 16 | $16 \mid$ | Ev |

```
solution =
    1x1 FunctionApproximation.LUTSolution with properties:
```

 ID: 11
 Feasible: "true"

Display all feasible solutions found during the approximation process.

displayfeasiblesolutions(solution)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpec
1	784	1	47	16	16	Ev
2	768	1	46	16	16	Ev
3	608	1	36	16	16	Ev
4	592	1	35	16	16	Ev
5	416	1	24	16	16	Ev
6	400	1	23	16	16	Ev
9	352	1	20	16	16	Ev
11	336	1	19	16	16	Ev
13	576	1	18	16	16	Expli
15	576	1	18	16	16	Expli

```
Best Solution
| ID ( Memory (bits) 
```

Solution with ID 5 is not listed as a feasible solution in the table. Explore this solution to see why it is not feasible.

```
solution5 = solutionfromID(solution, 5)
solution5 =
    1x1 FunctionApproximation.LUTSolution with properties:
```

 ID: 5
 Feasible: "true"
 Compare the numerical behavior of the solution with ID 5 .

```
compare(solution5)
```



```
ans = struct with fields:
    Breakpoints: [51473x1 double]
            Original: [51473x1 double]
```

```
Approximate: [51473x1 double]
```

You can see from the plot that the solution does not meet the required tolerances.

Version History

Introduced in R2018a

See Also

Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution
Functions
totalmemoryusage|displayfeasiblesolutions|displayallsolutions
Topics
"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"

totalmemoryusage

Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation
Calculate total memory used by a lookup table approximation

Syntax

memory = totalmemoryusage(solution, units)

Description

memory = totalmemoryusage(solution, units) returns the total memory used by the lookup table approximation specified by solution, in the units specified by units.

Input Arguments

solution - Solution to get memory of

FunctionApproximation.LUTSolution object
Solution to get memory of, specified as a FunctionApproximation.LUTSolution object.
units - Units in which to display the total memory used
'bits' (default)|'bytes'|'GiB'|'KiB'|'MiB'
Units in which to display the total memory used, specified as a character vector.
Data Types: char

Output Arguments

memory - total memory used by a lookup table approximation
scalar
Total memory used by a lookup table approximation, returned as a scalar.

Examples

Calculate the Total Memory Used by a Lookup Table Approximation

Create a FunctionApproximation.Problem object defining a math function to approximate. Then, use the solve method to get a FunctionApproximation. LUTSolution object.

Calculate the total memory used by the FunctionApproximation. LUTSolution object using the totalmemoryusage method.
problem = FunctionApproximation.Problem('sin')
problem =

```
    FunctionApproximation.Problem with properties
    FunctionToApproximate: @(x)sin(x)
        NumberOfInputs: 1
            InputTypes: "numerictype(0,16,13)"
        InputLowerBounds: 0
        InputUpperBounds: 6.2832
            OutputType: "numerictype(1,16,14)"
                Options: [1\times1 FunctionApproximation.Options]
solution = solve(problem)
solution =
    FunctionApproximation.LUTSolution with properties
            ID: 8
        Feasible: "true"
totalmemoryusage(solution, 'bytes')
ans =
    5 8
```


Version History

Introduced in R2018a

See Also

Apps
 Lookup Table Optimizer

Classes

FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator|
FunctionApproximation.LUTSolution
Functions
compare|solutionfromID|displayfeasiblesolutions |displayallsolutions
Topics
"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"

solve

Class: FunctionApproximation. Problem
Package: FunctionApproximation
Solve for optimized solution to function approximation problem

Syntax

```
solution = solve(problem)
```


Description

solution = solve(problem) solves the optimization problem defined by the
FunctionApproximation. Problem object, problem, and returns the optimized result, solution, as a FunctionApproximation.LUTSolution object.

Input Arguments

problem - Optimization problem

FunctionApproximation. Problem
Optimization problem specified as a FunctionApproximation. Problem object defining the function or Math Function block to approximate, or the Lookup Table block to optimize, and other parameters and constraints to use during the optimization process.

Output Arguments

solution - Approximation solution

FunctionApproximation. LUTSolution object
Approximation solution, returned as a FunctionApproximation. LUTSolution object.

Examples

Approximate a Math Function

Create a FunctionApproximation. Problem object, specifying a math function to approximate.

```
problem = FunctionApproximation.Problem('log')
```

problem =

FunctionApproximation.Problem with properties
FunctionToApproximate: @(x)log(x)
NumberOfInputs: 1
InputTypes: "numerictype(1,16,10)"
InputLowerBounds: 0.6250
InputUpperBounds: 15.6250

```
OutputType: "numerictype(1,16,13)"
    Options: [1×1 FunctionApproximation.Options]
```

Use default values for all other options.
Use the solve method to generate an approximation of the function.

```
solution = solve(problem)
```

| ID | Memory (bits) | ConstraintMet | Table Size | Breakpoints WLs | TableData W |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 64 | 2 | 16 | 1 | |
| 1 | 1984 | 0 | 122 | 16 | 1 |
| 2 | 1024 | 1 | 16 | 1 | |
| 3 | 1968 | 1 | 0 | 12 | 1 |
| 4 | 64 | 1 | 16 | 1 | |
| 5 | 416 | 0 | 13 | 16 | 1 |
| \mid | 1 | | 1 | 1 | |

Best Solution

ID	Memory (bits)	ConstraintMet	Table Size	Breakpoints WLs	TableData
5	416	1	13	16	

solution =
FunctionApproximation.LUTSolution with properties
ID: 5
Feasible: "true"

You can then use the approximate method to generate a subsystem containing the lookup table approximation.

Version History

Introduced in R2018a

See Also

Apps

Lookup Table Optimizer

```
Classes
FunctionApproximation.Problem| FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator
Functions
approximate|compare
Topics
"Optimize Lookup Tables for Memory-Efficiency Programmatically"
"Optimize Lookup Tables for Memory-Efficiency"
```


addSpecification

Class: fxp0ptimizationOptions
Specify known data types in a system

Syntax

addSpecification(options,Name,Value)

Description

addSpecification(options,Name, Value) specifies known data types in the model using namevalue pairs. After specifying these known parameters, if you optimize the data types in a system, the optimization process will not change the specified block parameter data type. Specifications are applied to the model during evaluation and to the final model. Specifications are not considered during range collection.

You can use this method in cases where parts of a system are known to always be a certain data type. For example, if the input to your system comes from an 8 -bit sensor.

Input Arguments

options - Associated fxpOptimizationOptions object

fxp0ptimizationOptions object
fxp0ptimizationOptions object in which to specify a known data type for a system.
Example: opt $=$ fxpOptimizationOptions;

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: addSpecification(opt,'BlockParameter',bp,'Variable',var)
```


BlockParameter - Block parameters

Simulink. Simulation. BlockParameter object | array of
Simulink.Simulation.BlockParameter objects
An element or array of Simulink.Simulation.BlockParameter objects specifying the data types of block parameters that should not change during the optimization. The value specified must be a valid data type for the block.

Variable - Variable values

Simulink. Simulation. Variable object | array of Simulink. Simulation. Variable objects

An element or array of Simulink. Simulation. Variable objects specifying the data types of variables that should not change during the optimization. You can specify values for Simulink. Parameter or Simulink.NumericType variables.

Examples

Specify Known Data Types for Block Parameters Before Data Type Optimization

This example shows how to specify known data types for block parameters within your system.
Load the system for which you want to optimize the data types.

```
load_system('ex_auto_gain_controller');
```

To specify that the input to the system you are converting will always be an eight-bit integer, create a BlockParameter object that specifies the block parameter, and the data type.

```
bp = Simulink.Simulation.BlockParameter(...
'ex_auto_gain_controller/input_signal','OutDataTypeStr','int8');
```

The fxpOptimization0ptions object, opt, specifies options to use during data type optimization. To specify the data type of the input to the system, use the addSpecification method.

```
opt = fxp0ptimizationOptions;
addSpecification(opt,'BlockParameter',bp)
```

You can view all specifications added to a fxpOptimizationOptions object using the showSpecifications method.

Specify Known Data Types for Variables Before Data Type Optimization

This example shows how to specify known data types for variables within your system.
Create a Simulink. Parameter object to set the value a parameter in your model.
myParam = Simulink.Parameter(2);
myParamCopy $=$ copy (myParam);
Make a copy of the parameter and set the data type to the desired known value.
myParamCopy $=$ copy (myParam) ;
myParamCopy.DataType = 'single';
Specify the variable using a Simulink. Simulation.Variable object.
var = Simulink.Simulation.Variable('myParam',myParamCopy);

The fxp0ptimization0ptions object, opt, specifies options to use during data type optimization. To specify the data type of the variable, use the addSpecification method.

```
opt = fxpOptimizationOptions();
addSpecification(opt,'Variable',var);
```

You can view all specifications added to a fxp0ptimization0ptions object using the showSpecifications method.

```
showSpecifications(opt)
```


Version History

Introduced in R2020a

R2021b: Enforce known data types for variables in a system

You can now use the addSpecification function to specify known data types for variables within your system in addition to being able to specify known data types for block parameters.

See Also

Classes

Simulink. Simulation. BlockParameter|fxp0ptimization0ptions|OptimizationResult | OptimizationSolution

Functions

addTolerance | showTolerances | explore | fxpopt

Topics

"Optimize Fixed-Point Data Types for a System"
"Optimize Data Types for an FPGA with DSP Slices"

addTolerance

Class: fxp0ptimizationOptions
Specify numeric tolerance for optimized system

Syntax

addTolerance(options, blockPath, portIndex, tolType, tolValue) addTolerance(options,blockPath, portIndex,tolType,tolValue, 'LoggingInfo',logInfo)

Description

addTolerance(options,blockPath, portIndex, tolType, tolValue) specifies a numeric tolerance for the output signal specified by blockPath and portIndex, with the tolerance type specified by tolType and value specified by tolValue.
addTolerance(options,blockPath, portIndex,tolType,tolValue,
'LoggingInfo', logInfo) specifies a tolerance and options for logging information with Simulink.SimulationData.LoggingInfo.

Input Arguments

options - Associated fxpOptimizationOptions object

fxp0ptimizationOptions
fxpOptimizationOptions object to add a tolerance specification.

blockPath - Path to block for which to add tolerance

block path name
Path to the block to add a tolerance to, specified as a character vector.
Data Types: char | string
portIndex - Index of output port of block
scalar integer
Index of output port of the block specified by blockPath for which you want to specify a tolerance, specified as a scalar integer.
Data Types: double

tolType - Type of tolerance to specify

'AbsTol' | 'RelTol' | 'TimeTol
Type of tolerance to add to the port indicated specified as either absolute tolerance, 'AbsTol ' , relative tolerance, 'RelTol', or time tolerance, 'TimeTol'.

You can specify a tolerance band using a combination of absolute, relative, and time tolerance values. When you specify the tolerance for your signal using multiple types of tolerances, the overall tolerance band is computed by selecting the most lenient tolerance result for each data point.

When you define your tolerance using only the absolute and relative tolerance properties, the tolerance for each point is computed as a simple maximum.
tolerance $=\max ($ absoluteTolerance, relativeTolerance*abs(baselineData)) ;
For detailed information on tolerance computation, see "Tolerance Computation".
Data Types: char
tolValue - Difference between the original output and the output of the new design
scalar double
Acceptable level of tolerance for the signal specified by blockPath and portIndex.
If tolType is set to 'AbsTol', then tolValue represents the absolute value of the maximum acceptable difference between the original output, and the output of the new design.

If tolType is set to 'RelTol', then tolValue represents the maximum relative difference, specified as a percentage, between the original output, and the output of the new design. For example, a value of $1 \mathrm{e}-2$ indicates a maximum difference of one percent between the original output, and the output of the new design.

If tolType is set to 'TimeTol', then tolValue defines a time interval, in seconds, in which the maximum and minimum values define the upper and lower values to compare against.

You can specify a tolerance band using a combination of absolute, relative, and time tolerance values. When you specify the tolerance for your signal using multiple types of tolerances, the overall tolerance band is computed by selecting the most lenient tolerance result for each data point.

When you define your tolerance using only the absolute and relative tolerance properties, the tolerance for each point is computed as a simple maximum.

```
tolerance = max(absoluteTolerance,relativeTolerance*abs(baselineData));
```

For detailed information on tolerance computation, see "Tolerance Computation".

Data Types: double

'LoggingInfo', logInfo - Optional signal logging settings

Simulink.SimulationData.LoggingInfo object
Optional signal logging settings, specified as a name-value pair where logInfo is a Simulink. SimulationData. LoggingInfo object. Use this input argument to specify a Decimation value to control the amount of data logged by the Simulation Data Inspector.
Example: logInfo = Simulink.SimulationData.LoggingInfo(); logInfo.DecimateData = true; logInfo.Decimation = 10; addTolerance(options, 'model/ blockPath', 2,'AbsTol',1,'LoggingInfo',logInfo);

Examples

Specify required numeric tolerance for optimized system

Load the system for which you want to optimize the data types.
load_system('ex_auto_gain_controller');
Create a fxpOptimizationOptions object with default property values.
options = fxp0ptimization0ptions;
To specify a required numeric tolerance to use during the optimization process, use the addTolerance method of the fxp0ptimization0ptions object. To specify several tolerance constraints, call the method once per constraint. You can specify either relative, or absolute tolerance constraints.

```
addTolerance(options, 'ex_auto_gain_controller/output_signal', 1, 'AbsTol', 5e-2);
addTolerance(options, 'ex_auto_gain_controller/input_signal', 1, 'RelTol', 1e-2);
```

Use the showTolerances method to display all tolerance constraints added to a specified fxpOptimizationOptions object.

```
showTolerances(options)
```

Path
\{'ex_auto_gain_controller/output_signal' $\}$
$\{$ 'ex_auto_gain_controller/input_signal' $\}$
2×4 table

```
ans \(=\)
ans =
```

 2x4 table
 Port_Index

1
1

Tolerance Type
\{'AbsTol'\}
\{'RelTol'\}

Tolerance_Value
\qquad
0.05
0.01

Path
\{'ex_auto_gain_controller/output_signal'\}
\{'ex_auto_gain_controller/input_signal' \}

Port_Index

1
1

Tolerance Type

\{'AbsTol'\}

\{'RelTol'\}

Tolerance_Value
0.05
0.01

Version History

Introduced in R2018a

R2021b: Specify multiple types of tolerances

Behavior changed in R2021b
You can now specify multiple types of tolerances using the addTolerance function.

```
addTolerance(options,'model/blockPath',1,'AbsTol',5e-2,'RelTol',1e-2);
```


R2021b: Change in syntax for fxpOptimizationOptions.addTolerance

Behavior changed in R2021b

In previous releases, you specified options for logging information with a Simulink. SimulationData.LoggingInfo object as:

```
addTolerance(options,blockPath,portIndex,tolType,tolValue,loggingInfo)
```

Starting in R2021b, you must now specify logging information as a name-value pair:
addTolerance(options,blockPath, portIndex, ...
tolType, tolValue,' LoggingInfo', logInfo)

R2021a: Log a reduced set of data points

Using the addTolerance method of the fxpOptimizationOptions object, you can now control the amount of data logged by the Simulation Data Inspector by specifying a decimation factor.

```
logInfo = Simulink.SimulationData.LoggingInfo();
logInfo.DecimateData = true;
logInfo.Decimation = 10;
addTolerance(options,'model/blockPath',2,'AbsTol',1,logInfo);
```


See Also

Classes

fxpOptimizationOptions|OptimizationResult|OptimizationSolution

Functions

```
showTolerances|explore| fxpopt
```


Topics

"Optimize Fixed-Point Data Types for a System"

showSpecifications

Class: fxpOptimizationOptions

Show specifications for a system

Syntax

showSpecifications(options)

Description

showSpecifications(options) displays all parameters that were specified for a system using the addSpecification method of the fxpOptimizationOptions class. If the options object has no parameters specified, the showSpecifications method does not display anything.

Input Arguments

options - Optimization options

fxpOptimizationOptions object
Optimization options, specified as an fxpOptimizationOptions object with known data types specified for a system.

Examples

Specify Known Data Types for Block Parameters Before Data Type Optimization

This example shows how to specify known data types for block parameters within your system.
Load the system for which you want to optimize the data types.

```
load_system('ex_auto_gain_controller');
```

To specify that the input to the system you are converting will always be an eight-bit integer, create a BlockParameter object that specifies the block parameter, and the data type.

```
bp = Simulink.Simulation.BlockParameter(...
'ex_auto_gain_controller/input_signal','OutDataTypeStr','int8');
```

The fxpOptimizationOptions object, opt, specifies options to use during data type optimization. To specify the data type of the input to the system, use the addSpecification method.

```
opt = fxpOptimizationOptions;
addSpecification(opt,'BlockParameter',bp)
```

You can view all specifications added to a fxpOptimizationOptions object using the showSpecifications method.

```
showSpecifications(opt)
```

Index			
O	Name	BlockPath	Value
OutDataTypeStr	ex_auto_gain_controller/input_signal	int8'	

Version History

Introduced in R2020a

See Also

```
Classes
fxpOptimizationOptions|OptimizationResult|OptimizationSolution
```


Functions

```
addTolerance | showTolerances | explore | fxpopt
Topics
"Optimize Fixed-Point Data Types for a System"
```


showTolerances

Class: fxp0ptimizationOptions
Show tolerances specified for a system

Syntax

showTolerances(options)

Description

showTolerances(options) displays the absolute and relative tolerances specified for a system using the addTolerance method of the fxpOptimizationOptions class. If the options object has no tolerances specified, the showTolerances method does not display anything.

Input Arguments

options - Optimization options

fxpOptimizationOptions object
fxpOptimizationOptions object specifying options and tolerances to use during the data type optimization process.

Examples

Specify required numeric tolerance for optimized system

Load the system for which you want to optimize the data types.
load_system('ex_auto_gain_controller');
Create a fxpOptimizationOptions object with default property values.

```
options = fxpOptimizationOptions;
```

To specify a required numeric tolerance to use during the optimization process, use the addTolerance method of the fxpOptimizationOptions object. To specify several tolerance constraints, call the method once per constraint. You can specify either relative, or absolute tolerance constraints.

```
addTolerance(options, 'ex_auto_gain_controller/output_signal', 1, 'AbsTol', 5e-2);
addTolerance(options, 'ex_auto_gain_controller/input_signal', 1, 'RelTol', 1e-2);
```

Use the showTolerances method to display all tolerance constraints added to a specified fxpOptimizationOptions object.
showTolerances(options)

```
    {'ex_auto_gain_controller/output_signal'} 0.05
    {'ex_auto_gain_controller/input_signal' } 1
ans =
    2x4 table
            Path
        {'ex_auto_gain_controller/output_signal'}
                Port_Index
                Tolerance_Type
                Tolerance_Value
        {'ex_auto_gain_controller/input_signal' } l
    {'AbsTol'}
    0.05
```

Port_Index

1
1
\{'AbsTol'\}
0.05
\{'ex_auto_gain_controller/input_signal' \}
ans =
2×4 table

Path
Path

\{'ex_auto_gain_controller/output_signal' '
\{'ex_auto_gain_controller/input_signal' \}

\{'RelTol'\}
0.01

Version History

Introduced in R2018a

See Also

Classes

fxpOptimizationOptions|OptimizationResult|OptimizationSolution
Functions
addTolerance | explore | fxpopt

Topics

"Optimize Fixed-Point Data Types for a System"

replace

Replace all Lookup Table blocks with compressed lookup tables

Syntax

```
replace(compressionResult)
replace(compressionResult, index)
```


Description

replace(compressionResult) replaces all n-D Lookup Table blocks in a system with the compressed versions described in the LUTCompressionResult object compressionResult.
replace(compressionResult, index) replaces the lookup tables at the indices specified by index.

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.
Open the model containing the lookup tables that you want to compress.

```
system = 'sldemo_fuelsys';
open_system(system)
```

Fault-Tolerant Fuel Control System

Open the Dashboard subsystem to simulate any combination of sensor failures.

Copyright 1990-2022 The MathWorks, Inc.

Use the FunctionApproximation. compressLookupTables function to compress all of the lookup tables in the model. The output specifies all blocks that are modified and the memory savings for each.

```
compressionResult = FunctionApproximation.compressLookupTables(system)
```

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37\% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throt
 - 3.55\% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estim
 - 6.38\% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map estimate/Pressure E
 - 9.38\% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki
compressionResult =
LUTCompressionResult with properties:
MemoryUnits: bytes
MemoryUsageTable: [5x5 table]
NumLUTsFound: 5
NumImprovements: 5
TotalMemoryUsed: 6024
TotalMemoryUsedNew: 5796
TotalMemorySavings: 228
TotalMemorySavingsPercent: 3.7849
SUD: 'sldemo_fuelsys'

Use the replace function to replace each Lookup Table block with a block containing the original and compressed version of the lookup table.
replace(compressionResult);
You can revert the lookup tables back to their original state using the revert function.
revert(compressionResult);

Input Arguments

compressionResult - Results of lookup table compression
LUTCompressionResult object
Results of lookup table compression, specified as a LUTCompressionResult object.

index - Index of Lookup Table blocks to replace
 scalar | vector

Index of the Lookup Table blocks to replace in the system, specified as an integer-valued scalar or vector.

The index of each lookup table corresponds to the ID column in the MemoryUsageTable property of the LUTCompressionResult object.
Data Types: double

Version History

Introduced in R2020a

See Also

Classes

LUTCompressionResult

Functions

FunctionApproximation.compressLookupTables|revert

revert

Revert compressed Lookup Table blocks to original versions

Syntax

revert(compressionResult)
revert(compressionResult, index)

Description

revert(compressionResult) reverts the Lookup Table blocks compressed by the FunctionApproximation.compressLookupTables function back to their original state.
revert (compressionResult, index) reverts the lookup tables at the indices specified by index.

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.
Open the model containing the lookup tables that you want to compress.

```
system = 'sldemo_fuelsys';
```

open_system(system)

Fault-Tolerant Fuel Control System

Open the Dashboard subsystem to simulate any combination of sensor failures.

Copyright 1990-2022 The MathWorks, Inc.

Use the FunctionApproximation. compressLookupTables function to compress all of the lookup tables in the model. The output specifies all blocks that are modified and the memory savings for each.

```
compressionResult = FunctionApproximation.compressLookupTables(system)
```

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37\% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throt
 - 3.55\% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estim
 - 6.38\% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map estimate/Pressure E
 - 9.38\% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki
compressionResult =
LUTCompressionResult with properties:
MemoryUnits: bytes
MemoryUsageTable: [5x5 table]
NumLUTsFound: 5
NumImprovements: 5
TotalMemoryUsed: 6024
TotalMemoryUsedNew: 5796
TotalMemorySavings: 228
TotalMemorySavingsPercent: 3.7849
SUD: 'sldemo_fuelsys'

WordLengths: [8 16 32]
FindOptions: [1x1 Simulink.internal.FindOptions]
Display: 1

Use the replace function to replace each Lookup Table block with a block containing the original and compressed version of the lookup table.

```
replace(compressionResult);
```

You can revert the lookup tables back to their original state using the revert function.
revert(compressionResult);

Input Arguments

compressionResult - Results of lookup table compression
LUTCompressionResult object
Results of lookup table compression, specified as a LUTCompressionResult object.

```
index - Index of Lookup Table blocks to revert
scalar | vector
```

Index of the Lookup Table blocks to revert in the system, specified as an integer-valued scalar or vector.

The index of each lookup table corresponds to the ID column in the MemoryUsageTable property of the LUTCompressionResult object.
Data Types: double

Version History

Introduced in R2020a

See Also

Classes

LUTCompressionResult

Functions

FunctionApproximation.compressLookupTables | replace

explore

Class: OptimizationResult

Explore fixed-point implementations found during optimization process

Syntax

explore(result)
explore(result, Name, Value)
solution $=$ explore(result, Name, Value)

Description

explore (result) applies the data types of the best solution found during the optimization process for the OptimizationResult object specified by result. If you have defined tolerances for logged signals in your system, explore opens the Simulation Data Inspector with logging data displayed for further exploration of numeric behavior. By default, the best solution and the first simulation scenario will be applied on the model and explored.
explore(result,Name, Value) explores result with additional options specified by name-value pairs.
solution $=$ explore(result, Name, Value) explores result with additional options specified by name-value pairs and returns an OptimizationSolution object, solution.

Input Arguments

result - OptimizationResult to explore
OptimizationResult object
OptimizationResult object to explore.
If the optimization finds a feasible solution, the vector of OptimizationSolution objects contained in the result object is sorted by cost, with the lowest cost (most optimal) solution as the first element of the vector. If the optimization does not find a feasible solution, the vector is sorted by least violation.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: solution =
explore(result,'SolutionIndex',1,'ScenarioIndex',5,'KeepOriginalModelParamete
rs',false);
```


SolutionIndex $\boldsymbol{-} \mathbf{n}^{\text {th }}$ best solution

1 (default) | positive integer
$\mathrm{n}^{\text {th }}$ best solution contained in result to apply to the model, specified as a positive integer. By default, the best solution is applied.

If optimization finds a feasible result, the best solution is defined as the solution with minimal cost that meets all behavioral constraints. If optimization finds only infeasible solutions, the best solution is defined as the least-violating solution.
Example: solution = explore(result,'SolutionIndex',2); returns the second-best solution.

ScenarioIndex $\boldsymbol{-} \mathbf{n}^{\text {th }} \boldsymbol{s i m u l a t i o n ~ s c e n a r i o ~}$

1 (default) | positive integer
$\mathrm{n}^{\text {th }}$ simulation scenario contained in result. If no simulation scenarios were used for optimization, this value is set to 1 .

Example: solution = explore(result,'SolutionIndex',2,'ScenarioIndex',5); returns the second-best solution using the simulation scenario with index 5 .

KeepOriginalModelParameters - Whether to maintain original values of model parameters
 false or 0 (default) | true or 1

Whether to maintain original values of model parameters that are altered during the optimization process, specified as a numeric or logical 1 (true) or 0 (false).

A value of true maintains the original model parameters, but may lead to inconsistencies with the results returned by fxpopt. For more information, see "Model Configuration Changes Made During Data Type Optimization".
Example: solution = explore(result,'KeepOriginalModelParameters',true) maintains the original values of model parameters.

Output Arguments

solution - OptimizationSolution containing information related to fixed-point implementation for system
 OptimizationSolution object

OptimizationSolution object containing information related to the optimal fixed-point implementation for the system, including total cost of the implementation and the maximum difference between the baseline and the solution.

Version History

Introduced in R2018a

R2021b: Maintain original values of model parameters that are altered by fxpopt

Use the KeepOriginalModelParameters option of explore to maintain the original values of model configuration parameters during the optimization process.

See Also

Classes

fxpOptimizationOptions|OptimizationResult|OptimizationSolution

Functions

addTolerance | showTolerances | fxpopt

Topics

"Optimize Fixed-Point Data Types for a System"
"Model Configuration Changes Made During Data Type Optimization"

revert

Class: OptimizationResult

Revert system data types and settings changed during optimization to original state

Syntax

revert(result)

Description

revert(result) reverts the changes made during optimization, including system settings and data types, to their original state.

Input Arguments

result - OptimizationResult to revert

OptimizationResult object
OptimizationResult object to revert to its state before optimization.

Considerations

If the system you are optimizing contains a MATLAB Function block, the optimization replaces the block with a Variant Subsystem, Variant Model, Variant Assembly Subsystem block in which one variant contains the original MATLAB Function block and the other variant contains the block with the optimized, fixed-point data types. When you revert a system containing a MATLAB Function block, the variant containing the original MATLAB Function block is set as the active variant.

Similarly, if the system you are optimizing contains a Stateflow chart, the optimization process first replaces all data types in the chart with Simulink. NumericType objects. When you revert a system containing a Stateflow chart, the data type of the Simulink.NumericType objects are restored to their original data type, but the NumericType objects still exist in the model.

In both of these cases, when you revert your system, the model behaves numerically identically to how it did before the optimization, however, the model is not actually identical to its state before optimization.

Version History

Introduced in R2020a

See Also

Classes
fxpOptimizationOptions|OptimizationResult|OptimizationSolution

Functions

addTolerance | showTolerances | fxpopt
Topics
"Optimize Fixed-Point Data Types for a System"

openSimulationManager

Class: OptimizationResult
Inspect simulations run during optimization in Simulation Manager

Syntax

openSimulationManager(result)

Description

openSimulationManager(result) opens Simulation Manager with simulations displayed for the OptimizationResult object specified by result.

Input Arguments

```
result - OptimizationResult to inspect
OptimizationResult
```

OptimizationResult object containing simulations to inspect in Simulation Manager.

Version History

Introduced in R2020b

See Also

Classes

fxpOptimizationOptions|OptimizationResult|OptimizationSolution

Functions

addTolerance | showTolerances | explore | revert | fxpopt

Topics

Simulation Manager
"Optimize Fixed-Point Data Types for a System"

showContents

Class: OptimizationSolution
Get summary of changes made during data type optimization

Syntax

showContents(Solution)
showContents(Solution, index)

Description

showContents(Solution) returns a summary of the changes made during optimization contained in the OptimizationSolution object, Solution, including model settings, block parameters, and data types in the model.
showContents(Solution, index) returns a summary of the changes made during optimization in the simulation scenario specified by index.

Input Arguments

Solution - Solution to data type optimization

OptimizationSolution object
Solution to data type optimization, specified as an OptimizationSolution object.
index - Index of simulation scenario
scalar integer
Index of simulation scenario, specified as a scalar integer.
Data Types: double

Version History

Introduced in R2020a

See Also
fxpopt|OptimizationSolution

Model Metrics Objects and Object Functions

metric.Engine

Collect metric data on models

Description

A metric.Engine object represents the metric engine that you can execute with the execute object function to collect metric data on your design. Use the getMetrics function to access the metric data and return an array of metric. Result objects. Use generateReport to access a detailed report of metrics collected. Use design cost metric data to estimate the cost of implementing your design in embedded C code. For additional metrics, see "Model and Code Testing Metrics" (Simulink Check).

Creation

Syntax

```
metric_engine = metric.Engine()
metric_engine = metric.Engine(projectPath)
```

Description
metric_engine = metric.Engine() creates a metric engine object that collects metric data on the current project.
metric_engine = metric.Engine(projectPath) opens the project projectPath and creates a metric engine object that collects metric data on the project.

Input Arguments

projectPath - Path of project
character vector | string scalar
Path of project for which to collect metric data, specified as a character vector or string scalar.

Properties

ProjectPath - Project for which engine collects metric data
 string scalar

This property is read-only.
Project for which engine collects metric data, returned as a string.

Object Functions

generateReport Generate report file that contains metric results getArtifactErrors Return errors that occurred during metric execution getArtifactIssues Return issues that occur during artifact analysis getAvailableMetricIds Return metric identifiers for available metrics getMetrics openArtifact Access metric data for model testing artifacts updateArtifacts

Open testing artifact traced from metric result
Update trace information for pending artifact changes in project

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric. Engine object to collect design cost metric data on a model reference hierarchy in a project. This example requires Simulink Check ${ }^{\mathrm{TM}}$ to run.

To open the project, enter this command.

```
dashboardCCProjectStart
```

The project contains db_Controller, which is the top-level model in a model reference hierarchy. This model reference hierarchy represents one design unit.

Create a metric. Engine object.
metric_engine = metric.Engine();
Update the trace information for metric_engine to reflect any pending artifact changes.

```
updateArtifacts(metric_engine)
```

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list of all available design cost estimation metrics.

```
metric_Ids = getAvailableMetricIds(metric_engine,...
    'App','DesignCostEstimation')
metric_Ids =
    1\times2 string array
    "DataSegmentEstimate" "OperatorCount"
```

To collect results, execute the metric engine.
execute(metric_engine,metric_Ids);
Because the engine was executed without the argument for ArtifactScope, the engine collects metrics for the db_Controller model reference hierarchy.

Use the generateReport function to access detailed metric results in a pdf report. Name the report 'MetricResultsReport.pdf'.
reportLocation $=$ fullfile(pwd,'MetricResultsReport.pdf');
generateReport(metric_engine,...
'App','DesignCostĒstimation',...

```
'Type','pdf',...
'Location',reportLocation);
```

The report contains a detailed breakdown of the operator count and data segment estimate metric results.

Table of Contents

Chapter 1. cc_CruiseControl 1
1.1. Operator Count 2
1.1.1. High Level Statistics 2
1.1.2. Cost Breakdown Details 3
1.2. Data Segment Table 34

Version History

Introduced in R2022a

See Also

getAvailableMetricIds | execute | generateReport | updateArtifacts |"Design Cost Model Metrics" | "Model Testing Metrics" (Simulink Check)

Topics

"How to Collect Design Cost Metrics"

metric.Result

Metric data for specified metric algorithm

Description

A metric. Result object contains the metric data for a specified metric algorithm that traces to the specified unit.

Creation

Syntax

metric_result $=$ metric. Result

Description

metric_result $=$ metric. Result creates a handle to a metric result object.
Alternatively, if you collect results by executing a metric. Engine object, using the getMetrics function on the engine object returns the collected metric. Result objects in an array.

Properties

MetricID - Metric identifier

string
Metric identifier for metric algorithm that calculates results, returned as a string.

Example: 'DataSegmentEstimate'

Artifacts - Testing artifacts

structure | array of structures
Testing artifacts for which metric is calculated, returned as a structure or an array of structures. For each artifact that the metric analyzes, the returned structure contains these fields:

- UUID - Unique identifier of artifact
- Name - Name of artifact
- ParentUUID - Unique identifier of file that contains artifact
- ParentName - Name of the file that contains artifact

Value - Result value

integer | string | double vector | structure
Result value of the metric for specified algorithm and artifacts, returned as an integer, string, double vector, or structure. For a list of metrics and their result values, see "Design Cost Model Metrics" and "Model Testing Metrics" (Simulink Check).

Scope - Scope of metric results

structure
Scope of metric results, returned as a structure. The scope is the unit for which the metric collected results. The structure contains these fields:

- UUID - Unique identifier of unit
- Name - Name of unit
- ParentUUID - Unique identifier of file that contains unit
- ParentName - Name of file that contains unit

UserData - User data

string
User data provided by the metric algorithm, returned as a string.

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric. Engine object to collect design cost metric data on a model reference hierarchy in a project.

To open the project, enter this command.

```
dashboardCCProjectStart
```

The project contains cc_CruiseControl, which is the top-level model in a model reference hierarchy. This model reference hierarchy represents one design unit.

Create a metric.Engine object.
metric_engine = metric.Engine();
Update the trace information for metric_engine to reflect any pending artifact changes.
updateArtifacts(metric_engine)
Create an array of metric identifiers for the metrics you want to collect. For this example, create a list of all available design cost estimation metrics.

```
metric_Ids = getAvailableMetricIds(metric_engine,...
    'A\overline{pp','DesignCostEstimation')}
metric_Ids =
    1\times2 string array
    "DataSegmentEstimate" "OperatorCount"
```

To collect results, execute the metric engine.
execute(metric_engine,metric_Ids);

Because the engine was executed without the argument for ArtifactScope, the engine collects metrics for the cc_CruiseControl model reference hierarchy.

Use the getMetrics function to access the high-level design cost metric results.

```
results_OperatorCount = getMetrics(metric_engine,'OperatorCount');
results_DataSegmentEstimate = getMetrics(metric_engine,'DataSegmentEstimate');
disp(['Unit: ', results_OperatorCount.Artifacts.Name])
disp(['Total Cost: ', num2str(results_OperatorCount.Value)])
disp(['Unit: ', results_DataSegmentEstimate.Artifacts.Name])
disp(['Data Segment Size (bytes): ', num2str(results_DataSegmentEstimate.Value)])
Unit: cc CruiseControl
Total Cost: 333
Unit: cc CruiseControl
Data Segment Size (bytes): 79
```

The results show that for the cc_CruiseControl model, the estimated total cost of the design is 333 and the estimated data segment size is 79 bytes.

Use the generateReport function to access detailed metric results in a pdf report. Name the report 'MetricResultsReport.pdf'.

```
reportLocation = fullfile(pwd,'MetricResultsReport.pdf');
```

generateReport(metric_engine,...
'App','DesignCostEstimation',...
'Type', 'pdf',...
'Location' , reportLocation);
The report contains a detailed breakdown of the operator count and data segment estimate metric results.

Table of Contents

Chapter 1. cc_CruiseControl 1
1.1. Operator Count 2
1.1.1. High Level Statistics 2
1.1.2. Cost Breakdown Details 3
1.2. Data Segment Table 34
Version History

Introduced in R2022a

See Also

metric.Engine | execute | getMetrics|"Design Cost Model Metrics"

Topics

"How to Collect Design Cost Metrics"

deleteMetrics

Package: metric
Delete metric results for model testing artifacts

Syntax

deleteMetrics(metricEngine,metricIDs)
deleteMetrics(metricEngine,metricIDs,'ArtifactScope',scope)

Description

deleteMetrics(metricEngine, metricIDs) deletes the metric results specified by metricIDs for the specified metricEngine object. To collect metric results for the metricEngine object, use the execute function. To access the results, use the generateReport function.
deleteMetrics(metricEngine,metricIDs,'ArtifactScope',scope) deletes the metric results for the artifacts in the specified scope. For example, you can specify scope to be a single design unit in your project, such as a Simulink model or an entire model reference hierarchy.

Examples

Delete Metric Data for Specific Metrics

To open the project, enter this command.
dashboardCCProjectStart
Create a metric.Engine object.
metric_engine = metric.Engine();
To collect results for the metric OperatorCount, execute the metric engine.
execute(metric_engine,\{'OperatorCount'\});
Delete the metric results.
deleteMetrics(metric_engine,'OperatorCount')

Input Arguments

metricEngine - Metric engine object

metric.Engine object
Metric engine object for which to delete metric results, specified as a metric.Engine object.
metricIDs - Metric identifiers
character vector | cell array of character vectors

Metric identifiers for metrics that you want to delete, specified as a character vector or cell array of character vectors. For a list of design cost metrics, see "Design Cost Model Metrics". For a list of model testing metrics and their identifiers, see "Model Testing Metrics" (Simulink Check).

Example: 'DataSegmentEstimate'

Example: \{'DataSegmentEstimate', 'Operator Count'\}

scope - Path and identifier of project file

cell array of character vectors
Path and identifier of project file for which to delete metric results, specified as a cell array of character vectors. The first element of the array is the full path to a project file. The second element is the identifier of the object inside the project file.

For a unit model, the first element is the full path to the model file. The second element is the name of the block diagram. When you use this argument, the metric engine deletes the results for the artifacts that trace to specified project file.
Example: \{'C:\work\MyModel.slx', 'MyModel'\}

Tips

- If design changes are not reflected in the design cost metric results, first use the deleteMetrics function to delete the metric. Result, then use the execute function to collect metrics.
- Report generation using the generateReport function requires that the metric collection be executed in the current session. To recollect design cost metrics, first use the deleteMetrics function to delete the metric. Result, then use the execute function to collect metrics.

Version History

Introduced in R2022a

See Also

metric.Engine | execute | getMetrics|"Design Cost Model Metrics"

Topics

"How to Collect Design Cost Metrics"

execute

Package: metric
Collect metric data

Syntax

execute(metricEngine,metricIDs)
execute(metricEngine,metricIDs,'ArtifactScope',scope)

Description

execute(metricEngine, metricIDs) collects results in the metricEngine object specified by metricEngine for the metrics specified by metricIDs.
execute(metricEngine, metricIDs,'ArtifactScope',scope) collects metric results for the artifacts in the specified scope. For example, you can specify scope to be a single design unit in your project, such as a Simulink model or an entire model reference hierarchy. A unit is a functional entity in your software architecture that you can execute and test independently or as part of larger system tests.

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric. Engine object to collect design cost metric data on a model reference hierarchy in a project.

To open the project, enter this command.
dashboardCCProjectStart
The project contains cc_CruiseControl, which is the top-level model in a model reference hierarchy. This model reference hierarchy represents one design unit.

Create a metric.Engine object.
metric_engine = metric.Engine();
Update the trace information for metric_engine to reflect any pending artifact changes.
updateArtifacts(metric_engine)
Create an array of metric identifiers for the metrics you want to collect. For this example, create a list of all available design cost estimation metrics.

```
metric_Ids = getAvailableMetricIds(metric_engine,...
    'App','DesignCostEstimation')
metric_Ids =
```

```
1\times2 string array
    "DataSegmentEstimate" "OperatorCount"
```

To collect results, execute the metric engine.

```
execute(metric engine,metric Ids);
```

Because the engine was executed without the argument for ArtifactScope, the engine collects metrics for the cc_CruiseControl model reference hierarchy.

Use the generateReport function to access detailed metric results in a pdf report. Name the report 'MetricResultsReport.pdf'.

```
reportLocation = fullfile(pwd,'MetricResultsReport.pdf');
generateReport(metric_engine,...
    'App','DesignCostEstimation',...
    'Type','pdf',...
    'Location',reportLocation);
```

The report contains a detailed breakdown of the operator count and data segment estimate metric results.

Table of Contents

Chapter 1. cc CruiseControl 1
1.1. Operator Count 2
1.1.1. High Level Statistics 2
1.1.2. Cost Breakdown Details 3
1.2. Data Segment Table 34

Input Arguments

metricEngine - Metric engine object
metric.Engine object
Metric engine object for which to collect metric results, specified as a metric.Engine object.

metricIDs - Metric identifiers

character vector | cell array of character vectors
Metric identifiers for metrics to collect, specified as a character vector or cell array of character vectors. Collecting results for design cost metrics requires a Fixed-Point Designer license. For a list of design cost metrics and their identifiers, see "Design Cost Model Metrics". For additional metrics, see "Model and Code Testing Metrics" (Simulink Check).

Example: 'DataSegmentEstimate'
Example: \{'DataSegmentEstimate', 'OperatorCount'\}

scope - Path and identifier of project file

cell array of character vectors

Path and identifier of project file for which to execute metric results, specified as a cell array of character vectors. The first entry is the full path to a project file. The second entry is the identifier of the object inside the project file.

For a unit model, the first entry is the full path to the model file. The second entry is the name of the block diagram. When you use this argument, the metric engine executes the metrics for the artifacts that trace to specified project file.

Example: \{'C:\work\MyModel.slx', 'MyModel'\}

Version History

Introduced in R2022a

See Also

metric.Engine | getAvailableMetricIds | generateReport | updateArtifacts |"Design Cost Model Metrics" | "Model Testing Metrics" (Simulink Check)

Topics

"How to Collect Design Cost Metrics"

generateReport

Package: metric

Generate report file that contains metric results

Syntax

```
reportFile = generateReport(metricEngine,'App','DesignCostEstimation')
reportFile = generateReport(
```

\qquad

``` ,Name,Value)
```


Description

reportFile = generateReport(metricEngine,'App','DesignCostEstimation') creates a PDF report of the metric results from metricEngine in the root folder of the project. The generated report shows detailed design cost metric results. Before you generate the report, collect metric results for the engine by using the execute function. For a syntax to generate a report for requirements-based model metrics, see generateReport (Simulink Check).
reportFile = generateReport (__, Name, Value) specifies options using one or more namevalue arguments. For example, 'Type','html-file' generates an HTML file.

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric. Engine object to collect design cost metric data on a model reference hierarchy in a project.

To open the project, enter this command.
dashboardCCProjectStart
The project contains cc_CruiseControl, which is the top-level model in a model reference hierarchy. This model reference hierarchy represents one design unit.

Create a metric.Engine object.

```
metric_engine = metric.Engine();
```

Update the trace information for metric_engine to reflect any pending artifact changes.
updateArtifacts(metric_engine)
Create an array of metric identifiers for the metrics you want to collect. For this example, create a list of all available design cost estimation metrics.

```
metric_Ids = getAvailableMetricIds(metric_engine,...
    'App','DesignCostEstimation')
metric_Ids =
```

```
1\times2 string array
    "DataSegmentEstimate" "OperatorCount"
```

To collect results, execute the metric engine.

```
execute(metric_engine,metric_Ids);
```

Because the engine was executed without the argument for ArtifactScope, the engine collects metrics for the cc_CruiseControl model reference hierarchy.

Use the generateReport function to access detailed metric results in a pdf report. Name the report 'MetricResultsReport.pdf'.

```
reportLocation = fullfile(pwd,'MetricResultsReport.pdf');
```

generateReport(metric_engine,...
'App ','DesignCostĒ̄stimation', ...
'Type','pdf',...
'Location',reportLocation);
The report contains a detailed breakdown of the operator count and data segment estimate metric results.

Table of Contents

Chapter 1. cc_CruiseControl 1
1.1. Operator Count 2
1.1.1. High Level Statistics 2
1.1.2. Cost Breakdown Details 3
1.2. Data Segment Table 34

Input Arguments

metricEngine - Metric engine object

metric.Engine object
Metric engine object for which metric results are collected, specified as a metric. Engine object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Type', 'html-file'

LaunchReport - Whether to open generated report automatically

true (default) | false
Whether to open generated report automatically, specified as true or false.
Data Types: logical

Location - Full file name

character vector | string scalar
Full file name for generated report, specified as a character vector or string scalar. Use the location to specify the name of the report. By default, the report is named untitled.

Example: 'C:\MyProject\Reports \backslash RBTResults.html'

Type - File type
 'pdf' (default)|'html-file'

File type for generated report, specified as 'pdf' or 'html-file'.
Example: 'html-file'

Output Arguments

reportFile - Full file name of generated report

character vector
Full file name of generated report, returned as a character vector.

Version History
 Introduced in R2022a

See Also

metric.Engine | getAvailableMetricIds | execute | updateArtifacts | "Design Cost Model Metrics" | "Model Testing Metrics" (Simulink Check)

Topics

"How to Collect Design Cost Metrics"

getArtifactErrors

Package: metric
Return errors that occurred during metric execution

Syntax

errors = getArtifactErrors(metricEngine)

Description

errors = getArtifactErrors(metricEngine) returns the errors that occur when the metricEngine analyzes the Simulink models. The metricEngine object does not collect results for artifacts that return errors during analysis.

Examples

Check for Artifact Errors After Collecting Metric Results

Collect design cost metrics for artifacts in a project. Then, check if artifacts return errors and were not analyzed.

To open the project, enter this command.
dashboardCCProjectStart
Create a metric.Engine object.
metric_engine = metric.Engine();
Update the trace information for metric_engine to ensure that the artifact information is up to date.
updateArtifacts(metric_engine)
Collect results for the design cost metrics by using the execute function on the metric.Engine object.

```
execute(metric_engine,{'DataSegmentEstimate','OperatorCount'});
```

Access the errors that occurred during analysis.

```
getArtifactErrors(metric_engine)
ans =
    0x0 empty struct array with fields:
```

 Address
 UUID
 ErrorId
 ErrorMessage
 For this example, the artifacts did not return errors.

Input Arguments

metricEngine - Metric engine object

metric.Engine object
Metric engine object to check for errors, specified as a metric. Engine object.

Output Arguments

errors - Artifact errors

struct array
Artifact errors that occur when metric. Engine object is executed, returned as an array of structures that correspond to the errors. The structure for an error contains these fields:

- Address - Address of artifact that returns the error
- UUID - Unique identifier of artifact
- ErrorID - Identifier of error
- ErrorMessage - Description of error

Version History

Introduced in R2022a

See Also

metric.Engine|execute|getMetrics|updateArtifacts|getArtifactIssues|"Design Cost Model Metrics"

Topics
"How to Collect Design Cost Metrics"

getArtifactlssues

Package: metric

Return issues that occur during artifact analysis

Syntax

issues = getArtifactIssues(metricEngine)

Description

issues = getArtifactIssues(metricEngine) returns the artifact issues that occur when the metric engine analyzes the artifacts in the project. For the metric engine to perform artifact analysis and check for artifact issues, collect metric results by using the execute function. If the execute function returns a warning about artifact issues in the project, use getArtifactIssues to get a list of the artifact issues that the metric engine found during artifact analysis.

If there are artifact issues in your project, try to fix the issues to prevent the artifacts from returning incorrect metric results.

Examples

Identify Artifact Issues After Collecting Metric Results

Collect metric results for the testing artifacts and get a list of artifact issues in the project.
Open the project that contains the models and testing artifacts. For this example, in the MATLAB Command Window, enter:
dashboardCCProjectStart
Create a metric. Engine object for the project.
metric_engine = metric.Engine();
Collect results for the design cost metrics by using the execute function on the metric. Engine object.

```
execute(metric_engine,{'DataSegmentEstimate','OperatorCount'});
```

If there are artifact issues in the project, the execute function returns a warning. For this example, the execute function does not return a warning.

You can use the function getArtifactIssues to get a list of the artifact issues that the metric engine found during artifact analysis.

```
issues = getArtifactIssues(metric_engine)
issues =
    0x0 empty struct array with fields:
```

IssueId
IssueMessage
Severity
Address
UUID
For this example, the artifacts did not return any issues. If there are artifact issues in your project, try to fix the issues to prevent the artifacts from returning incorrect metric results.

Input Arguments

metricEngine - Metric engine object
 metric.Engine object

Metric engine object for the project for which you want the list of artifact issues, specified as a metric. Engine object.

Output Arguments

issues - Artifact issues in project
 struct | struct array

Artifact issues in a project, returned as a struct or struct array with fields:

- IssueId - Identifier for the artifact issue type
- IssueMessage - Message that describes the artifact issue
- Severity - Severity of the artifact issue
- Address - Address of the affected artifact
- UUID - Universal unique identifier for the affected artifact

There is one element in the array for each artifact issue.

Version History
 Introduced in R2023a

See Also

metric.Engine | execute| getMetrics |updateArtifacts | getArtifactErrors|"Design Cost Model Metrics"

Topics
"How to Collect Design Cost Metrics"

getAvailableMetriclds

Return metric identifiers for available metrics

Syntax

```
availableMetricIds = getAvailableMetricIds(metricEngine)
availableMetricIds = getAvailableMetricIds(
metricEngine,'App','DesignCostEstimation')
availableMetricIds = getAvailableMetricIds(
```

\qquad

``` ,'Installed',
installationStatus)
```


Description

availableMetricIds = getAvailableMetricIds(metricEngine) returns the metric identifiers for the metrics available for the specified metricEngine object. By default, the list includes only the metrics available with the current installation.
availableMetricIds = getAvailableMetricIds(
metricEngine, 'App','DesignCostEstimation') returns the metric identifiers for design cost estimation metrics. For an additional syntax to display metric identifiers for requirements-based model metrics, see getAvailableMetricIds.
availableMetricIds = getAvailableMetricIds(__ ,'Installed', installationStatus) returns the metric identifiers filtered by the installation status specified by installationStatus. For example, specifying installationStatus as false returns the metric identifier for each available metric, even if the associated MathWorks products are not currently installed on your machine.

Examples

View Available Metrics

Create a metric.Engine object and view all metrics available with the current installation.

```
metric_engine = metric.Engine();
ids = getAvailableMetricIds(metric_engine);
```


View Available Design Cost Metrics

Create a metric.Engine object and view all design cost metrics available.

```
metric engine = metric.Engine();
ids = getAvailableMetricIds(metric_engine,...
    'App','DesignCostEstimation',...
    'Installed',false)
ids =
```

```
1*2 string array
```

"DataSegmentEstimate" "OperatorCount"

Input Arguments

metricEngine - Metric engine object
metric. Engine object
Metric engine object for which to collect metric results, specified as a metric.Engine object.

```
installationStatus - Filter for metric installation status
1 (true) (default)|0 (false)
```

Filter for metric installation status, specified as one of these values:

- 1 (true) - Returns only metric identifiers associated with the MathWorks products currently installed on your machine.
- 0 (false) - Returns metric identifiers for each available metric, even if the associated MathWorks products are not currently installed on your machine.

Example: false
Data Types: logical

Output Arguments

availableMetricIds - Metric identifiers
string | string array
Metric identifiers for available metrics, returned as a string or string array. For a list of design cost metrics and their identifiers, see "Design Cost Model Metrics". For a list of requirements-based model testing metrics and their identifiers, see "Model Testing Metrics" (Simulink Check).
Example: "DataSegmentEstimate"
Example: ["DataSegmentEstimate","OperatorCount"]

Version History

Introduced in R2022a

See Also

metric.Engine | execute | generateReport | updateArtifacts | "Design Cost Model Metrics" | "Model Testing Metrics" (Simulink Check)

Topics

"How to Collect Design Cost Metrics"

getMetrics

Package: metric
Access metric data for model testing artifacts

Syntax

results = getMetrics(metricEngine,metricIDs)
results = getMetrics(metricEngine,metricIDs,'ArtifactScope',scope)

Description

results = getMetrics(metricEngine, metricIDs) returns metric results for the specified metric. Engine object for the metrics specified by metricIDs. To collect metric results for the metricEngine object, use the execute function. Then, to access the results, use the getMetrics function.

```
results = getMetrics(metricEngine,metricIDs,'ArtifactScope',scope) returns metric
``` results for the artifacts in the specified scope. For example, you can specify scope to be a single design unit in your project, such as a Simulink model or an entire model reference hierarchy. A unit is a functional entity in your software architecture that you can execute and test independently or as part of larger system tests.

\section*{Examples}

\section*{Collect Metric Data for Each Design Unit in Project}

Use a metric. Engine object to collect design cost metric data on a model reference hierarchy in a project.

To open the project, use this command.
```

dashboardCCProjectStart

```

The project contains cc_CruiseControl, which is the top-level model in a model reference hierarchy. This model reference hierarchy represents one design unit.

Create a metric.Engine object.
metric_engine = metric.Engine();
Update the trace information for metric_engine to reflect any pending artifact changes.
```

updateArtifacts(metric_engine)

```

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list of all available design cost estimation metrics.
```

metric_Ids = getAvailableMetricIds(metric_engine,...
'A\overline{p}\mp@subsup{\overline{p}}{}{\prime},'DesignCostEstimation')

```
```

metric_Ids =
1\times2 string array
"DataSegmentEstimate" "OperatorCount"

```

To collect results, execute the metric engine.
```

execute(metric_engine,metric_Ids);

```

Because the engine was executed without the argument for ArtifactScope, the engine collects metrics for the cc_CruiseControl model reference hierarchy.

Use the getMetrics function to access the high-level design cost metric results.
```

results_OpCount = getMetrics(metric_engine,'OperatorCount');
results_DataSegmentEstimate = getMe\overline{trics(metric_engine,'DataSegmentEstimate');}
disp(['Unit: ', results_OpCount.Artifacts.Name])
disp(['Total Cost: ', num2str(results_OpCount.Value)])
disp(['Unit: ', results_DataSegmentEstimate.Artifacts.Name])
disp(['Data Segment Size (bytes): ', num2str(results_DataSegmentEstimate.Value)])
Unit: cc_CruiseControl
Total Cost: 333
Unit: cc_CruiseControl
Data Segment Size (bytes): 79

```

The results show that for the cc_CruiseControl model, the estimated total cost of the design is 333 and the estimated data segment size is 79 bytes.

Use the generateReport function to access detailed metric results in a pdf report. Name the report 'MetricResultsReport.pdf'.
```

reportLocation = fullfile(pwd,'MetricResultsReport.pdf');

```
generateReport(metric_engine,...
 'App','DesignCostĒstimation', ...
 'Type','pdf',...
 'Location',reportLocation);

The report contains a detailed breakdown of the operator count and data segment estimate metric results.

\section*{Table of Contents}
Chapter 1. cc CruiseControl 1
1.1. Operator Count 2
1.1.1. High Level Statistics 2
1.1.2. Cost Breakdown Details 3
1.2. Data Segment Table 34

\section*{Input Arguments}

\section*{metricEngine - Metric engine object \\ metric.Engine object}

Metric engine object for which to access metric results, specified as a metric.Engine object.

\section*{metricIDs - Metric identifiers}
character vector | cell array of character vectors
Metric identifiers for metrics to access, specified as a character vector or cell array of character vectors. For a list of design cost metrics and their identifiers, see "Design Cost Model Metrics". For a list of requirements-based model testing metrics and their identifiers, see "Model Testing Metrics" (Simulink Check).

Example: 'DataSegmentEstimate'
Example: \{'DataSegmentEstimate', 'OperatorCount'\}

\section*{scope - Path and identifier of project file}
cell array of character vectors
Path and identifier of project file for which to get metric results, specified as a cell array of character vectors. The first entry is the full path to a project file. The second entry is the identifier of the object inside the project file.

For a unit model, the first entry is the full path to the model file. The second entry is the name of the block diagram.
Example: \{'C:\work\MyModel.slx', 'MyModel'\}

\section*{Output Arguments}

\section*{results - Metric results}
array of metric.Result objects
Metric results, returned as an array of metric. Result objects.

\section*{Version History}

Introduced in R2022a

\section*{See Also}
metric.Engine | getAvailableMetricIds |execute | generateReport|updateArtifacts |
"Design Cost Model Metrics" | "Model Testing Metrics" (Simulink Check)

\section*{Topics}
"How to Collect Design Cost Metrics"

\section*{openArtifact}

Package: metric
Open testing artifact traced from metric result

\section*{Syntax}
openArtifact(metricEngine,artifactID)

\section*{Description}
openArtifact(metricEngine, artifactID) opens the artifact that has the specified identifier artifactID in the specified metricEngine object. The editor that opens depends on the type of artifact.
- Simulink models open in the Simulink Editor.
- Requirements open in the Requirements Editor.
- Test cases and test results open in the Test Manager.

\section*{Examples}

\section*{Open Model Artifact from Metric Result}

Use a metric. Engine object to collect design cost metric data on a model reference hierarchy in a project. Then, open one of the top-level model in the Simulink editor.

To open the project, enter this command.
dashboardCCProjectStart
Create a metric.Engine object.
```

metric_engine = metric.Engine();

```

Update the trace information for metric_engine to reflect any pending artifact changes and ensure that all test results are tracked.
```

updateArtifacts(metric_engine)

```

To collect results for the metric OperatorCount, execute the metric engine.
```

execute(metric_engine,{'OperatorCount'});

```

Use the getMetrics function to access the results.
```

results = getMetrics(metric_engine,'OperatorCount');
disp(['Unit: ', results.Artifacts.Name])
disp(['Total Cost: ', num2str(results.Value)])
Unit: cc CruiseControl
Total Cos\overline{t}: 333

```

Open the model artifact in the Simulink Editor by using the artifact identifier.
openArtifact(metric_engine, results(1).Artifacts(1). UUID)

\section*{Input Arguments}
metricEngine - Metric engine object
metric. Engine object
Metric engine object for which metric results are collected, specified as a metric. Engine object.

\section*{artifactID - Artifact identifier}
character vector | string scalar
Artifact identifier, specified as a character vector or string scalar. In a metric.Result object, the Artifacts field contains a structure for each artifact to which the result traces. To get the identifier for an artifact, use the UUID field of the structure for the artifact.

\section*{Version History}

\section*{Introduced in R2022a}

\section*{See Also}
metric.Engine | execute | getMetrics |"Design Cost Model Metrics"
Topics
"How to Collect Design Cost Metrics"

\section*{updateArtifacts}

Update trace information for pending artifact changes in project

\section*{Syntax}
```

updateArtifacts(metricEngine)

```

\section*{Description}
updateArtifacts(metricEngine) updates the trace information for any pending artifact changes in the metric data specified by metricEngine to ensure that artifacts are captured by the metrics. If an artifact has been created, deleted, or modified since the last time you used updateArtifacts, running updateArtifacts performs traceability analysis and updates the trace information.

\section*{Examples}

\section*{Collect Metric Data for Each Design Unit in Project}

Use a metric. Engine object to collect design cost metric data on a model reference hierarchy in a project.

To open the project, enter this command.

\section*{dashboardCCProjectStart}

The project contains cc_CruiseControl, which is the top-level model in a model reference hierarchy. This model reference hierarchy represents one design unit.

Create a metric.Engine object.
metric_engine = metric.Engine();
Update the trace information for metric_engine to reflect any pending artifact changes.
updateArtifacts(metric_engine)
Create an array of metric identifiers for the metrics you want to collect. For this example, create a list of all available design cost estimation metrics.
```

metric_Ids = getAvailableMetricIds(metric_engine,...
'App','DesignCostEstimation')
metric_Ids =
1\times2 string array
"DataSegmentEstimate" "OperatorCount"

```

To collect results, execute the metric engine.
```

execute(metric_engine,metric_Ids);

```

Because the engine was executed without the argument for ArtifactScope, the engine collects metrics for the cc_CruiseControl model reference hierarchy.

Use the generateReport function to access detailed metric results in a pdf report. Name the report 'MetricResultsReport.pdf'.
```

reportLocation = fullfile(pwd,'MetricResultsReport.pdf');

```
generateReport(metric_engine,...
'App','DesignCostĒ̄stimation',...
'Type','pdf',...
'Location', reportLocation);
The report contains a detailed breakdown of the operator count and data segment estimate metric results.

\section*{Table of Contents}
Chapter 1. cc_CruiseControl1
1.1. Operator Count. 2
1.1.1. High Level Statistics 2
1.1.2. Cost Breakdown Details 3
1.2. Data Segment Table 34

\section*{Input Arguments}

\section*{metricEngine - Metric engine object}
metric.Engine object
Metric engine object for which to collect metric results, specified as a metric.Engine object.

\section*{Version History}

Introduced in R2022a

\section*{See Also}
metric.Engine | getAvailableMetricIds | execute | generateReport | "Design Cost Model Metrics" | "Model Testing Metrics" (Simulink Check)

\section*{Topics}
"How to Collect Design Cost Metrics"

\section*{Selected Bibliography}
[1] Burrus, C.S., J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using MATLAB, Prentice Hall, Englewood Cliffs, New Jersey, 1994.
[2] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second Edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1990.
[3] Handbook For Digital Signal Processing, edited by S.K. Mitra and J.F. Kaiser, John Wiley \& Sons, Inc., New York, 1993.
[4] Hanselmann, H., "Implementation of Digital Controllers - A Survey," Automatica, Vol. 23, No. 1, pp. 7-32, 1987.
[5] Jackson, L.B., Digital Filters and Signal Processing, Second Edition, Kluwer Academic Publishers, Seventh Printing, Norwell, Massachusetts, 1993.
[6] Middleton, R. and G. Goodwin, Digital Control and Estimation - A Unified Approach, Prentice Hall, Englewood Cliffs, New Jersey. 1990.
[7] Moler, C., "Floating points: IEEE Standard unifies arithmetic model," Cleve's Corner, The MathWorks, Inc., 1996. You can find this article at https://www.mathworks.com/ company/newsletters/news_notes/clevescorner/index.html.
[8] Ogata, K., Discrete-Time Control Systems, Second Edition, Prentice Hall, Englewood Cliffs, New Jersey, 1995.
[9] Roberts, R.A. and C.T. Mullis, Digital Signal Processing, Addison-Wesley Publishing Company, Reading, Massachusetts, 1987.```

